Review of Economic Studies (1993) 60, 329-347 0034-6527/93/00160329$02.00
© 1993 The Review of Economic Studies Limited

How Fast do Rational
Agents Learn?

XAVIER VIVES
Institut d’Analisi Economica (CSIC, Barcelona)

First version received February 1991, final version accepted September 1992 ( Eds.)

A simple dynamic model of rational learning through market interaction by asymmetrically
informed risk-neutral agents, uncertain about a valuation parameter but whose pooled information
reveals it, is presented. The model is a variation of the classical partial equilibrium model of
learning in rational expectations in which the market price is informative about the unknown
parameter only through the actions of agents. It is found that learning fro arket prices and
convergence to the rational expectations equilibrium is slow, at the rate 1/v'n'/? (where n is the
number periods of market interaction), whenever the average precision of private information in
the market is finite. Convergence obtains at the standard rate 1/vn if there is a positive mass of
perfectly informed agents. Comparative static results on more refined measures of the speed of
convergence with respect to basic technological and informational parameters are also provided.

1. INTRODUCTION

In this paper I present a simple dynamic model of rational learning by asymmetrically
informed risk-neutral agents, uncertain about a valuation parameter but whose pooled
information reveals it, and examine what factors influence the speed of learning and the
rate of convergence to rational expectations equilibria.

Rational expectations models have been widely used in many applications. A rational
expectations equilibrium entails the solution to a fixed-point problem from beliefs to
correct beliefs with the mediation of agents’ actions. How do agents come to form rational
expectations in the presence of unknown payoff-relevant parameters? The usual answer
is that agents learn to form ‘‘correct” expectations through repeated observations of
market data.

Taking for granted that a learning process converges to the rational expectations
equilibrium it is of the utmost importance to know how fast is and what factors affect
the speed of convergence. It is not much use for practical purposes to show convergence
if it is not known whether this will happen quickly or will take a long time, when the
underlying conditions of the economy will have changed and the parameters learned may
well be irrelevant. In this sense “slow” convergence may mean no convergence. We
would like to know also how structural market conditions, like the nature of uncertainty
and its relation to market observables (namely, prices), the degree of asymmetric informa-
tion, and the precision of private signals, affect the speed of convergence and in what
direction.

The literature on learning and convergence to rational expectations splits naturally
into rational, and “‘irrational” or boundedly rational learning models.' In the former,

1. Some of the papers in the first vein are Townsend (1978, 1983), Blume and Easley (1984), Feldman
(1987) and Bray and Kreps (1988). Some of those in the second vein, Blume and Easley (1982), Bray (1982),
Jordan (1985), Bray and Savin (1986), Fourgeaud, Gourieroux and Pradel (1986), Woodford (1990) and Marcet
and Sargent (1988, 1989). Frydman (1982) considers both approaches.
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agents have a correctly specified model of the economy and of the learning process and
update their beliefs and take actions accordingly. In the latter, agents maintain incorrect
hypotheses on the face of the evolution of the economy and use “reasonable” updating
procedures, like least-squares estimation, for example. It has been found that rational
learning tends to yield convergence to the rational expectations equilibrium (at least in
terms of convergence of beliefs) while with bounded learning convergence is obtained
typically only for certain regions of the parameter space. In any case there is a paucity
of results on the rate of convergence to rational expectations equilibria (which may have
implications for econometric work).?

Rate of convergence results are usually hard to obtain. Recent work by Jordan (1990)
on a class of Bayesian myopic learning processes establishes an exponential rate of
convergence to Nash equilibria for finite normal-form games. For boundedly rational
learning models partial results, relying sometimes on simulations, have been obtained by
Bray and Savin (1986), Fourgeaud et al. (1986) and Jordan (1992).

Assume that agents do not maintain an incorrect hypothesis about the evolution of
the economy, so that convergence to the rational expectations equilibrium is not an issue.
I study a simple learning problem by considering a variation of the classical learning in
rational expectations model developed by Townsend (1978) and Feldman (1987) and
extended in a number of ways by, for example, Bray and Savin (1986), Fourgeaud et al.
(1986) and Frydman (1982). In this classical learning model competing firms are uncertain
about a demand parameter and learn from prices. In the present paper they are uncertain
about a cost parameter which is revealed only after all trading is completed. For example,
firms pollute and are assessed a damage 6 per unit of production after a certain number
of periods (n) of testing.’ The crucial difference is that the latter is a model where firms
learn from prices the information that other firms may have on 6. The market price
depends on 6 only indirectly through the actions of the agents. Financial markets provide
another typical example where prices incorporate information about the valuation of
assets only through the trades of agents. In the classical rational expectations model the
price depends directly also on the unknown parameter, and prices are informative
independently of the signals received by agents.

The central result is that information revelation through the price system can be slow
precisely because it is successful. More precisely, it is found that, provided the shared
information of the agents in the economy reveals the value of 6, so that agents have the
chance to learn its true value, agents eventually learn the value of 8 and almost sure
convergence to the (fully revealing) rational expectations equilibrium obtains. Neverthe-
less, if the average precision of private information in the market is finite, the rate of
convergence is “slow”: 1/ Vn'?. This contrasts sharply with the standard rate of conver-
gence 1/+/n which obtains, for example, with i.i.d. noisy observations of 6 or with classical
OLS estimation. Indeed, agents need 1000 rounds of trade to obtain a certain precision
7 in the estimation of the unknown parameter @ when 10 rounds would have been enough
if learning were to be at the standard rate.

The basic idea that drives this slow convergence result is quite simple: the more
informative prices are, as more periods accumulate, the less privately imperfectly informed
agents will rely on their private signals, with the consequence that less information is

2. In this respect, according to Marcet and Sargent (1988), adaptive (least squares) learning makes “open
and problematic” whether the learning system *‘can ever be expected to yield econometric models that can be
applied”.

3. Alternatively, with an infinite horizon, in each period there is a positive (small) probability that the
tests conducted are definitive and that the pollution damage is assessed.
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incorporated in current prices. In fact, since convergence to the rational expectations
equilibrium obtains and prices end up being fully revealing, the average responsiveness
of agents to their private information goes to zero as n grows whenever there is no positive
mass of agents perfectly informed.

If there is a positive mass of perfectly informed agents then convergence is at the
standard rate 1/v/n. Perfectly informed agents have nothing to learn from prices and put
a constant weight on their (perfect) signals. The result is that the informativeness of the
new information in the current price is practically constant for n large and learning is at
the standard rate. Convergence would also be at this rate in the original Townsend-
Feldman model since then prices depend directly also on the unknown parameter. Here
again the new information in the current price does not decrease for n large.

The conclusion that information revelation through prices can be a victim of its own
success is reminiscent of the static rational expectations literature in financial markets,
in which agents become less sensitive to their private information as prices become more
informative (see, for example, Grossman (1976) and Hellwig (1980)). An exogenous
change which raises the informativeness of prices (say a decrease in noise in the market)
for a given responsiveness of agents to private information, is partially counterbalanced
by the agents optimal updating giving less weight to their private signals. In the dynamic
context the negative relationship between price informativeness and sensitivity to private
information slows down the rate of convergence instead of weakening the comparative
static effect of an exogenous change in price informativeness in the static model. In the
extreme, we have the paradoxes associated with informationally efficient markets a la
Grossman-Stiglitz (1980): if the market price is fully revealing then the agents response
to private information has to be nil. How does the information get incorporated into the
price in the first place? The Grossman-Stiglitz impossibility of an efficient market is
resolved in the dynamic model with a slow revelation of the unknown 6.

The results are obtained in the context of a linear-normal model with a continuum
of agents facing a quadratic adjustment (production) cost per period. The presence of
increasing marginal adjustment costs is crucial for there to be an issue of information
revelation with a continuum of risk-neutral agents. Indeed, as it is well known from
Palfrey (1985) and Vives (1988), in the constant returns to scale case one-shot market
interaction already aggregates the dispersed information of agents, in the sense of repli-
cating the outcome of an economy in which agents share their private information.

