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Abstract

This paper provides an introduction to the analysis of games with strategic complementarities and

applications to industrial organization: oligopoly pricing, comparative statics and a taxonomy of

strategic behavior in two-stage games.
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1. Introduction

Games of strategic complementarities are those in which the best response of any player

is increasing in actions of the rivals. Many games usually studied in industrial organization

display strategic complementarities including a large subset of those involving search,

network externalities, oligopoly interaction, or patent races. Recently, there has been a

surge of interest in the study of competition in the presence of complementarities in

industries with a network component, such as credit cards, or where systems competition

is important, like in software.

Supermodular games (Topkis, 1979; Vives, 1985a, 1990; Milgrom and Roberts,

1990) provide the appropriate framework to model strategic interaction in the
0167-7187/$ -

doi:10.1016/j.

B This paper

E-mail add
International Journal of Industrial Organization
see front matter D 2005 Elsevier B.V. All rights reserved.

ijindorg.2005.04.002

is based on an invited lecture delivered at the Madrid 2002 EARIE Meeting.

ress: xavier.vives@insead.edu.



X. Vives / Int. J. Ind. Organ. 23 (2005) 625–637626
presence of complementarities. The theory of supermodular games is based on a

lattice-theoretic approach that exploits order and monotonicity properties. Both

existence of equilibrium and comparative static properties are based on order and

monotonicity properties in contrast to the usual box of tools based on convex analysis

and calculus.

The approach is powerful and delivers strong results. In the class of supermodular

games the existence of equilibrium in pure strategies is ensured without requiring

quasiconcavity of payoffs; the equilibrium set has an order structure, having extremal

elements that allows a global analysis of the set; there is an algorithm to compute extremal

equilibria, which also bound the rationalizable set; and monotone comparative statics

results are obtained with minimal assumptions.

The purpose of the paper is to provide an introduction to the class of supermodular

games and provide some applications in industrial organization analysis. We obtain new

results and new light is cast on old results by getting rid of unnecessary assumptions. In

this way the role of the critical assumptions is highlighted. At the same time the range of

application of the theory is extended beyond games of strategic complementarities,

providing examples of results obtained in games displaying strategic substitutability. The

reader is warned however that the approach, although useful in a very large class of cases,

is not of universal applicability.

The plan of the paper is the following. Section 2 presents the basic results of the theory

and some examples. Section 3 develops some applications to oligopoly pricing in

homogenous and differentiated products environments as well as comparative static

results. Section 4 extends the taxonomy of strategic behavior due to Fudenberg and Tirole

(1984). Concluding remarks end the paper.
2. An introduction to games with strategic complementarities

This section contains basic definitions and some of the main results in the theory of

supermodular games. The reader is referred to Vives (1999, in press) for a more thorough

and general treatment of the theory, as well as proofs, and further references and

applications.

The definition of a game with strategic complementarities is provided in a smooth

context. This is done only to minimize the mathematical apparatus but it is not the most

general way to define it. A game (Ai, pi; iaN) is defined by the set of players N, i =1, . . .,
n, by the strategy set Ai and the payoff pi of player iaN (the payoff is defined on the

cross product of the strategy spaces of the players A). Let aiaAi and denote by a�i the

strategy profile (a1, . . ., an) except the ith element. We have then a� iaPjpiAj. The game

(Ai, pi; iaN) is smooth supermodular if each Ai is a compact cube in Euclidean space,

and pi(ai, a� i) is twice continuously differentiable with

(i) B2pi /BaihBaikz0 for all k p h and

(ii) B2pi /BaihBajkz0 for all j p i and for all h and k,

where aih denotes the hth component of the strategy ai of player i.
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Condition (i) is the strategic complementarity property in own strategies ai. Condition

(ii) is the strategic complementarity property in the strategies of rivals a� i. The latter

property in the general formulation involves the profit function pi displaying increasing

differences in (ai, a� i): the marginal profit of action h of player i is increasing in any

action of the rivals. Those conditions deliver monotone increasing best responses even

when pi is not quasiconcave in ai.

