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In a differentiated products setting with n varieties it is shown, under certain 
regularity conditions, that if the demand structure is symmetric and Bertrand and 
Cournot equilibria are unique then prices and profits are larger and quantities 
smaller in Cournot than in Bertrand competition and, as n grows, both equilibria 
converge to the efficient outcome at a rate of at least l/n. If Bertrand reaction 
functions slope upwards and are continuous then, even with an asymmetric demand 
structure, given any Cournot equilibrium price vector one can find a Bertrand 
equilibrium with lower prices. In particular, if the Bertrand equilibrium is unique 
then it has lower prices than any Cournot equilibrium. Journal of Economic 
Literature Classification Numbers: 022, 611. 0 1985 Academic PISS, 1~. 

1. INTR~OUCTI~N 

It is a well-established idea that Bertrand (price) competition is more 
efficient than Cournot (quantity) competition. In fact with an homogenous 
product and constant marginal costs the Bertrand outcome involves pricing 
at marginal cost. This is not the case with differentiated products where 
margins over marginal cost are positive even in Bertrand competition. 
Shubik showed in a model with a linear and symmetric demand structure 
that the margin over marginal cost is larger in Cournot competition, and 
that, under certain conditions, as the number of varieties grows equilibrium 
prices go to marginal cost in either Bertrand or Cournot competition (see 
Shubik [16, Chaps. 7 and 91). This note generalizes the first result to a 
general demand structure (not necessarily linear and/or symmetric) and the 
second to a general symmetric demand structure. We give sufficient con- 
ditions to guarantee the existence and uniqueness of both types of 
equilibria. These conditions are strong but otherwise usual in the oligopoly 

* I am grateful to Ray Deneckere, Andreu Mas-Colell, and Nirvikar Singh for helpful com- 
ments. This note is a revision of Sections 1 and 2 of my Dissertation Prospectus (November 
1982), written under the supervision of Gerard Debreu. 
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literature. Roberts and Sonnenschein [ 131 have shown that ~Qn-existence 
problems may arise with well-behaved preferences. Marginal costs are 
assumed constant to insure the existence of pure strategy Bertrand 
equilibria.’ We follow the Chamberlinian tradition (Chamberlin [23) and 
consider an industry selling differentiated substitute products in which eat 
good is in competition with every other one. 

In Section 3 the utility foundations of the demand structure are 
provided. It is assumed that utility is separable and linear in the ~urn~~aire 
(which is a standard assumption in partial equilibrium welfare analysisI 
and some analogies with production theory are exploited. It is shown in 
Section 4 that if the demand structure is symmetric (and Bertrand and 
Cournot equilibria are unique) then prices and profits are larger and quan- 
tities smaller in Cournot than in Bertrand competition (~ro~~s~tio~ I). If 
Bertrand reaction functions are upward sloping (and co~ti~~o~s~ then 
(even with an asymmetric demand ructure) given any Cournot 
equilibrium price vector one can find a ertrand eq~iI~bri~m with lower 
prices (Proposition 2).3 In particular, if t Bertrand equ~libr~~m is unique 
then it has lower prices than any Cournot equilibrium. Set 

totic properties of the equilibria. It is shown t 
and structure Cournot and Bertrand prices go 

at least at the rate l/n, where n is the number of goods, provided t 
is a bounded demand for the industry as a whole and that inverse 
have bounded slopes. Some notation is introduced in Section 2. 

2. NOTATION 

Given a set A c R”, int A denotes its interior and bd(A) denotes its 
boundary. Set theoretic union is denoted by u. For a function hi: R?‘+ -+ 
DU(x) will denote the vector of first derivatives, (ajU(x))~= I and @U(x) 
the Hessian matrix of U, with entries a,U(x); all evaluated at the point X. 
The vector inequality 9 means strict inequality for every component. If z is 
a vector in R”, z _ i stands for the vector derived from z by deleting the ith 
component. 

