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Abstract 

This paper presents conditions for a resolution of the Grossman-Stiglitz paradox of 
informationally efficient markets. We display a market with asymmetric information 
where a privately revealing equilibrium obtains in a competitive framework and where 
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valuations is not too large. The equilibrium is efficient, and the problems associated with 
fully revealing rational expectations equilibria are precluded without resorting to noise 
traders. The model is applied to explain changes in bidding behavior in central bank 
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market power is tested in a large market approximation to the competitive economy. 
 
Keywords: adverse selection, information acquisition, double auction, multi-unit 
auctions, rate of convergence, market power, complementarities, liquidity and Treasury 
auctions 

JEL Codes: D82, D84, G14, E59 

 

                                                 
* This paper was delivered as the Schumpeter lecture in the 28th Congress of the EEA in Gothenburg in 

2013. I am grateful to Carolina Manzano, Bruno Biais, Paul Klemperer, Jaume Ventura and to 
participants at presentations of early versions of the paper at ESEM in Oslo (August 2011), ESSET 
(July 2012), Arizona State University and Caltech (April 2012) for helpful comments. I thank also 
Rodrigo Escudero and Jorge Paz for excellent research assistance. The research reported in this paper 
has been supported by European Advanced Grant (no. 230254). Complementary support from project 
and ECO2011-29533 of the Spanish Ministry of Education and Science at the Public-Private Sector 
Research Center at IESE is acknowledged.  



 2

1. Introduction 

The financial crisis has questioned the informational efficiency of the market, 

popularized as the “efficient market hypothesis”.1 Indeed, commentators point at bubbles 

in stock markets (e.g. tech bubble) and in real estate markets as evidence of the demise of 

the hypothesis. A basic problem in an informationally efficient market was pointed out by 

Grossman and Stiglitz (1976, 1980). As stated plainly by John Kay (FT July 16, 2013): 

"A contradiction lies at the heart of the efficient market hypothesis: if market prices did 

incorporate all available information about the value of an asset, no one would have an 

incentive to obtain that information in the first place." The implications of the lack of 

market informational efficiency are important for investment decisions, accounting (mark 

to market), and managerial incentives. We keep relying on prices, however. When prices 

for CDS contracts shoot up for banks, firms, or countries we infer trouble ahead (in terms 

of an increase in probability of default); when interbank spreads spike we infer liquidity 

and solvency problems for banks. A question therefore is whether the reliance on prices 

is warranted and how information issues help explain behavior by market participants 

during a crisis. 

 

Rational expectations models have proved to be a workhorse for the analysis of situations 

involving uncertainty and private information. An important aim has been to provide a 

workable model of Hayek’s (1945) idea that prices aggregate the dispersed information 

of agents in the economy, given prices’ dual role as index of scarcity and conveyors of 

information. However, the concept of a rational expectations equilibrium (REE) is not 

without problems—and this is especially true of fully revealing REE in competitive 

markets.2 The concept has two main difficulties. First, the above mentioned Grossman-

Stiglitz paradox: If information is costly and prices are fully revealing, and if the traders 

perceive that they cannot affect the informational content of prices, then at equilibrium no 

trader pays to gather information because all information (including his) is already freely 

                                                 
1  "For more than four decades, financial markets and the regulations that govern them were 

underpinned by what is known as the efficient markets hypothesis. All that changed after the financial 
crisis." (Norma Cohen, FT, Jan 24, 2012) 