Intuition can be gained from the one dimensional bclassicQ case where best responses

are continuous functions. Let Ai be a compact interval. Suppose that the ith player best

reply to a� i is unique, interior, and equal to r i(a� i). We have then that
Bpi

Bai
ri a�ið Þ; a�ið Þ ¼ 0. Furthermore, if B

2pi

Baið Þ2 b0, then ri is continuously differentiable

and Bri
Baj

¼ �
�

B
2pi

BaiBaj

�
=
�

B
2pi

Baið Þ2
�
, jpi. Therefore sign Bri

Baj
¼ sign B

2pi

BaiBaj
. Now, even when pi is

not quasiconcave, if B
2pi

BaiBaj
N0, j p i, then any selection from the best-reply correspondence

of player i (which may have jumps) is increasing in the actions of the rivals. In summary,

the positive cross-partial derivative of profits ensures that any best response of the firm is

increasing even though it may have jumps; if so the jumps will be up and not down.

As an example think of a n-firm Bertrand oligopoly with differentiated substitutable

products with each firm producing a different variety. The demand for variety i is given by

Di( pi, p� i) where pi is the price of firm i and p� i denotes the vector of the prices charged

by the other firms. In this case we assume strategy sets are compact intervals of prices, and

assumption (ii) means that the marginal profitability of an increase of the price of a firm is

increasing in the prices of rivals (and, according to assumption (i), in the other prices

charged by the same firm if it is a multiproduct firm). A linear demand system will satisfy

the assumptions. In a dual way we could consider the case of a Cournot oligopoly with

complementary products. In this case the strategy sets are compact intervals of quantities.

We say that the game is log-supermodular if pi is nonnegative and log pi fulfils

conditions (i) and (ii). This provides a useful transformation that extends the range of

application of the theory (because a monotone transformation of payoffs does not change

the equilibrium set of the game). In the Bertrand oligopoly example, with constant

marginal costs, ci for firm i, the profit function of firm i, pi=( pi�ci)Di( pi, p� i), is log-

supermodular in ( pi, p� i) whenever B
2logDi

BpiBpj
z0. This holds when gi, the own-price

elasticity of demand for firm i, is decreasing in p� i as with constant elasticity, logit, or

constant expenditure demand systems (see Chapter 6 in Vives, 1999).

The following results hold in a supermodular game.

2.1. Result 1: Existence and order structure

In a supermodular game there always exist extremal equilibria. That is, there is a largest

ā and a smallest element a of the equilibrium set.

The result is due to Topkis (1979) and is shown using Tarski’s fixed point theorem

(which states, under the present restrictions, that an increasing function from a compact

cube into itself has a fixed point) on the best-reply map, which is monotone because of the

strategic complementarity assumptions. In fact, in a supermodular game any player has a

largest and a smallest best response and those can be seen to determine the largest and

smallest equilibria. It is worth noting that we do not need here quasiconcave payoffs and
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convex strategy sets to deliver convex-valued best replies as required when showing

existence using Kakutani’s fixed point theorem.

For example, in the Bertrand oligopoly when the payoff is supermodular or log-

supermodular extremal price equilibria do exist and the results can be extended to

multiproduct firms with convex costs. We have thus a large class of Bertrand oligopoly cases

where the Roberts and Sonnenschein (1977) non-existence of equilibrium problem does not

arise. This is not say that all Bertrand games with product differentiation are supermodular

games. See Roberts and Sonnenschein (1977), Friedman (1983), and Section 6.2 in Vives

(1999) for examples, including games with avoidable fixed costs and the classical Hotelling

model when firms are located close to each other. In those cases at some point best replies

may jump down and a price equilibrium (in pure strategies) may fail to exist.1

2.2. Result 2: Symmetric games

In a symmetric supermodular game (exchangeable against permutations of the players)

symmetric equilibria exist (since the extremal equilibria ā and a are symmetric). Therefore,

if there is a unique symmetric equilibrium then the equilibrium is unique (since ā =a). This

result proves very useful to show uniqueness in symmetric supermodular games. As an

example consider a symmetric version of the constant elasticity demand system Bertrand

oligopoly with constant marginal costs. It is easy to check that there is a unique symmetric

equilibrium and, since the game is log-supermodular, the equilibrium must be unique.