’ Mixed strategies are needed to insure existence of equilibria with price competition when 
marginal costs are increasing. Since a firm will not produce more than its competitive supply 
payoff relevant demands are contingent demands. (See Shubik 1161 and Shapley [15].) 

z See Spence [IS], for example. 
j Related results are obtained by Cheng [3], Hathaway and Rickard 193, Bkuguchi [IS] 

and Singh and Vives [17]. 
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3. THE DEMAND STRUCTURE 

There are y1 differentiated goods in our monopolistic sector. We have a 
representative consumer which maximizes { U(X) - Cr= 1 PiXi: x E R: >, 
where pi is the price of good i and U( .) is a C3 (differentially) strictly con- 
cave utility function on R”, . That is, D2U(x) is negative definite for all 
XER”+. Note that we assume U( . ) to be differentiable at the boundary of 
R”, . Furthermore aiU(x) is positive in a non-empty, bounded region of 
R”,, Xi and, letting X=n;=,Xi, d,U(x)<O for xEintXfor any i andj 
(which is a reasonable assumption if the goods are substitutes). Given 
positive prices the solution to the maximization problem of our consumer 
will lie in X. The first order conditions (FOC) of the consumer problem are 
ai U(x) <pi (i = l,..., n), with equality if xi > 0. The inverse demand systemf 
will be a continuous function on R”, . For x E X prices will be strictly 
positive and out of X one or more prices will be zero. Consider good i fi 
restricted to int X will be of class C2, decreasing in all its arguments, 
ajfi < 0 for all j, and cross effects are symmetric, ajf;. = a&, j # i. (All these 
properties follow from noting that the Jacobian off restricted to int X is 
just D2U(. ) restricted to int X and that a, U < 0 for x E int X.) 

The demand system, h, is defined on R”, and satisfies: 

(1) h is a continuous function on R”, . 
(2) Let Pi={p~R”+: h,(p)>O}; then h is of class C2 on 

R”, +\lJ;= I bd(Pi). hi is decreasing in its own price whenever h,(p) > 0. If 
h,(p) and hi(p) are positive, cross effects are symmetric, ajhi= a&. 

(3) pi< aiU(O,..., 0) for pie Pi. That is, Pi is bounded along the ith 
axis. 

Condition (1) follows by continuity and strict concavity of U( . ). Con- 
dition (2) follows from the smoothness of U( .) and the FOC using the 
Inverse Function Theorem (extend U to a C3 function defined on an open 
set containing R”+). Downward sloping demand and symmetry of cross 
effects follow from the negative definiteness and symmetry of O* U( . ). Con- 
dition (3) follows from the FOC noting that iYiU(h(p))<aiU(O,..., 0)~ co. 
The first inequality is true since a, U and a, U are negative and the second 
since U(. ) is differentiable at (O,..., 0). 

We assume, furthermore, that the goods are gross substitutes. That is, hi 
is increasing in the price of firm j, a/z, > 0, j # i, whenever h,(p) and h,(p) 
are positive.4 Note then that for p E int P the Jacobian matrix of h, Jh is 
negative definite, since it is the inverse of D*U( . ), and has positive off- 

4 For n = 2 concavity of U( .) and al2 U < 0 imply that the goods are gross substitutes since 
for p E P, d,h, = -a,, U/A, where A = det D’U, which is positive. 
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diagonal entries and therefore Jh has a dominant negative diagonal in t 
McKenzie sense (see McKenzie [ 10, Theorem 2’1). 

The properties of our demand system, except for the symmetry of cross 
effects, are those assumed by J. Friedman in his treatment of demand with 
product differentation (see Friedman [7]). 

EXAMPLE. Let U: R: -+ R be defined by 

U(x) = a1x1 +$x2 - #1x: -I- 2yx,x, + B,x:) 

with all the parameters positive, PIP2 - y2 > 0 and Nibj- qy > 0, i#j, 
i = 1.2. Then 

the inverse demand system being 

Pl=~l-~lXl-W 
Pz=a2-B2x2- YXl 

on X. 

(where a, = (alP2 - a,y)/d, b, = p2/A, c = y/As A = fir/32 - y’, and similarly 
for a2 and b,). The direct demands on P are 

xl=a,-b,p,+cp, 
x,=a,-b2p2+cp,. 

(a,, CQ) is the maximal element of the closure of P. 