I show the existence of a unique Bayesian equilibrium (in an appropriate class of
general strategies). The equilibrium and its convergence properties are characterized. 1
derive also the comparative static properties of the asymptotic precision of the optimal
price statistic (which provides a refined measure of the speed of learning for a given
convergence rate) with respect to the precision of the period-specific noise in the price
function, the average precision of private information, the proportion of perfectly informed
agents, and the steepness of the adjustment cost.

Two important issues are left for future research. First, welfare analysis. The
presumption is that a social planner, facing similar informational and technological
constraints to the decentralized market would be able to improve upon the market given
that a competitive agent does not take into account the informational externality (benefit)
that his trading has on the informational content of prices.* Second, the study of steady

4. A similar information externality has been studied by Rob (1991) in the context of a competitive
entry model.
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states in environments with time-varying parameters and their relationship with the
convergence results in constant parameter situations such as the one studied in the present
paper.

Section 2 presents the model. Section 3 develops some statistical estimation tools.
Section 4 characterizes the dynamic equilibrium, and Section 5 studies its asymptotic
properties and the speed of learning. Section 6 discusses briefly two extensions: a
re-interpretation of the model in a context of limited information with linear prediction,
and the case of correlated signals. The Appendix gathers together some of the proofs.

2. THE MODEL

In the classical model of learning in rational expectations (as developed by Townsend
(1978) and Feldman (1987), for example) a continuum of risk-neutral firms, indexed in
the unit interval [0, 1], endowed with the Lebesgue measure, compete repeatedly in a
homogeneous product market. Demand is stochastic and linear with an unknown per-
manent component of its intercept: p, = ¢ + 1, — 1x,, where ¢ is an unknown parameter,
u, a period specific random shock, % a positive constant, and x, the average (per capita)
supply in period ¢, x, =L1) x,di. Firm i has increasing (linear) marginal production costs
0x,+Ax,/2 (8=0,A>0) and is endowed with a private signal s, about the unknown ¢.
The joint distribution of the random variables, and the values of the parameters 7, 6, and
A, are common knowledge. Firm i at period ¢ has to decide how much to produce
estimating the period price p, on the basis of the information it has available: the private
signal s, plus the (public) information contained in past prices. That is, at period ¢ the
information set of agent i is {s,, p' '}, where p' ' ={p,, ..., p,..}. Beliefs on ¢ are updated
in a Bayesian way. This basic model has been extended in a number of directions by,
for example, Bray and Savin (1986), Fourgeaud et al. (1986) and Frydman (1982).

I will consider a variation of this classical model (inspired by an example provided
by McKelvey and Page (1986)) where firms know the demand parameter ¢ but are
uncertain about the intercept 8 of their linear marginal cost function.

Suppose that the firms’ output pollutes or is toxic but that the level of toxicity or
long-term pollution effect of a unit of output produced is unknown (the product is a new
chemical, for example). The pollution or toxicity damage is only assessed after n periods
of production.” Let 8 be the assessed toxicity or pollution damage of a unit of output
produced. Firms have private assessments of € and are allowed to produce but they will
have to pay the corresponding damages in proportion to total production after n produc-
tion periods.

At period ¢ firm i produces x,, obtaining a net revenue p,x,, — Ax>/2. After n periods
of production the damage per unit of output is ascertained at value 8 and the firm has
to pay (Y, x,). In summary, firms have to pay a proportional tax on production which
is levied after n production periods when the toxicity/pollution damage is evaluated.
Profits of firm i corresponding to period ¢t would be given by

KT (pl - o)xlt - Axlzl/29

although only the net revenue p,x, —Ax./2 is observable in period t. Firm i tries to
maximize the (expectation of the) undiscounted sum of period profits Y."_, m,.

S. Definitive tests to determine the level of toxicity may need at least an n-sample, for example.
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Alternatively, the model could be thought as having an infinite horizon supposing
that at each period there is an independent (small) probability m > 0 that 8 is realized
(that is, that the tests are definitive). In this case the probability of 6 not being realized
at period n, (1—m)", tends to zero as n tends to infinity. As before when 6 is realized
the firm has to pay the damage of the accumulated production. At any period a firm,
given 6, expects a damage cost per unit of production® of exactly 6, and the firm maximizes
the (expected) discounted profits with discount factor 1 —m. It is easily seen (given that
firms are risk neutral and negligible) that the equilibrium behaviour will be unchanged
from the original model.

The model could be restated also in terms of competition among buyers of an asset
of unknown ex-post return 6. The asset could be a risky financial asset or a real asset
like labour of unknown productivity, for example. Buyer i would face a quadratic cost
of adjustment of his position in period 1, x,,, equal to Ax7/2,A>0. Inverse supply in
period t would be given by p, = u, + nx,, with x, the average (per capita) quantity demanded
in period 7. Buyer i would obtain benefit 0x, — Ax?/2 (with profits o, = (8 — p,)x,, — AX%/2)
from the quantity x,, demanded in period .’

In the exposition I will keep to the convention that agents are sellers.

Information structure

Agent i receives a signal s, = § + ¢,, where ¢, is an error term of mean zero; 6 is randomly
distributed with mean 8(¢ > 6 > 0) and finite variance o5; 8 and ¢, are uncorrelated, and
errors are also uncorrelated across agents. The sequence {u,};, is independently and
identically distributed with zero mean and finite variance . The parameter 6 and the
sequence {u,} are uncorrelated. It is assumed that all random variables are normally
distributed.®

The precision of the signals is given by a measurable function 7, :[0, 1] R, u{x},
where T, = (Var g,)7", is the value of this function at i € [0, 1]. Denote (Var )~ by Te
It is assumed that there is a positive measure set of agents who receive signals of precision
bounded away from zero. Let u=0 be the mass of agents with perfectly informative
signals (that is, signals of infinite precision).

I will make the convention that the Strong Law of Large Numbers (SLLN) holds for
this continuum economy. Suppose that (q,),c[0,; is a process of independent random
variables with Eg, =0 for all i and that variances (Var gq,) are uniformly bounded. Define
I; g.di =0 almost surely (a.s.). This convention will be used, taking as given the usual

6. Thatis, (m+(1—m)m+(1—m)*m+---)8=m(m "}g=0.

7. In the financial context 8 could be the unknown ex-post liquidation value of a (risky) asset, the inverse
supply for which comes from the market clearing condition u,—p,+x,=0. The (random) demand of noise
traders (which happens to be sensitive to price) would be u, —p,, and x,, the demand of the informed traders.
In this context x,, is the change in the position of trader { in perlod t and Ax%/2 is an adjustment cost associated
with changes in the position (which can be thought as an, admittedly imperfect, proxy for risk aversmn) The
profits of trader i corresponding to period ¢ are m,,. Total profits associated with the final position Z, ) X are
Z:’ | Tu- Alternatively, in a real market context, we could think of firms buying labour of unknown productivity
0 facmg a random inverse linear labour supply and ad_]ustment costs in the labour stock. Firm i would buy

. in period ¢. The monetary return to the final labour stock ¥.;_, x,, would be then 0(2[ LX)

8. The normality assumption will imply that prices and quammes may take negative values. Similarly,
in the “real” interpretations of the model, labour of unknown productivity and polluting firms, § may take
negative values implying either negative productivity or a reward for polluting. Nevertheless, choosing appropri-
ately the mean and variance of 6 the probability of such events can be made small. In equilibrium, at any
stage n, the variance of individual actions (quantities) can be made small controlling the variances of 8, v and
g,. For n laige it is sufficient to control the variance of 6.