2.3. Result 3: Welfare

In a supermodular game if the payoff to a player is increasing in the strategies of the

other players then the largest equilibrium point is the Pareto best equilibrium and the

smallest one is the Pareto worst (Milgrom and Roberts, 1990; Vives, 1990). This simple

result is at the base of the Pareto ranking of equilibria in many games with strategic

complementarities. For instance, in Bertrand supermodular oligopoly the profits associated

with the largest price equilibrium are also the highest for each firm.

2.4. Result 4: Stability

In a supermodular game with continuous payoffs, best-reply dynamics:

(i) Approach the bboxQ [a, ā] defined by the smallest and the largest equilibrium points

of the game (which correspond to the largest and smallest serially undominated

strategies). Therefore, if the equilibrium is unique, the game is dominance solvable

and the equilibrium globally stable (Vives, 1990; Milgrom and Roberts, 1990).

(ii) Converge monotonically downwards to an equilibrium starting at any point in the

intersection of the upper contour sets of the largest best replies of the players (A+ in
1 See, however, the modified Hotelling game in Thisse and Vives (1992) where best responses may be

discontinuous but are increasing.
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Fig. 1). Similarly, starting at any point in the intersection of the lower contour sets of

the smallest best replies of the players (A� in Fig. 1) converge monotonically

upwards to an equilibrium (Vives, 1990).

In short, all relevant strategic action is happening in the box [a, ā] defined by the

smallest and largest equilibrium points. Rationalizable outcomes (Bernheim, 1984) must

lie in the box [a, ā]. To show result (ii), start at any point in A+ (see Fig. 1). Best reply

dynamics define then a monotone decreasing sequence that converges to a point that, by

continuity of payoffs, must be an equilibrium. And, indeed, starting at the largest

(smallest) point of the cube that defines the strategy space A, best reply dynamics with the

largest (smallest) best response will lead to the largest (smallest) equilibrium (Topkis,

1979). However, starting at an arbitrary point convergence is not ensured because a cycle

is possible. For example, in Fig. 1 starting at a0= (a1, ā2) best reply dynamics cycle along

the edges of the box [a, ā].

In the Bertrand oligopoly market with linear, constant elasticity, or logit demands the

equilibrium is unique and therefore the game is dominance solvable and globally stable.

2.5. Result 5: Comparative statics

Consider a supermodular game with payoff for firm i, pi(ai, a� i; t), parameterized by t.

If B2pi /BaihBtz0 for all h and i, then with an increase in t:

(i) the largest and smallest equilibrium points increase, and

(ii) starting from any equilibrium, best reply dynamics lead to a (weakly) larger

equilibrium following the parameter change.

Result (ii) can be extended to a class of adaptive dynamics (including fictitious

play and gradient dynamics); and continuous equilibrium selections that do not

increase monotonically with t predict unstable equilibria (Echenique, 2002).
A +

A +

A –

A–

a1

a2 

a

a

r1 (•) 

r2 (•) 

Fig. 1. Cournot tatônnement in a supermodular game (with best reply functions r1(d ), r2(d )).
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An heuristic argument for the result follows. The largest best reply of any player is

increasing in t and this implies that the largest equilibrium point also increases with t. An

increase in t leaves the old equilibrium in A� and therefore sets in motion, via best reply

(or more in general via adaptive dynamics), a monotone increasing sequence that

necessarily converges to a larger equilibrium. See Milgrom and Shanon (1994) and Vives

(1999) for detailed proofs and more results.

Samuelson’s (1947) Correspondence Principle links unambiguous comparative

statics with stable equilibria and is obtained with standard calculus methods applied

to interior and stable one-dimensional models. The comparative statics result above

can be understood as a multidimensional global version of the principle when the

complementarity conditions hold. For example, in the (supermodular or log-

supermodular) Bertrand oligopoly market there may be multiple equilibria but we

know that extremal equilibrium price vectors are increasing in an excise tax t. This is

so because pi =( pi� t�ci))Di( p) and B
2pi

BpiBt
¼ � BDi

Bpi
N0.

Another example is technology adoption. Suppose that each of n firms can adopt a

new technology at any period t =1, . . ., T (as in Farrell and Saloner, 1985). The larger

the number of adopters the more profitable it is for a firm to switch to the new

standard. Firms can be of different types, with larger types more likely to switch. This

is a game of strategic complementarities with multiple equilibria, some displaying

bexcess inertiaQ where firms switch to the new technology only late in the game. If the

cost of adopting the new technology is lowered, starting from an initial equilibrium,

then adaptive dynamics will lead sequentially to increased levels of adoption of the new

technology.