Our representative consumer maximizes surplus, CS = U(x) - C;= r pixie 
We can make an analogy with production theory and think that our con- 
sumer produces utils out of the consumption inputs. In that case the con- 
sumer is maximazing profits with a technology represented by U(v) and 
with the prices of utils normalized to be one. Therefore the demand system 
arising from this maximization will have the properties of an input deman 
system and consumer surplus, CS, as a function of prices will be the analog 
of the profit function. We know from production theory that CS will be a 
convex function of prices and that XX(p)/8pi= -hj(p) for all i. 
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4. BERTRAND COMPETITION Is MORE EFFICIENT THAN 
COURNOT COMPETITION 

Suppose that we have n firms each producing a different variety at con- 
stant marginal costs. Since X,(P,) is bounded along the ith axis we can take 
the strategy space of a quantity (price) setting firm to be a compact inter- 
val. Suppose that any firm can make positive profits even when the com- 
petitors’ prices equal marginal costs. This insures that in equilibrium each 
firm will produce a positive amount. Consider prices net of marginal cost. 
Profits of firm i in terms of prices are n,(p) =pihi(p) and in terms of quan- 
tities, fii(x) =fi(x) xi. Quasiconcavity of 7ci( .) with respect to pi and of a;( -) 
with respect to xi insures the existence of Bertrand and Cournot equilibria. 
Uniqueness requires stronger assumptions. 

The following assumptions insure that Bertrand and Cournot best reply 
mappings are contractions and therefore Bertrand and Cournot equilibria 
exist and are unique and stable (see Friedman [7]). Let P= fir=, Pi. 

(A.l) (1-~)8~~rr~(p)+~~+~ ld,r&)I <O for all pEint P, for some 
s>O, and 

(A.2) (1-6)~ii~i(x)+&~i~8iifii(~)~<0 for all xEintX, for some 
6 > 0. 

Assumptions A.1 and A.2 are very strong, particularly the one of the 
quantity setting model (A.2) when the products are close to perfect sub- 
stitutes. Assumption A.2 is not satisfied for an homogenous product market 
with downward sloping concave demand if there are more than two firms 
(the Cournot equilibrium is still unique though). In what follows we use 
A.2 only to insure the uniqueness of the Cournot equilibrium. Alternatively 
one could assume that inverse demand for good i depends only on xi and 
on the sum of the quantities of the other firms, xi+ ;xi, and that the Cour- 
not reaction functions have negative slope larger than - 1. The uniqueness 
of the Cournot equilibrium is easily established then. Let pE and pc denote 
respectively Bertrand and Cournot equilibrium price vectors. Both are 
going to be strictly positive and will satisfy the corresponding FOC. In the 
Bertrand case this is dini = 0. This equation gives implicitly the Bertrand 
reaction function of firm i, pi = RB(p- ;), provided p E P. Rf( .) will be 
increasing in all its arguments (upward sloping) if a,,ni=pid,hi+ a,h, is 
positive for all j # i. The Cournot problem for firm i in price space is to 
choose a price pi to maximize 

n;(p) subject to h,(p) = xi, j# i. 

The FOC of this problem is 

aini-Pi~ajhi]j+i~h_f [aihili+i=O 
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where Jhm, is the Jacobian matrix of hPi. Noting than djhi= aihj we have 
that at the Cournot prices p =, ~?~z~(p~) < 0 since pC is positive and J,_! is 
negative definite. 

Bertrand competition is viewed as more “competitive” than Cournot 
competition. An intuitive reason behind this view is that (since the goo 
are substitutes) in Cournot competition each firm ects the others to cut 
prices in response to price cuts, while in Bertra competition the firm 
expects the others to maintain their prices; ther ) Cournot ~e~aI~~s 
price cutting more. One should expect Cournot m-ices to higher than 
Bertrand prices. This is indeed the case either if the utility functio 
metric and Bertrand and Cournot equilibria are unique or if the 
reaction functions slope upwards (which is reasonable if the goods are sub- 
stitutes) and the Bertrand equilibrium is unique. An i 
sequence is that consumer surplus, CS, is higher under 
petition. Total surplus derived from an output vector x is j 
symmetric case Bertrand quantities are higher than Courn 
therefore total surplus is higher and firms’ profits are larger under Courn 
competition. If there are multiple Bertrand equilibria given any Cournot 
equilibrium price vector we can find a Bertrand equilibrium with 
prices. Propositions 1 and 2 state these results. 