9. Given a random variable x, =, will denote (Var x)™".
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linearity properties of integrals. For example, if signals have uniformly bounded variances,
I will write

1 1 1
s=j sidizj (0+s,)di=0+J edi= 0 (as.),
0 0 ]

using the linearity of the integral (which is being defined) and the convention (which
implies that [ £,di =0)."

These distributional assumptions, along with the parameters ¢, n and A, are common
knowledge among the agents in the economy. In order to save on notation set n=1.

Equilibria

The equilibria of the dynamic game will be investigated. At stage ¢, a strategy for agent
i is a (measurable) function that maps her private information s, and the observed past
prices p'~! into quantities. The market solution will be taken to be the Bayesian equilibria
of the dynamic game. This embodies already the notion of rational learning.

The equilibria will necessarily involve a sequence of Bayesian equilibria of the
one-shot game. Otherwise there would be a (positive measure) subset of agents that at
some stage could, individually, improve their expected payoffs by reacting optimally to
the average market action. The only difference between periods is that at period t agent
i is endowed with the information {s,, p'~'}. The action of player i in period t does not
affect the profits of other periods since the player is negligible (continuum of players)
and actions are not observable (only prices are observable)."

The rational expectations (shared information) benchmark and convergence

If agents were to know 6, the equilibrium action would be X(8) = (¢ —8)/(1+ 1), with
associated price P(8,u)=u+(A¢d+8)/(1+A). This can be taken to be the rational
expectations (RE) benchmark (shared information). The issue I want to investigate is
whether, and if so, how fast, agents learn the unknown parameter @ and convergence to
the rational expectations equilibrium obtains with repeated market interaction.

After n periods of trading the information contained in the price sequence {p"} will
be summarized by a statistic y,. I will say that agents learn the parameter 8 if y, converges
almost surely to @ as n goes to infinity. If, for some k>0, n*(y,— @) converges in
distribution to a normal random variable with zero mean and positive finite variance,
convergence is at the rate n™*. The standard rate of convergence is n~ "2 This obtains,
for example, with i.i.d. noisy observations of 6. We can define similarly convergence and
convergence rates for (average) equilibrium outputs.

Before plunging into the analysis it may be worthwhile to pause and consider what
can agents possibly learn in this model. Given that prices depend on @ only through the
average market action, the maximum agents can learn about # is given by the shared
information of all agents. That is, an agent can learn at most the information other agents
have about 6. For example, if agents were to receive perfectly correlated signals then
they would have the same information and there would be nothing to learn: one-shot

10. The convention is made to sidestep a well known potential technical (measure-theoretical) difficulty
associated to the definition of I:, q.di. (See, for example, Admati (1985)). The equilibria of the continuum
model approximate those of large but finite economies as shown in the context of a financial market by Hellwig
(1980) and in the context of a Cournot model by Vives (1988).

11. This holds for either the considered finite-horizon n or the infinite-horizon reinterpretation with
discounting with factor 1 —m. See Green (1980), Dubey and Kaneko (1984) and Massé and Rosenthal (1989)
for a discussion of ““anti-folk” theorems in dynamic games.
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competition would yield the RE benchmark. Our assumption of (conditionally) indepen-
dent signals, plus the fact that a positive measure of agents receive signals of precision
bounded away from zero, together with our convention on the SLLN for i.i.d. processes,
insures that if agents were to share information they would obtain 8, and therefore, agents
can, at least potentially, learn 6."

In order to prepare for the analysis which follows, some statistical results will be
presented in the next section.

3. SUFFICIENT STATISTICS AND ASYMPTOTIC PROPERTIES OF
OLS ESTIMATORS

Consider the following Bayesian statistical estimation problem. The unknown parameter
6 is to be estimated from the observations (s,, z"), z"=(z,,..., z,) where where z, =
6a,+u,, are derived form prices and a, are known constants, t=1,...,n The joint
distribution of the random variables (8, s,, ") (u" = (u,, ..., u,)) is as given in the last
section. Denote by y, the OLS estimate of 6 from regressing z, on a,, that is y, =
A'Y"  agz,A,=Y._, ai,andby 7, the precision of the price statistic y, in the estimation
of 6, that is, 7,=(Var 8|y,))”". In other words, 7, is the informativeness of the price
statistic y,,.

Lemma 3.1. The random vector (s, ¥») is sufficient in the estimation of 6 based on
(s,, z"). Further, E(8|s,, y,) = B + @,nS, + YinYn, where

Bm = TO/(TE,+Tn)ain :Tz,/('rs,+’rn), Yin = TuAn/(Ts,+Tn) and Tn = 76+TuAn~
Proof. See Appendix. ||

_Remark 3.1. The conditional expectation of 8 given (s,, y,) is a weighted average
of 8, s, and y, according to the precisions of these variables in the estimation of 6.

Remark 3.2. Under general distributional assumptions on (8, s,, z"), itis well known
that E(8]s,, z") is the unique best predictor of 6 in the sense of minimizing the mean
squared error. With finite second moments (o3, o2, a-fl) the unique best (mean squared
error) linear predictor of @ based on (s;, z") (that is, the linear function 8(s,, z") = ao+
a,s;+Y_, az, which minimizes E{(8—8(s;, z™))’} over the a coefficients) is given by
the same expression as the one for E(6|s,, z") in Lemma 3.1 under the normality
assumption."’

We will say that the sequence B, is of the order n”, with v a real number, whenever
n"*B, -, k, for some non-zero constant k. If 7, is of the order n” define the asymptotic
precision: At =lim, o n "7,. Denote by >, convergence in law (distribution).

Lemma 3.2. Assume that 7, is of the order n*, and that {a.} is a sequence of order
t* for some constants v>0 and x =0 such that v+« >1/2. Then

(i) y, is strongly consistent (that is, y, -, 6 a.s.), and

(i) Vn” (y.—0) > N(0, (A7) ™).

12. Just form the average of the signals of agents with precision bounded away from zero and put a zero
weight on the signals of other agents.

13. These results should be clear since E(8]s,, z") is the unique best predictor of 6 and under normality
assumptions it depends only on first and second moments and it is linear.
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Proof. See Appendix. ||

Remark 3.3. For the results of Lemma 3.2 to hold, normality of random variables
is not needed. Those results are based on Strong Law of Large Numbers- and Central
Limit Theorem-type arguments.

4. EQUILIBRIUM DYNAMICS

The strategy used to characterize the Bayesian equilibria of the dynamic game is as
follows. First, attention is restricted to equilibria in linear strategies. The observational
equivalence between the sequence of prices and a sequence of random variables which
represent the new information contained in each price is then established. Linear equilibria
are easily characterized. Finally, it is shown that only linear equilibria exist provided
strategies belong to an appropriate class.

Let us postulate therefore the current price as a linear function of 6, u, and the
sequence of past prices: p, =a,0+u,+¢,(p" '), where p" '={p,,..., p...} and ¢, is
a linear function of p"~'."* Defining z, = a,0 + u,, p, equals z,+¢,(p" "), and it is not
difficult to foresee the observational equivalence' of p” and the vector of random variables
z"={zy,..., z,}.

Lemma 4.1. In a linear equilibrium, p" is observationally equivalent to z", where
zz=ab+tu,t=1,... n

Proof. Consider a linear equilibrium (a,, ¢,(+)), t=1,2,.... I show the result by
induction. For n=1, p,=z,+¢,. Since the constant ¢, is known in equilibrium, p, is
observationally equivalent to z,. If p"~' is observationally equivalent to z" ', then, as
before, p, is observationally equivalent to z", since p, =z, +¢,(p" '). |

The random variable z, represents the new information in the market price p,.'®

At stage n agent i has information {s,, p” '}, which has been seen equivalent (Lemma
4.1) to {s;, z"'}. According to Lemna 3.1 then agent i needs to condition only on s, and
the OLS sufficient statistic y, ; summarizing the information contained in the variables
z"~'. It is sufficient then to consider strategies of the form X,,(s,, Vn1)-

Denote the population average of any parameter 6,,,,]; 8,.di, by 8,. Recall from
Lemma 3.1. that B, a,,, and v, denote, respectively, the weights given to 6, s, and y,
in the estimation of # and let y,= A,=0. The following proposition characterizes linear
equilibria.