2.6. Result 6: Duopoly with strategic substitutability

For n =2 and with strategic complementarity in own strategies, B2pi /BaihBaikz0 for

all k p h, and strategic substitutability in rivals’ strategies, B2pi /BaihBajkV0 for all j p i
and for all h and k, we can transform the duopoly game into a (smooth) supermodular

game. Indeed, let new strategies be s1=a1 and s2=�a2 is supermodular and note that Fig.

2 provides the mirror image of Fig. 1 with respect to the ordinate axis. We can conclude

that all the stated results 1–5 apply to this duopoly game. However, the extension to the

strategic substitutability case for n players does not hold since the trick does not work for

n N2 (Vives, 1990).

The interpretation of the welfare result is as follows. If for some players payoffs are

increasing in the strategies of rivals, and for some others they are decreasing, then the

largest equilibrium is best for the former and worst for the latter. This is the case in a

strategic substitutes Cournot duopoly with the strategy transformation yielding a

supermodular game. Indeed, the preferred equilibrium for firm 1 is the one in which its

output is largest and the output of firm 2 lowest (see Fig. 2).

2.7. Remark 1

Comparative statics result 5 holds also if parameter t affects only the payoff of one firm.

Let us formulate it in the duopoly case with actions of firms in a compact interval.
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Fig. 2. A duopoly game with decreasing best replies.
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Consider a duopoly supermodular game in which the payoff to player 1, parameterized by

t, is p1(a1, a2; t), and to player 2 is p2(a1, a2). If B
2p1 /Ba1Btz0 then extremal equilibria

are increasing in t. Note then that if the game is of strategic substitutes then extremal

duopoly equilibrium strategies for firm 1 (2) are increasing (decreasing) in t if B
2p1 /

Ba1Btz0. The results are reversed if B2p1 /Ba1BtV0 (see Vives, 1999). A comparative

statics result for n firms in a strategic substitutes game can be obtained provided that the

payoffs of firms are symmetric (any firm does not care about the identity of the opponents,

only about its action and payoff relevant parameters) and that � B
2pi

Baið Þ2 Nj
B
2pi

BaiBaj
j, i p j (see

Athey and Schmutzler, 2001).
3. Oligopoly

I present here some applications to oligopoly pricing: competition with differentiated

products and comparative statics in Cournot markets. We will see how the approach, while

guaranteeing the existence of equilibrium, allows equilibrium comparisons and delivers

comparative static results with minimal assumptions.

3.1. Comparison of Cournot and Bertrand equilibria

Consider the same market as in the Bertrand oligopoly example with n firms competing

in a differentiated product market with each firm producing a different variety. As before

the demand for variety i is given by Di ( pi, p� i). In the Bertrand game firms compete in

prices and in the Cournot game in quantities (to define the payoff then inverse demands are

used). Bertrand equilibria are typically thought to be more competitive than Cournot

equilibria. The lattice-theoretical approach makes precise in what sense this is true and

what drives the result.
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It can be shown that with gross substitute, or complementary, products if the price game is

supermodular and quasiconcave (that is, pi quasiconcave in pi for all i) then at any interior

Cournot equilibrium prices are higher than the smallest Bertrand equilibrium price vector. A

dual result holds also. With gross substitute, or complementary, products, if the quantity

game is supermodular and quasiconcave, then at any interior Bertrand equilibrium outputs

are higher than the smallest Cournot equilibrium quantity vector (Vives, 1985b, 1990).

To show the result first note that Cournot prices pC must lie in region A+ (Fig. 1), that

is, the region in price space defined by the intersection of the upper contour sets of the best

replies of the firms in the Bertrand game. This is so because the perceived elasticity of

demand for a firm is larger in price than in quantity competition and, consequently at

Cournot price levels firms would have an incentive to cut prices if they were to compete in

prices. Indeed, with quantity competition no market can be stolen from your competitor

given their strategies. Then apply Result 4(ii) to the price game to conclude that starting at

any Cournot price vector pC best reply dynamics will lead the system to a Bertrand

equilibrium with lower prices. A corollary is that starting at any interior Cournot

equilibrium if firms were to compete in prices they will cut prices until the market

stabilizes at a Bertrand equilibrium.