In the symmetric case the demand system will be symmetric too. Eet all 
m-ices equal p and let g(p) be the demand for any 
g(p) = h,(p,..., p) for any i. Then since X and P are bounded there exists jj 
and X such that g(p) = 0 and g(0) = X. Furthermore g is C* on (0, p) and 
g’ < 0 since U(. ) is a symmetric differentially strictly concave function. g 
would correspond to the Chamberlinian De> curve for ~‘sim~Ita~eo~s 
movements in the prices of all goods.” The fo~Iowi~g assumption insures 
that g is concave: 

(A.3) 13,,h,(p) + cj,i la&(p)/ < 0 for pi= 4, 4 E (0, p), for any i. 

~~0~0~~~~0~ 1. If U(. ) is symmetric and A.l, A.2 and A.3 hoid then 
prices and profits are larger and quantities smaller in Cournot than in 
trand competition. 

ProoJ: The unique equilibrium (Cournot and 
metric. It is enough to consider firm 1. Let 4(p) 
trand price, pB, solves 4(p) = 0 (note that 4’ < 0 according ts A.1 ). 
other hand we know that at the Cournot price, pc, &gc) < 0. T 
pc >p’. Note that xB > xc since both are on g and g’ < 0. ZLet E(p) =pg(p) 
and note that 5 is strictly concave in p since g” d and g’ < 0. Consider the 
price a monopolist would charge, p”. pM solves ‘(p) = 0, At the Co~~~~t 
solution E’(p”) =pc g’(p”) + g(p’), which is positive. To see this note that 
since U(.) is symmetric and at the Cournot solution all prices e 
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8$zi=8,h, and dihi=d,hl for all i,j#i. Then it’(pc)=pc8,h,+h, + 
pC(n- 1) &h, which, using the Cournot FOC, equals 

PC&h&h, l,- 1 J;-; l,- I+ n - 1) 

where l,_ i is an (n - 1) x 1 vector of ones. Inverting Jhm, one gets 

n-l 
1,-,J~:ln-I=dlhl+(n-2)d,h, 

and therefore 

d,h,l,-,J,-r,l,-,+n-l=(n-l) 
alhI+ (n - 1) d,h, 
d,h, + (n - 2) &hl’ 

which is positive since 8,/z, + (n - 1) &hl = g’ and g’ < 0. We conclude that 
E’(p”) > 0 since a2hl > 0. Summing up, we have 5’(p”) = 0, it’(p”) > 0 and 
3 strictly decreasing since 5 is strictly concave. We conclude pM >pc. Since 
pc >pB, this implies rrc > rcB. Q.E.D. 

PROPOSITION 2. Assume, for all i, that z,(p) is strictly quasiconcave in pi 
whenever the demand for the ith good is positive and that Rf( * ) is non- 
decreasing in all its arguments, then given any Cournot equilibrium price vec- 
tor one can find a Bertrand equilibrium with lower prices. 

ProoJ: Let pc be a Cournot equilibrium price vector. We know that 
ain, < 0 for all i and that pc E P. The Bertrand reaction function of 
firm i, pi= Rf(p-& is defined implicitly by aini(p) =0 provided p E P. It 
will be continuous since xi(p) is strictly quasiconcave in pi. Again because 
of rcis quasiconcavity, di~i(p) < 0 means that pi > Rf(p-,). Therefore 
pC> RB(p”,) for all i. Let RB= (Rf,..., Rf) and p1 = R”(p’), then pc%pl. 
Note that p1 E P since any firm can make positive profits even when the 
competitors charge prices equal to marginal cost. Since RF is nondecreasing 
for all i, RB(pc) > R”(p’). Let p2 = RB(p’) and keep applying RB to obtain 
a decreasing sequence pt in P which converges since prices must be 
nonnegative.’ Say p’ converges to p*. p* must satisfy p* = RB(p*), and 
therefore it is a Bertrand equilibrium, since RB(. ) is continuous. We con- 
clude that pc%p*, Q.E.D. 

Under the assumptions of Proposition 2 multiple Bertrand and Cournot 
equilibria may exist. Existence of the Bertrand equilibrium is guaranteed 
and there will be at least one Cournot equilibrium as long as fij(x) is 

’ Similar arguments can be found in Deneckere and Davidson [S, pp. 13-141 and Spence 
[18, p. 2211. 
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quasiconcave in xi. Note that if there is a unique Bertrand equilibrium then 
it has lower prices than any Cournot equilibrium. Assumption A.1 insures 
the uniqueness of the Bertrand equilibrium. 