Proposition 4.1.  There is a unique equilibrium in which the price at period n is a linear
function of 0, u, and p"~'. The price function is given by:
Pn= 8,0+ u,+ .y, +b,0+Ap(1+2)!
where

a, = CY,,,I(A‘*'CV" «l)il, Cn :A7n71(/\+ 1)‘1(A+an71)71

14. The coefhicient of u, in the expression for p, is set equal to one without loss of generality.

15. The vector p” is observationally equivalent to the vector of random variables z” if p” can be inferred
from z” and vice versa.

16. The variable z, = a,0 + u, is closely associated with the innovation in the current price: p, - E(p,|p' ') =
a,(8—E(8lp" ") +u,.
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and
by=AB8, A+ 1) (A +a, )"
The departure from the RE equilibrium is:
pn—P(6,u,)=c,(yar—0)+b,(6—0).

Remark 4.1. Strategies are given by:
Xm(su ynfl) = ¢(1 +A)w1 - bme__ amsr - Cl'nynvla

Where amzamfl(’\-‘—an-»l)"l’ cm:((/\+l)ymvfl-‘y"vl)(A+1)Al()‘+an~l)Ml and bm:
((A+1)ﬂm~l_—anl)(/\+1)"l(/\+an~l)>_1-

Proof. Consider a generic stage and drop the period subscripts (no confusion should
result from that). The information available to agent i is {s,, y}, where the pair (s,, y) is
jointly normally distributed with the characteristics given in Section 3 (in which case 1
will say that the information set is conformable). Expected profit maximization yields:

X.(s,, y)=(E{(p~0)|s,, y})/A
Positing a price function
p=ab+u+tcy+b0+rp/(1+2),
X,(s,, y)=((a—1)E{8|s,, y}+bO+ A1+ A1) +cy)/ A

Furthermore,

1
x= J- X, (s, y)di={(a=1)(BO+ab+yy)+bo+Ard(1+A1)"+cy)/A,
0
where B, @ and vy are, respectively, the averages of B,, @, and v,. This follows since
E{0]s,, y}=B0+a,s +yy and [, a;sdi=ad+ [ aedi=ab, (as.). Inorder to check that
f:) a,e,di =0 (a.s.) notethat Ea e, = 0, and that Var a,e, = 7 /(1 + T,A+ 7, )2. The collection
(Var a;g,) is uniformly bounded since Var a,¢, equals 0 for 7., =0, tends to zero when 7,
tends to infinity, and is continuous with respect to 7., on [0, ). Apply then our convention
about the SLLN.
Then the price has to satisfy

p=¢+tu—x
=¢+u+(1—a)ar'0+A""(1—-a)y—c)y+A '(1—a)B—b)o—p(1+A)7},
and
p=ab+u+cy+bd+rep(1+a)"".

The expressions for a, ¢ and b follow immediately. The departure from the rational
expectations price follows immediately by noting that a+b+c=(1+A)"'. The
expressions for a;, ¢;, and b, follow then from X,(s,, y) = (E{(p —8)|s,, y})/A.

It is possible to conclude therefore that if the information sets of agents are conform-
able there is a unique linear equilibrium at every stage according to the statement of the
proposition. Let us check now by induction that indeed information sets of agents are
conformable. At stage 1the information set of agent i is {s,}, which is clearly conformable,
and therefore the price is as given in the proposition with y,=0. If at stage n the
conformable information set of agent i is {s;, y,_.}, then the equilibrium is as given in
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the proposition and the information set at stage n +1 for agent i is {s,, y,}, which is again
conformable. ||

Remark 4.2. The workings of linear equilibria are easy to understand. Agent i in
period n has information {s,, p""'}. With the sequence of past prices {p"~'} and the
sequence of the coefficients of response to private information {a” "'} the agent forms the
sufficient price statistic y,..,. This price statistic is just the OLS estimate of 8 based on
the variables {z""'}. A linear predictor of # is then easily derived from s, and Yn1- As
time evolves the weights given to the private information and to the price statistic change.
It is worth emphasizing that agents are rational and understand the influence of the
feed-back effect of the learning process on prices. That is, the response coefficients used
by agents are equilibrium ones. In contrast, in the boundedly rational learning literature
agents have a mis-specified model of the economy and assume a constant coefficient to
be estimated while in fact the dynamics of learning induce a time-varying coefficient.
The use of OLS in both cases is therefore different. In our rational learning model the
OLS estimator is optimal and, obviously, it is applied to a well specified constant coefficient
(0) regression model.

Remark 4.3. The market price departs from the rational expectations price according
to the discrepancy of 6 with prior information (8) and with public information (y,_,),
weighted, respectively, by the average responsiveness of agents to prior (b,) and public
information (c,).

Remark 4.4. The average responsiveness to information, a,,, will be always positive
given our maintained assumption of a positive mass of agents with precisions bounded
away from zero."”

Remark 4.5. When A =0, the constant returns to scale case, then a,=1, and
¢, =b,=0, for any n. Consequently, the average output x, equals ¢ — 6, the rational
expectations benchmark, at any stage. As we have pointed out before the one-shot market
replicates the outcome of an economy in which agents share their private information
(see Palfrey (1985) and Vives (1988)). This is due to the absence of strategic effects
(continuum of traders) and friction (risk aversion or adjustment costs).

Two leading examples will help to understand Proposition 4.1:

Example 1. Suppose all agents have the same positive precision of information ..
Then the average responsiveness to private information is given by a,=
[1+A(1+7,_;7.")]"", where 7, is the informativeness of the price statistic y, (or
equivalently of the price sequence p"), that is, the precision incorporated in prices in the
estimation of 6. As the price precision increases a, decreases as agents put more weight
on the price statistic and less on their private information.

Example 2. Suppose agents are either perfectly informed (with proportion u>0)
or uninformed. Then the average weight to private information is given by «a, = u, since
the informed put weight 1 and the uninformed 0. Correspondingly, the response to private
information is given by a,, = (A+ )™ for the informed, and a,, =0 for the uninformed,
the average responsiveness being a, = u (A+u)”", for any n. The weight put by the the

17. This follows since a,, will be positive whenever a,,__, is positive. Now, a,,_, = I[l) T (To+ 7, + T A, _y) tdi
and 7, (1o + 7, + 7.A,-,)"" is bounded away from zero for a positive measure subset of agents.
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informed on their (perfect) private information is constant since they have nothing to
learn from prices.

What about non-linear equilibria?

The following proposition provides a uniqueness result showing that non-linear
equilibria do not exist in our model provided strategies are restricted in an appropriate way.

Proposition 4.2. The dynamic game has a unique equilibrium, as given in Proposition
4.1, in the class of strategies with bounded means and uniformly (across agents) bounded
variances.

Proof. See Appendix. |

5. THE SPEED OF LEARNING AND CONVERGENCE TO
RATIONAL EXPECTATIONS

In order to study the properties of the equilibrium for n large and to characterize the
speed at which agents learn and convergence to the RE benchmark obtains I examine
first the asymptotic behaviour of the parameters that define the equilibrium strategies of
agents and the behaviour of the informativeness of the price statistic y,, 7,. The large
sample behaviour of 7, is crucial in the determination of the speed of convergence.

Lemma 5.1. For any (linear) equilibrium sequence:

(i) The average response to private information a, tends to u(A + )" ! as n goes to .

(i) c,=,A(1—p)A+p) " (A+1)"" and b, ,0.