3.2. Comparative statics in Cournot markets

Consider a Cournot market in which the profit function of firm i is given by

pi=P(Q)qi�Ci( qi), where P is the inverse demand, Q is total output, Ci is the cost

function of the firm and qi is its output level.

The standard approach (Dixit, 1986) assumes quasiconcavity of payoffs, downward

sloping best replies, and that the equilibrium analyzed is unique and stable, to derive

comparative static results. Are all those strong assumptions needed? What can we say if

payoffs are not quasiconcave and/or there are multiple equilibria?

Let us review first the standard approach. Let P and Ci be smooth with PVb0,
PV+qiPWV0 (implying that the game is of strategic substitutes), and CiW�PVN0 for all i.

Those conditions ensure uniqueness and local stability (with respect to continuous best reply

dynamics). Parameterize the cost function of firm i by hi and letCi( qi; hi) be such that
BCi

Bhi
N0

and B
2Ci

BhiBqi
N0. Then it can be shown, using the standard calculus apparatus with the implicit

function theorem, that an increase in hi decreases qi and pi, and increases qj and pj, j p i.
The lattice-theoretical approach (Amir, 1996; Vives, 1999) makes minimal assumptions

to obtain the same kinds of results. Let us consider two cases: a general (potentially

asymmetric) oligopoly and a symmetric case.

In the general case I will consider a Cournot duopoly in which strategies are strategic

substitutes and potentially multiple equilibria. A sufficient condition for best replies to be

decreasing is that the inverse demand be log-concave (and costs strictly increasing in

output for both firms).2 Note that the strategic substitutes game is transformed into a
2 Decreasing best replies in fact imply the existence of a Cournot equilibrium in a n-firm game (see Theorem

2.7 in Vives, 1999). Decreasing best replies are considered the normal case with Cournot competition but it is

easy to generate examples with increasing or nonmonotone best replies (see Section 4.1 in Vives, 1999 for a

discussion of the topic).



X. Vives / Int. J. Ind. Organ. 23 (2005) 625–637 633
strategic complements game by changing the sign of the strategy space of one player.

We know then that extremal equilibria exist (result 6) and that an increase in the

parameter hi decreases qi and pi and increases qj and pj, j p i. The latter results follow

from remark 1, where the parameter of interest only affects directly the payoff function

of one player. This explains why the increase in hi decreases qi and increases qj. The

result for profits follows immediately from BCi

Bhi
N0 and Bpi

Bqj
b0, j p i. What if we are not at

an extremal equilibrium? Similarly as in Result 5(ii), best reply dynamics lead to the

comparative static result following the increase in hi starting at any equilibrium.

Restrict attention now to a symmetric Cournot oligopoly: Ci=C, i =1,. . ., n. In the

standard approach (Seade, 1980a,b) it is assumed that payoffs are quasiconcave and

conditions are imposed ((n +1)PV(nq)+nPW(nq)q b0 and CW( q)�PV(nq)N0) so that there

is a unique and locally stable symmetric equilibrium q*. Let B
2C

BhBqi
V0. Then standard

calculus techniques show that an increase in h increases q* and that total output increases

and profits per firm decrease as n increases. The comparative statics of the output per firm

with respect to the number of firms are ambiguous. The classical approach has several

problems. First of all, it is silent about the potential existence of asymmetric equilibria.

Second, it is restrictive and may be misleading. For example, if the uniqueness condition

for symmetric equilibria does not hold and there are multiple symmetric equilibria,

changing n either may make the equilibrium considered disappear or introduce more

equilibria.

In the lattice-theoretic approach (Amir and Lambson, 2000; Vives, 1999) it is assumed

only that PVb0 and CW�PVN0. As will be shown below a symmetric equilibrium (and no

asymmetric equilibrium) exists. Under the assumption that B
2C

BhBqi
V0, then at extremal

(symmetric) Cournot equilibria individual outputs are increasing in h, total output is

increasing in n and profits per firm decrease with n. Furthermore, individual outputs

decrease (increase) with n if demand is log-concave (log-convex and costs are zero). This

approach does away with all the unnecessary assumptions of the standard approach and

derives new results.