5. ASYMPTOTIC RESULTS' 

Suppose that there is a countable infinity of potential commodities. Our 
representative consumer has preferences over them defined by a sequence 
of utility functions { U’>, U”: R”, + R, where each Un(. ) is symmetric and 
satisfies the assumptions of Section 2. For any given iz, consider the 
program Max{ U”(x) -p C;= 1 xi, x E R”+ } and let xi = g”(p) (i = l,..., n) be 
its solution. We know that there exist X, > 0 and p, > 0 such that X, = g”(O) 
and g”(p,) = 0, and that g” is downward sloping. We assume 

(A.4) there exists p > 0 and k > 0 such that p, <p and n.%, d k for all 
n; 

(A.5) there exists c>O such that IdiiU”(x,..., x)1 $ c for ah i 
(i= 1 ,..‘, n), for all n and for all positive x. 

Assumption A.4 means that there is a bounded demand for the varieties 
produced by the industry. The Chamberlinian DD curve for “simultaneous 
movements in the prices of all goods,” g”( -), shifts inwards as the number 
of varieties increase. Assumption A.5 implies that inverse demands have 
bounded slopes along the 45” line. This is immediate since 
a&(x) = 3, U(x). Suppose now that for any n there are unique Bertrand 
and Cournot equilibria (A.1 and A.2 are sufficient for this to hold). Since 
Un( .) is symmetric the unique equilibria will be symmetric too. Denote 
them (pf, xz) and (p,“, x,“), respectively. 

PROPOSITION 3. As n goes infinity pf and p,” go to marginal cost ret a rate 
of at least l/n. 

Proc$ (p,“, x,“) satisfy the Cournot FOC p,” = x,” / aif :($)I for any i. 
Therefore np,” = nxzjdif;(xz)l <kc from A.4 and A.5. Furthermor 
Proposition 1 we know that p,” > p,B and therefore np,” < kc also. 

The intuition of the result should be clear. As we put more commodities 
in a limited market where the absolute values of the slopes of the inverse 
demand functions are bounded above, the substitute goods come closer 
together and demand elasticities go to infinity. This holds for Bertrand or 

6 For asymptotic results in a Cournot homogenous product setting see R&fin [14] for the 
case of exogenous n and Novshek [ 1 l] for the free entry case. 
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Cournot competition. Although Bertrand is always more efficient than 
Cournot, the order of magnitude of their departure from efficiency is the 
same for both and so the rate of convergence to the efficient outcome is 
equal in both cases. 

EXAMPLES. Let 

Wx)=, f xi-; p f xi+2y c XiXj ) 
i=l ( i= 1 j#i 1 

where /? > y > 0 and a > 0; and let marginal costs be constant and equal to 
m for all firms. Then for positive demands, 

fy(x)=a-pxj-y c xi (i’ l,..., n) 
i#i 

K(P) = a, - bnpi + C, 1 Pj 
j#i 

where a,=4(B+((n-l)y), b,=(p+(n-2)y)/(P+(n-l)y)(B-y), and 
~,=y/(P+(n-l)y)(B-y). g”(p)=(a-p)/(P+(n-1)y, P=a, and 
x,=a/(p+(n-1)y). 

It is easily checked that 

a-m 
n(pZ-mm)- P-, n Y 

n(pf-m)- (p-y)y. 
n 

(Note that a,fr = fl for all n and i3,h; = b,, which tends to l/(p - y).) Hav- 
ing a limited market for the monopolistic industry is not enough for our 
result if the slopes of the inverse demand functions are unbounded. An 
example by Shubik (1980) illustrates this point. 

Let 

“n(x)=;~xj-$-(~xi)z-2p(;+y)[~x:-~], 
I 

where a, p, and y are positive constants. Then for positive demands, 

fYtx)=~w*xip& z.Xj (i’l,..., n). 
‘+I 

‘~(P)=~(~-,LPj+I(pi-~zpj)]) (i=l,...,n). 
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Note that 13,h; / = -p( 1 + y( 1 - l/n))/ n, which goes to zero as n --t CO, and 
that rig”(p) = c( - &, which means that we have a limited market. Certainly 
x,” and xf go to zero as IZ goes to infinity but the corresponding prices do 
not go to the constant marginal cost. It is easily seen that the demand 
elasticity for any good does not go to infinity as IE increases. We are thus in 
the Chamberlinian situation, where although there are many ““small” firms 
each one of them has some market power and prices are above marginal 
cost.’ 
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