(iii) The informativeness of the price statistic y,, 7,, is of the order of n” and a, is of
the order of n™*, where 2k +v=1, ve[1/3,1],k =0. Further, if the average
precision T, —IO 7. di is finite, v=1/3 and the asymptotic precision Aty is gtven
by 37, )'/3(7 //\)2/3 Otherwise, if u>0 then v =1 and At = (/A +u)); if

=0 then 1>v>1/3>«>0.

The proof of the Lemma is given in the Appendix. The fundamental steps of the proof
are: (1) to establish that a, decreases weakly and that 7, goes to infinity with n; and
(2) to establish that the average weight given to private information «a, converges to the
proportion of perfectly informed agents u and that the average weight given to public
information y, converges to 1 — u (obviously the average weight given to prior information
B, goes to zero), then (i) and (ii) in the Lemma follow lmmedlately (3) If >0 show
that 7, is of the order n (immediate since 7, =To+ T, L0 la, and a, converges to a
positive constant), and the value of A7, follows. (4) If u =0 show that a,7, converges
to 7./A. Two cases are possible (both involving more elaborate proofs) according to
whether 7. is finite or infinite. If 7, is finite establish that the order of 7, is n'? and
compute its asymptotic value. If 7, is infinite characterize implicitly the order of 7,.
The intuition for the results should be clear. The informativeness of prices will never
decrease and consequently the average responsiveness to private information a, will never
increase with n. In fact, 7, will tend to infinity and the price statistic will become fully
revealing eventually. (The only possibility for 7, to be bounded above is for a, to converge
to zero (and fast) but this is self-contradictory: if 7, does not go to infinity a, will not
go to zero since agents will keep putting some weight to their private information.) If
there is a positive mass of perfectly informed agents then a, will be bounded away from
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zero (these agents put constant weight on their private perfect information since they
have nothing to learn from prices) and 7, will go to infinity at a linear rate (each current
price incorporating a roughly constant amount of new information). If there is no positive
mass of perfectly informed agents then a, will tend to zero as the number of trading
periods increases and prices become more informative. This is so since then agents put
less and less weight on their private signal and more and more on the price statistic,
which becomes increasingly informative and eventually fully revealing. The con-
sequence will be that 7, will go to infinity more slowly. Indeed, agents, by reacting on
average less to their private information, will incorporate less of it to the current price,
slowing down the convergence of the price statistic to 6.

Result (iii) in the above Lemma is the key to characterizing the speed of learning
and the convergence properties of the equilibrium. Once the order of magnitude and
asymptotic value of the precision of the price statistic y, is known, its asymptotic
distribution follows immediately from Lemma 3.2. The order of magnitude of 7, depends
on the information content of current prices (the new information) for n large. This is
given by the random variable z, = a,60 + u,.. If > 0then a, tends to a.. > 0 and asymptoti-
cally z, looks like a6 + u,,. This means that the information content of z,, is asymptotically
constant and the order of magnitude of 7, is n, as in the standard linear regression model:
the denominator of the OLS estimator y,, A,, is of the order of n. For n large, 7, is a
linear function of n with slope equal to A7 =1, (u/(A+u))? 7,~ 7 +Aron.'® Notice
that the asymptotic precision of 7, (the “slope” of convergence) is larger, the larger is
the proportion of perfectly informed agents u, and smaller, the larger is the slope of the
adjustment cost A.

If 4 =0 then a, tends to 0 and asymptotically the new information is pure noise: z,
looks like u, for n large. This will not preclude convergence but it will slow it down.
When the average precision of private information in the market =, is finite the order of
7, is the cubic root of n. For n large 7, is a strictly concave function of n: 7, = 7, + Aron'/>,
where A7, =(37,)"*(7./A)”>. The asymptotic precision Ar, is increasing with 7, and
with 7., and decreasing with the slope of the adjustment cost A. Notice that in all cases
an increase in the adjustment cost A decreases the asymptotic precision Ar... An increase
in A has a direct effect of restricting the response of agents to information, for a given
price precision, and a countervailing indirect effect of decreasing the price precision,
inducing agents to put more weight in their signals. The direct effect dominates eventually
and the asymptotic price precision diminishes.

If, even when there is no positive mass of perfectly informed agents in the market,
the average precision of private information is infinite, then the order v of 7, is strictly
between 1 and 1/3.

The main results can be stated now. In the following propositions learning and
its speed, and convergence to the rational expectations equilibrium and its speed are
established formally.

Proposition 5.1. Learning.

(i) The price statistic y, converges almost surely to 8 as n goes to infinity.

(i) If . is finite, Vn'*(y,—0) > N(0, 37,) " *(A/7.)*);
if u>0, Vn(y,—8)=>, N, (u/(A+p))(r,)"");
if w>0 and 7, is infinite, /n*(y, — 6) >, N(0, (A7,)™"), for some ve(1/3,1) and
appropriate positive constant A7,,.

18. The symbol = will be taken to mean *‘equals approximately”.
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Proof.

(i) From Lemma 5.1 we know that »+2«x =1, » =k =0, where n” is the order of
7,. The result follows from Lemma 3.2. since necessarily v+« =1—-xk>2/3>
1/2.

(ii) It follows from Lemma 3.2(ii)) and Lemma 5.1. If 7. is finite,
n'3A, >, 3"3(r./A1, )Y as n>o00. If >0, since then n™'A, >, (u/(A+pu))".
If =0 and 7, is infinite, since then n "A, - ,A7, for some v&(1/3,1) and
appropriate positive constant A7,. ||

Proposition 5.2. Convergence to RE.

(i) p.— P(8, u,) converges almost surely to zero as n goes to infinity.

Gi) If 7, is finite, Vn'7(p, = P(6, u,)) >, N(0, \”*(14+1) *(37,) "/ *(r.)7*%);
if w>0, Vn(p,— P(8, u,)) > N, (A/(A+1))((1~p)/ n) (7))
if w>0 and 7, is infinite, Vn"(p, — P(8, u,)) > N(0, (1+ ) *(A1.)""), for some
ve(1/3,1) and appropriate positive constant A7.

Proof.
(i) From Proposition 4.1 we have that p, — P(8, u,)) = ¢.(y,_,— )+ b,(6—-6). From
Lemma 5.1, ¢, > ,C>0 and b, >, 0 as n goes to . The results follows since

(yn._1— @) converges a.s. to zero.
(i) If

1" (3n = 0)> 1L N(O, (A7) "), €4 ntecs
and b, -, 0 then
In"(p,—P(6,u,)) > N0, (c)* (A7) ).

The result follows then from Proposition 5.1 and Lemma 5.1(ii). ||

Agents eventually learn the unknown parameter 6 since the price statistic y, is a (strongly)
consistent estimator of 8. Nevertheless the speed of learning depends crucially on the
distribution of private information in the market. If a positive mass of agents is perfectly
informed then convergence is at the standard rate 1/vn. This speed of convergence is
termed standard since it corresponds to the rate of convergence for an OLS estimator in
a classical environment (and also to i.i.d. noisy observations of 8). Otherwise, convergence
is at a lower rate, reaching the lower bound 1/ v'n'? when the average precision of private
information is finite.