To illustrate the approach let us sketch the proof that, under the assumptions PVb0
and CW�PVN0, a symmetric equilibrium (and no asymmetric equilibrium) Cournot

exists; that individual outputs are increasing in h and that total output is increasing in n.

Let Wi be the best reply map of firm i (identical for all i because of symmetry). Define

the correspondence u by assigning ( qi +Q� i)(n�1) /n, where qiaWi(Q� i)), to Q� i.

Symmetric equilibria are given by fixed points of this correspondence. Under the

assumptions it can be checked that the Wi have slopes larger than �1.3 This implies that

all selections from Wi(Q� i))+Q� i are (strictly) increasing and that no asymmetric

equilibria can exist.4 Furthermore, all selections from the correspondence u will be

increasing. We can use then Tarski’s fixed point theorem to show existence of extremal

equilibria. Those extremal equilibria can be found using the extremal selections of u
(which are well-defined in our context). Similarly as in Result 5(i), individual outputs at

those extremal equilibria will be increasing in h because, from the assumption B
2C

BhBqi
V0,
3 That is, a segment joining any two points on the graph of the correspondence Wi has a slope larger than � 1.
4 This is so because for any total output there is a unique output for every firm, identical for all firms because of

symmetry, consistent with optimization behavior (see remark 17 in Section 2.3 in Vives, 1999).
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extremal selections of u (and Wi) are increasing in h. Let us see now that total output is

increasing in n at extremal equilibria. First of all, it is easy to see that extremal selections ofu
are increasing in n. This means that the total output of (n�1) firms is increasing in n at any

extremal equilibrium. It follows then that total output at extremal equilibria must be

increasing in n because all selections fromWi(Q� i))+Q� i are (strictly) increasing in Q� i.

The results for profits and individual outputs in relation to n follow along similar lines.5
4. Taxonomy of strategic behavior

Fudenberg and Tirole (1984) provided a taxonomy of strategic behavior in the context

of a simple two-stage game between an incumbent and an entrant. At the first stage the

incumbent (firm 1) can make an observable investment k yielding at the market stage

p1(x1, x2; k), where xi is the market action of firm i. The payoff of the entrant is p2(x1, x2).

The point is that the incumbent can influence the market outcome (at the second stage) in

its favor with an ex ante investment (at the first stage). He will do so by taking into account

the effect of his investment on the equilibrium behavior of the rival at the market stage.

The goal is to sign this strategic effect taking as benchmark binnocentQ behavior where the
incumbent when deciding about k only takes into account the direct effect of the

investment on his payoff.

The standard approach assumes that at the second stage there are well-defined best-

response functions for both firms, and that there is a unique and (locally) stable Nash

equilibrium that depends smoothly on k, x*(k). To obtain this is it is assumed that

� B
2pi

Bxið Þ2 Nj
B
2pi

BxiBxj
j, i p j, i=1, 2. At a subgame-perfect equilibrium, we will have that

Bp1

Bk
þ Bp1

Bx2

Bx2�
Bk

¼ 0 where Su Bp1

Bx2

Bx2�
Bk

is the strategic effect. That is, the effect of the

investment k in the equilibrium profits of the incumbent because of the modified market

behavior of the entrant. Under the stated assumptions it follows, using standard calculus

techniques, that sign Bx2�
Bk

¼ sign B
2p2

Bx1Bx2

B
2p1

BkBx1

��
and therefore signS ¼ Bp1

Bx2

B
2p1

BkBx1

B
2p2

Bx1Bx2
. If

Bp1

Bx2

B
2p1

BkBx1
b0 N0ð Þ, we say that the investment makes firm 1 tough (soft). Indeed, suppose that

Bpi

Bxj
b0, j p i, so that an increase in the market action of firm j hurts firm i. Then if B

2p1

BkBx1
N0 an

increase in k will shift the best response function of firm 1 out and this will be an aggressive

move, making firm 1 tough.