The asymptotic variance (AV) of the departure from rational expectations, (p,—
P(6, u,)), equals (c.)’(A7,)"". It is larger the larger the asymptotic variance of y, and
the larger is the response of agents to public information. If 7. is finite an increase in A
may increase or decrease AV according to whether A is small or large. An increase in A
increases (A7) ' but decreases ¢, the overall effect depending on the size of A. If u
is positive then AV increases in A always and decreases in u. Indeed, when p =1 and
all agents are perfectly informed, AV equals zero. Comparative statics of AV with respect
to , and 7, are similar to comparative statics of (A7.) ™"
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It is worth remarking that the slow convergence rates could not be obtained in
markets where the unknown parameter was to enter the price function directly. Recall
that in the learning problem considered, agents learn about 6 through prices which depend
on § only through the aggregate actions in the market. Consider, for example, the classical
learning in rational expectations model as stated at the beginning of Section 2 in which
the demand intercept ¢ is unknown (and 6 =0): p, = ¢ +u, — nx,. In this market firms
would learn about ¢ even if they had no private information since prices are noisy signals
of ¢ even if average output is constant. The result is that prices will contain asymptotically
a constant amount of information and convergence will be at the standard rate. It is
possible to show that now the new information in the price is related to the random
variable z, = w,0 + u,, where w, =1—na,. The point is that w, will converge to a positive
constant even if a, converges to zero. The order of magnitude of W, =Z:’=, w? and of
the informativeness of the price statistic will be n.

The results contrast with those of the least squares version of the bounded learning
literature. While in the present model, convergence to the rational expectations equili-
brium obtains for the whole domain of parameter values, typically, least squares estimation
converges only for a range of underlying parameter values. Further, in the bounded
learning case the rate of convergence of the OLS estimator may differ from the rates
derived in the present paper (which are of the order of A,'/?) and may depend on the
parameter that governs convergence as pointed out by Fourgeaud et al. (1986). In the
rational learning model considered, the OLS estimator is optimal and it is applied to a
well-specified constant coefficient (@) regression model. In consequence its properties
are standard although the rate of convergence may be slower than the usual 1/v# rate.

6. EXTENSIONS
6.1. Rational agents with limited forecasting ability

Up to now I have considered Bayesian agents who fully understand the workings of the
market and behave accordingly. Consider a scenario where the characteristics of the
market are as before except that the joint distribution of the random variables (8, €;, u™)
is not known. Nevertheless their variance-covariance matrix is known (and it is given as
in Section 2). Agents now have less prior knowledge on the random variables of the
economy but still are assumed to be fully rational and risk neutral.

Restricting attention to linear strategies in a first instance, the market price will be
a linear function of the unknown parameter 8. At stage n, the information set of agent
i will be I, ={s,, p"~'} which will be observationally equivalent to {s,, z" '}, as before,
given that strategies are linear and that agents fully understand how the economy works.
Agents will have to estimate E(6|I). I will assume here that agents have limited
forecasting ability and use linear prediction to estimate E(6]|1,). Nevertheless, since they
are rational they will use the best linear predictor of E(6]1,). As we know from Remark
3.2 this coincides with the Bayesian expression for E(8|I,), under the normality assump-
tion, where I, ={s,, z"'}.

The implication is clear: neither the equilibria of the market (Propositions 4.1 and
4.2) nor their asymptotic properties (Proposition 5.1 and 5.2) will change. Propositions
5.1 and 5.2 will hold in this case since we know from Remark 3.3 that normality is not
needed for the results to hold. I have shown therefore that risk-neutral agents with limited
knowledge of the joint distribution of relevant random variables and limited forecasting
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ability (using linear prediction rules), who are otherwise rational, eventually learn the
unknown parameter and their speed of learning can be characterized."

6.2. Correlated signals

In presenting the analysis in Section 2 the effects of perfect signal correlation have been
briefly discussed: in this case there is nothing to learn and one-shot competition is
equivalent to the REE benchmark. The results obtained so far can be extended to the
case where signals are imperfectly correlated. The basic difference is that now the rational
expectations (shared information) benchmark will not in general fully reveal 6. For
example, under normality assumptions, if the error terms of the signals have the same
precision and constant correlation p in the open interval (0, 1),%° then the average signal
s is a sufficient statistic for all the information but is a noisy estimate of 6. In this case
it is easily seen that convergence to the rational expectations equilibrium and learning
of s (all that it is possible to learn) obtain at the “slow” rate 1/ Jn"7. The correlation
coefficient does not affect the convergence rate but does affect the asymptotic precision
of the price statistic in the estimation of 5, A*r,,. The effect of p on A*r, is ambiguous.
A larger p on one hand tends to speed up learning (higher A*7.,) since signals are more
highly correlated, but on the other tends to slow it since it increases the variance of the
variable agents are trying to predict: the average signal.”’ Whenever there is a positive
mass of agents who do not have anything to learn from prices (for example, when a mass
u >0 of agents receives the same imperfect signal s) uninformed agents will learn at the
standard rate for the same reason as in the independent signal case: informed agents put
a constant weight on their signal.

In the classical case where ¢ is random (and 6 =0) agents would eventually learn
the true value ¢, even with correlated signals, and the speed of learning would not be
affected by signal correlation. Take the perfect correlation case (p = 1) as a benchmark.
Then there is no asymmetric information and an agent cannot learn anything from other
agents. Nevertheless the agent can learn from market prices. The price in period 1 is
given by: p, = ¢ +u, — nx,, where x, is a function of the common signal received s and
of past prices p'~'. The observation of p, is equivalent to the observation of ¢ +u,.
Repeated sampling of prices will reveal the unknown parameter ¢ at the standard rate
1/+/n. If correlation is less than perfect the same result will hold since asymptotically
the agents will place no weight on their signals.”?

APPENDIX

Proof of Lemma 3.1. Drop the i subscript in s and . Since all random variables are Normally distributed
they are fully characterized by mean and variance and it is sufficient to show that (1) E(8|s, z") = E(8|s,y,)
and (2) Var (8]s, z") = Var (8]s, y,). Itis easy to see that (2) follows from (1) using the fact that 8 — E(8]s, z")
is independent of (s, z") (Projection Theorem for normal random variables) and noticing that:

Var (8]s, z") = E{(8 ~ E(8]s, z"))*|s, z"} = E{6 — E(8|s, z")}?
=E(0—E(8]s,y,))*=Var (8]s, y,)-

19. The case where agents have a diffuse prior on the unknown parameter 6, that is, if o2 =00, can also
be accommodated by the analysis provided.

20. Make the convention (in accord with the finite dimensional version of the stochastic process of the
error terms) that ¢ = Io e,di is a normal random variable with zero mean, and Var ¢ = Cov (g, £) = pal.

21. It can be shown that A*r,=(37,)"3(r./(A(1—p)(1+ p7e/7.)))*/>. Recall also that Var s = po? + o}.

22. The response coefficient a, will converge to zero with ¢, and the z, variables which are observationally
equivalent to prices will approximately equal ¢ +u, for ¢ large: z, = (1—-na,)¢ — na,(j'(ll edi)+u,.
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The proof of (1), and of the associated expression for the conditional expectation, is omitted since it is
standard. ||

Proof of Lemma 3.2.

(i) Notice that y,— ¢ =A;" Z:;l au,. {au,} is a sequence of independent random variables, A,;' >, 0
and ¥, Var (au)A;2=02 ¥, A;2a?<oo. The last inequality holding since A;%= (X, a3)%is
of the order t72*, and a? is of the order < therefore A;2a? is of the order +~>***) and the series
Zzl 172079 s convergent if 2(v+«)>1. It is a well-known corollary of the SLLN then that
ALY an>,0as®

(ii) From our assumptions it is clear that lim, . (¥|_, 7)) 7' max,5,=, a?=0since ¥ al~, and q,
is bounded ({q,} is a sequence of order ™~ for some constant « = 0). The result follows from Theorem
3.53 in Amemiya (1985): o, (X, a)"*(y,~68)>.Z where Z~N(0,1). By assumption
lim, , o #7*7, = ATy, and therefore n™" 3.7_, a2k, with k=(r,) Az,

In consequence,

1 n -
(f o Z, af)”z) (Vn*(y,—0) >, Z
The first factor converges to v (Ar,) ' > 0. Therefore the second factor converges in law to v (A7) "' Z
and Vn*(y,—8)> N(0,(Ar.)™"). ugbbG

Proof of Proposition 4.2 (Uniqueness). 1t is sufficient to show that, at any stage, linear equilibria are the
only possible equilibria. Suppose that the information available to agent i at a certain stage is I, = {s,, y} and
assume that (4, s,, y) are jointly normally distributed. Time subscripts are dropped as before. Expected profit
maximization yields X,(s,, y) =A"'E{(p— 0)|s,, y}. It follows that

X5, V)=A"YE($~ 05, »)~ E(x]s,, 9)), (*)
where x = Ll] X, (s,, y)di. The convention on the linearity properties of integrals and the assumption of bounded

means of strategies implies that
1

1 1
J Xl(sny)d!=J' (X,(sl,y)—E(X.(S.,y)IG,y))dh‘J E(X,(s,, y)] 6, y)di
0

0 0
The first term is zero according to our convention on the SLLN since E{X,(s,, y) ~ E(X,(s,, )| 8, y)} =0 and
Var (X,(s,, ¥)|6,y) are uniformly bounded by assumption. 1 conclude therefore that L‘) X, (s, y)di=
fo E(X(s,, )6, y)di
Let then x(8, y) =I(1) E(X/(s, y)}|6, y)di. In order to ease notation, and without loss of generality, let § =0.
Then E(8]s,,y)=a,s,+7,y. Define:
Vs, 9)=X (s, )~ (¢(1+ M) —as,—cy),

and

T(8,y)=x(8,y)—(¢(1+1)"" ~ab—cy),
where a,, ¢, and c are the coefficients of linear equilibria with #=0 (in which case b=b, =0). Note that
Vo, y)= j:, V. (s,, y)disince Ié asdi=af®and ¢ =_|':, ¢, di®* Itis immediate to check from () and the expressions
for a, a,, ¢, and ¢, that ¥ (s,, y) = — A" E{¥(6, y)|s,, y}. Multiply by ¥,(s,, y) and taking expectations I obtain

E(¥ (5, 9)) == AT E{¥(8, y)¥ (s, »)}.
Therefore,

1

1
J. E{‘I’(G,y)‘l’.(s”y)}di=J‘ E{E{¥ (8, y}¥.(s,, »}| 8, y}}di
0

(1]

1
=J E{¥(6, y)(E{¥Y.(5., »)| 6, yD}di
]

=E {‘I’(B,y) (J E{¥ (s, )|8, y}di)}
o
1
=E {‘I'(ﬂ,y) (J. ‘I'.(S.,y)di)}-
0
23. See White (1984) for related results.

24. L‘, a,e,di = 0 using our convention on the SLLN since Var a,e, are uniformly bounded.
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The last equality holding since

1 1
J ‘I"(sl,y)di=f E{¥ (s, y)|6, y}di,
0 0

using the same reasoning as above to write Ié X,(s,, y)di=[} E(X,(s,,¥)|6,y)di*® Conclude that
L‘] E(¥ (s, ¥))di=~A""E(¥(6, y))>. Summarizing, I have shown that

1
0s I E(W,(s,, y))di=-A""E(¥(6, y))>=0.
0
It follows that E(W(6, y))* =0, which implies ¥(8, )) =0 (as.) or x(6, y) = a8 + cy (a.s.). This entails necessarily
strategies as postulated in Proposition 4.1:

X(s,y)=as+cy (as.)

I check by induction now that indeed (4, s,, y,,) are jointly normally distributed for any n. If (8, s,, y,_,) are
jointly normally distributed then at stage n there is a unique linear equilibrium, prices are normally distributed,
and y, will be normally distributed and (8, s,, y,,) jointly normally distributed. When n =1, the information
set of agent i is I, ={s,} and (6, 5,) are jointly normally distributed by assumption. Therefore, y, is normally
distributed and (94, s,, y,) jointly normally distributed. |

Proof of Lemma 5.1.

(i) I show first that a, decreases (weakly) with n. From Proposition 4.1, a,=a,_;(A+a,_,)"" and
consequently it is increasing in a,,_,; further o, , = [} a,,_,di=J, 7, (rg+ 7, + 1,A,_,)"'di; when n
increases A,,_, increases (weakly) and «,,_, decreases (weakly). I show now that A, goes to infinity
with n.

Note first that A, =Z:'=l a? is a monotone-increasing sequence of n. If it does not tend to
infinity it will converge to some constant A, >0 (the constant will be positive since a,>0). This
implies that a, will converge t0 a.=an(A+aL)™' where aoo=_f; a,di and o=
7., (1t 7., + 7,A)”". The result follows form Lebesgue‘s Bounded Convergence Theorem (see, for
example, Royden (1968, p. 81) since a,, is measurable and bounded above by 1, for all ¢ (and i),
and a, converges to @, =7, (T+ 7, +7,AL)”" for all i; it follows then that Ll, a,dr converges to
],') a,.di. This contradicts the hypothesis of convergence of A,. Therefore, A, »c0. I show that
a, > u(A+p)"'. Note first that a,, =0 if 7,, is finite since A, -» %, and that ¢, =1 otherwise since
then a,, =1 for all n. Therefore a,= j’:) @,odi = 1.2¢ Using the previous argument with the Bounded
Convergence Theorem, @ = and @, = u(A+p)"".

(ii) From Proposition 4.1, ¢, =Ay,_y(A+1)"'(A+a,_,)"" and b, =AB8,_,(A+1)"'(A+a,_,)"". Now,
Y ~—~_[(l) Yendi where v, = 7,A, (7 + 1, +7,A,)”". Similar arguments as in the last part of (i) establish
that vy, tends to 1 —u and B, to zero with n. This establishes the result.

(iii) Let a, be of order n™* and A, be of order n”. Since a, > u(A+u)~! and A, - c© necessarily x =0
and »>0. Recall that r,=7,+7,A, and therefore the asymptotic precision will be given by
lim,,,n "7, =7,(lim, 12 "4,).

If 4u>0 then a,=p(A+u)'>0 and therefore k=0 and wv=1. It follows that
n7'A, >, (u/(A+u))? Otherwise (u =0), I argue in two steps:

Claim 1. a,A,_, converges to 7,(A7,)}, where 1, :j:) 7. di, if 7, is finite and to oo otherwise.

Proof. From the expression for a,:
anAw—l = ((An—~l)_l +/\(An-lan—l)il)_l~
Now,

1 1
An—lan=l=J‘ Arx—lam—ldi:J. Tz,((Ta+T€,)(An~l)Al+Tu)-ldi'
0 0

25. By assumption strategies have bounded means and uniformly bounded variances, the linear equilibrium
satisfies this assumption, and therefore E{¥ (s,,y)|6, y} is bounded for all i and Var {¥,(s, y)|6, y} are
uniformly bounded.

26. Notice that the set {i € [0, 1]: 7, = o0} is measurable, with measure u, and consequently the complement
{ie[0,1}: 7, <oo} is also measurable.
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Observing that A, _, a,,, _, is a monotone increasing sequence of nonnegative measurable functions of i converging
almost everywhere to 7, /7,, it is possible to conclude (Lebesgue Monotone Convergence Theorem; see, for
example, Royden (1968, p. 227)) that J'; A,_,a,,_,di converges to (7,)”" L', 7., di and the result follows. ||

Claim 2. If 7, is finite then n'3A, >, 3"3(r,/A7,)?3, as n»o0. If 7, is infinite (and u=0) then
1>v>1/3>k>0.

Proof. If p=0 then a,~,0. If 7, is finite the result follows from Claim 1 and Lemma A1l below. If 7,
is infinite then a,A,, tends to infinity with n. Further, n A, -, 0 (since a, ~>,0) and n"'3A, >, © (using the
fact that A, = n(a,)?, (a,A,) '= (n"V3A,)"%2, from which the result follows since a,A, » ). It follows then
from Lemma A2 below (with »>« >0) that v+2k =1 and 1> v>1/3.