A taxonomy of strategic behavior (see Table 1) can be provided then depending on

whether competition is of the strategic substitutes B
2p2

Bx1Bx2
b0

��
or complements

B
2p2

Bx1Bx2
N0

��
variety and on whether investment makes firm 1 soft Bp1

Bx2

B
2p1

BkBx1
N0

��
or

tough Bp1

Bx2

B
2p1

BkBx1
b0

��
. If competition is of the strategic substitutes type and investment

makes firm 1 tough then the incumbent wants to overinvest (S N0) to push the entrant

down his best response curve (see Fig. 3). This is the top dog strategy. Cournot

competition and investment in cost reduction may be an example. If competition is of

the strategic complements type and investment makes firm 1 tough then the incumbent

wants to underinvest (S b0) to move the entrant up his best response curve. This is the
5 See pp. 42–43, 93–96 and Section 4.3.1 in Vives (1999) for details.



Table 1

Taxonomy of strategic behavior

Investment makes player 1

Tough Soft

Strategic substitutes Overinvest (top dog) Underinvest (lean and hungry)

Strategic complements Underinvest (puppy dog) Overinvest (fat cat)
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puppy dog strategy. Price competition with differentiated products and investment in

cost reduction may be the example. Similarly, we can define the strategies blean and

hungryQ and bfat catQ.
In the lattice theoretic version of the result (Section 7.4.3, Vives, 1999) the taxonomy

follows from minimal assumptions (the character of competition and investment) as

applied to extremal equilibria. There is no need for the strong restrictions imposed above

to obtain a unique and stable equilibrium at the market stage. Indeed, from remark 1 if the

market game is supermodular B
2p2

Bx1Bx2
z0

��
and B

2p1

BkBx1
z Vð Þ0 then extremal equilibria are

increasing (decreasing) in k. If the market game is of the strategic substitutes variety
B
2p2

Bx1Bx2
V0

��
then changing signs in the strategy space of one player the game becomes a

supermodular game and extremal equilibrium strategies for player 1 (2) are increasing

(decreasing) in k if B
2p1

BkBx1
z0 and the result is reversed if B

2p1

BkBx1
V0. Therefore,

(sign
Bx�

2

Bk
¼ sign B

2p2

Bx1Bx2

B
2p1

BkBx1

� �
when x2* is an extremal equilibrium and the taxonomy
follows for extremal equilibria.

r  (•)
1

r2 (•)

u

x1

x2

x
~

Fig. 3. Effect of k increase in unstable equilibrium: uYx̃.
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What if at the market stage firms are sitting on a non-extremal equilibrium (for instance

at the unstable equilibrium u in Fig. 3)? Then if out-of-equilibrium dynamics are governed

by best reply dynamics the sign of the impact of a change in k is as with an extremal

equilibrium. In Fig. 3, depicting strategic substitutes competition and investment that

makes the incumbent tough, an increase in k will generate an adjustment process that will

lead to the new equilibrium x̃ with u2N x̃2.

In summary, the taxonomy of strategic behavior can be obtained with just the crucial

assumptions on monotonicity of marginal payoffs without any need of quasiconcavity of

payoffs and the requirement of a unique and stable market equilibrium. The method can be

extended to study in what situations leaders or laggards in an industry have more incentive

to invest, in cost reduction or quality enhancement, and whether this leads to increasing or

decreasing dominance (see Athey and Schmutzler, 2001).
5. Concluding remarks

In this paper I have surveyed briefly the theory and some applications to industrial

organization of supermodular games. The survey has not been, by any means, exhaustive.

For example, dynamics have only been considered in the simple format of two-stage

games in Section 4. However, full-fledged dynamic games can be analyzed with the

lattice-theoretic techniques. For example, Jun and Vives (2004) and Sleet (2001) analyze

differential games, and Hoppe and Lehmann-Grube (2002) develop applications to

innovation timing games. Cabral and Villas-Boas (2002) consider multimarket oligopoly

applications and Anderson and Schmitt (2003) a quota game in international trade.

Coordination failures in macroeconomics and financial markets as well as cumulative

processes in the presence of complementarities and monopolistic competition provide

more examples outside the realm of Industrial Organization.6 Bayesian games provide

another fertile ground of applications of the method, advancing the frontier in auction

theory and global games and equilibrium selection. See Vives (1999, in press) for some of

the mentioned extensions. Finally, recent work has tested for complementarities in

innovation and organizational design using the tools presented in this article.7
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