Note that in all cases v+2k=1and 1Z»v=1/3. |

Lemma Al. Assume that a,A, »,k>0, then n V>A, - 3(k/3)*3, and n"?a, -, (k/3)V>.

Proof. Note first that a,A, = n(a,)’ since a,, is decreasing. It follows then that the sequence {n(a, )’} is
eventually bounded above by k and it is always bounded below by zero. It is possible to establish that it
converges (omitted). I show now that {n(a,)’} converges to k/3. Suppose {n(a,)’} converges to h. Fix £>0.
There is T(e) such that for t= T(e): t(a,)*c[h—¢, h+e]). Therefore, for t=T(e), (h+e)?3*t 3z a’z
(h~€)*3t2/3 and

3(h+ )3 (n'?—(T(e)-1)"? = (h+¢)*? I Pdtz(h+ )L L
T(e)—-1
= ZLT(E)H alz(h-e)*? Z:‘:T(e)+l 23
n+1
=z(h—¢e)? J 3t =3(h—&)*((n+1)Y3—(T(e)+ 1)),
T(e)+1

Since this holds for all ¢ >0, multiplying by n~/* and taking limits I obtain n~"/*A, > ,3h*>. Consequently,

(n'a,)(n"V2A,) >, (h"/?)(3h**)=3h, and a,A, converges to k. Conclude that h=k/3. |

Lemma A2. Assume that n™"Y"_ a?- .k, where k>0, and that a, is of the order 1™, where v =k > 0.
Thenv+2x=1and 1>v=1/3.

Proof. It follows that n""z:'zl t72* must be bounded above and away from zero. I check first that
k=1/2. Let A, =Y _ al
Suppose x> 1/2, we have

n n 1—nl=2«
t2de=y" 72 and I 2 dp = ———— *
L ., 1 P (*)
For « >1/2 this integral goes to 1/(2x —1) with n but A, » o, a contradiction.
Suppose now « =1/2, we have then n™lan=n"" [ (1/t)dtzn " ¥, t7". The last term must be
bounded away from zero but n™"Inn—>0 as n >0 if ¥ =« >1/2, a contradiction. I conclude that « <1/2.
From (*) it follows that

1 a7 ( 1 ) 1
_ = — + n I_z" =— n t—ZK.
n”1-2« n”\1-2« L n"z'='

The last term must be bounded away from zero, and therefore, 1 —2x — v = 0.

Furthermore,
prct e[ ema] [55]
— ez — R e el
n"z‘=1 n”LJ, n'[ 1-2«

The first term must be bounded above. Therefore, 1-2x —»=0. I conclude that 1 =2« +». Consequently,
1>v=1/3since v=«>0. |

Acknowledgements. 1am grateful to Drew Fudenberg, Martin Hellwig, Byoung Jun, Jean-Jacques Laffont,
Albert Marcet, Andreu Mas-Colell, Yaw Nyarko, participants in the Harvard-MIT theory seminar and three
anonymous referees for helpful comments. Support from the Spanish Ministry of Education through grant
CICYT PB87-0340 and from the Generalitat de Catalunya, CIRIT, is gratefully acknowledged. Joan Ramon
Palau provided excellent research assistance.

COpVTghr & 2661+ AFRights-Reserved



VIVES RATIONAL LEARNING 347

REFERENCES

ADMATI, A. R. (1985), “A Noisy Rational Expectations Equilibrium for Multi-Asset Securities Markets”,
Econometrica, 53, 629-657.

AMEMIYA, T. (1985) Advanced Econometrics (Oxford: Basil Blackwell).

BLUME, L. E. and EASLEY, D. (1984), “Rational Expectations Equilibrium: An Alternative Approach”,
Journal of Economic Theory, 34, 116-129.

BLUME, L. E. and EASLEY, D. (1982), “Learning to be Rational”, Journal of Economic Theory, 26, 340-351.

BRAY, M. and KREPS, D. M. (1988), “Rational Learning and Rational Expectations”, in G. Feiwel (ed.},
Arrow and the Ascent of Modern Economic Theory, (London' Macmillan) 597-625.

BRAY, M. (1982), “Learning, Estimation, and the Stability of Rational Expectations”, Journal of Economic
Theory, 26, 318-339.

BRAY, M. M. and SAVIN, N. E. (1986), ‘“‘Rational Expectations Equilibria, Learning, and Model Specification”,
Econometrica, 54, 1129-1160.

DUBEY, P. and KANEKO, M. (1984), “Information Patterns and Nash Equilibria in Extensive Games: 17,
Mathematical Social Sciences, 8, 111-139.

FELDMAN, M. (1987), “An Example of Convergence to Rational Expectations with Heterogeneous Beliefs”,
International Economic Review, 28, 635-650.

FOURGEAUD, C., GOURIEROUX, C. and PRADEL, J. (1986), “Leamning Procedures and Convergence to
Rationality”, Econometrica, 54, 845-868.

FRYDMAN, R. (1982), “Towards an Understanding of Market Processes: Individual Expectations, Learning,
and Convergence to Rational Expectations Equilibrium” (mimco).

GREEN, E. J. (1980), ““Noncooperative Price Taking in Large Dynamic Markets”, Journal of Economic Theory,
22, 155-182.

GROSSMAN, S. and STIGLITZ, J. (1980), “On the Impossibility of Informationally Efficient Markets”,
American Economic Review, 70, 393-408.

GROSSMAN, S. (1976), *‘On the Efficiency of Competitive Stock Markets where Trades have Diverse Informa-
tion”, Journal of Finance, 31, 573-585.

HELLWIG, M. F. (1980), “On the Aggregation of Information in Competitive Markets”, Journal of Economic
Theory, 22, 477-498.

JORDAN, J. S. (1985), “Learning Rational Expectations: The Finite State Case”, Journal of Economic Theory,
36, 257-276.

JORDAN, J. S. (1990), “The Exponential Convergence of Bayesian Learning in Normal Form Games”
(Discussion Paper No. 259, University of Minnesota).

JORDAN, J. S. (1992), “Convergence to Rational Expectations in a Stationary Linear Game”, Review of
Economic Studies, 59, 109-132.

MARCET, A. and SARGENT, T. J. (1988), “The Fate of Systems with ‘Adaptive’ Expectations™, American
Economic Review, 78, 168-172.

MARCET, A. and SARGENT, T. J. (1989), “Convergence of Least Squares Learning Mechanisms in Self-
Referential Linear Stochastic Models”, Journal of Economic Theory, 48, 337-368.

MASSO, J. and ROSENTHAL, R. W. (1989), “More on the ‘Anti-Folk Theorem’”, Journal of Mathematical
Economics, 18, 281-290.

McKELVEY, R. D. and PAGE, T. (1986), “Common Knowledge, Consensus, and Aggregate Information”,
Econometrica, 54, 109-127.

PALFREY, T. (1985), “Uncertainty Resolution Private Information Aggregation, and The Cournot Competitive
Limit”’, Review of Economic Studies, 52, 69-83.

ROB, R. (1991), “‘Learning and Capacity Expansion under Demand Uncertainty™, Review of Economic Studies,
58, 655-675.

ROYDEN, H. L. (1968) Real Analysis (New York: Macmillan).

TOWNSEND, R. M. (1978), “Market Anticipations, Rational Expectations, and Bayesian Analysis”, Inter-
national Economic Review, 19, 481-494.

TOWNSEND, R. M. (1983), “Forecasting the Forecasts of Others”, Journal of Political Economy, 91, 546-587.

VIVES, X. (1988), “Information Aggregation in Large Cournot Markets”, Econometrica, 56, 851-876.

WHITE, H. (1984) Asymptotic Theory for Econometricians (New York: Academic Press).

WOODFORD, M. (1990), “Learning to Believe in Sunspots’, Econometrica, 58, 277-307.

Copyright © 2001 All Rights Reserved