2  The concept of a fully revealing REE is relevant since, absent other frictions, this equilibrium is 
Pareto optimal. 
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available in the prices. However, if no trader gathers information, then the prices cannot 

convey information; and if prices convey no information and information is sufficiently 

cheap then some trader will want to acquire information. In those circumstances there is 

no equilibrium and fully revealing equilibrium prices are logically impossible (Grossman 

and Stiglitz (1976, 1980); Matthews (1984), Jackson (2003) for auctions). Second, the 

equilibrium need not be implementable; that is, it may not be possible to find a trading 

mechanism (in a well-specified game) that delivers the fully revealing REE. An added 

problem arises if the competitive REE is defined in a finite-agent economy, since then 

traders realize that prices convey information but do not realize the impact of their 

actions on the price (this is the “schizophrenia” problem of Hellwig (1980)). These 

problems are typically overcome by considering noisy REE in large economies. Indeed, 

noise traders in competitive models have prevented trade from collapsing.3 

 

This paper presents a simple, competitive, large-market model without the recourse to 

noise traders and in which the valuation of each trader has a common and a private value 

component. A key ingredient is that each trader receives a private signal which provides 

“bundled” information for both the common and the private value components. It shows 

how to obtain a privately revealing equilibrium in a well-specified game where each 

trader submits a demand schedule and has incentives to rely on his private signal and on 

the price. In a privately revealing equilibrium the price and the private signal of a trader 

are sufficient statistics for the pooled information of all traders in the market. The 

equilibrium is efficient, preserves incentives to acquire information provided that the 

common value component of the valuation is not overwhelming, and overcomes the 

problems of fully revealing REE without reliance on noise trading. Therefore, our 

equilibrium provides the conditions for a resolution of the Grossman-Stiglitz paradox. 

Furthermore, the Bayesian equilibrium in demand schedules obtained in the large market 

is not an artifact of the continuum specification for traders. We verify that the large limit 

market equilibrium approximates well large finite markets equilibria in which traders are 

strategic and have incentives to influence prices, provided that the limit equilibrium calls 

                                                 
3 See, for example, Diamond and Verrecchia (1981) and Admati (1985). 
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for positive information acquisition. This delivers a foundation for REE in the context of 

the model presented.  

 

The model is of the linear-normal variety, as in Grossman and Stiglitz (1980), and it 

assumes declining marginal valuations. It is quite tractable and allows us to address the 

case of a good with an elastic exogenous supply as well as the case of a double auction; 

in addition, it enables us to characterize explicitly not only information acquisition but 

also rates of convergence of finite markets to the continuum limit. The model admits 

interpretation in terms of both financial markets and markets for goods. 

 

We find that there is a unique linear equilibrium. In equilibrium, a high price indicates a 

high valuation, and this reduces responsiveness to price when there is private 

information. Indeed, demand schedules in this case are steeper and there is a greater 

extent of adverse selection in the market, 4  which increases with the correlation of 

valuations and the noise in the signals. If the information effect is large enough, demand 

schedules may be upward sloping. Demand, as long as it is downward sloping,   becomes 

steeper also as the slope of marginal valuation is steeper and as the slope of exogenous 

supply is flatter. The case of a downward-sloping exogenous supply of the good allows 

us to capture complementarities among the agents in the market, and makes aggregate 

excess demand upward sloping. 

 

If the signals are costly to acquire and if traders face a convex cost of acquiring precision, 

then there is an upper bound on the correlation of valuation parameters below which there 

are incentives to purchase some precision. This upper bound is decreasing in the 

precision of the prior and in the marginal cost of acquiring precision; this bound is 1—

that is, perfect correlation—when the marginal cost (at zero precision) of acquiring 

precision is zero or when the prior is diffuse. A more diffuse prior or less correlation 

among valuations induces more effort to acquire information, and this effort is, in fact, 

                                                 
4  See Akerlof (1970) and Wilson (1980). 
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socially optimal. The parameter region where the Grossman-Stiglitz paradox is 

maintained increases as correlation increases and we approach the common value case. 

 

The continuum economy is an idealization that allows solving Hellwig's trader 

schizophrenia problem since in the limit economy price-taking behavior is individually 

optimal. We check how large a market is needed for the equilibrium in the continuum 

economy to approximate well a finite market. The rate at which equilibria in finite replica 

markets (with n  traders and corresponding exogenous supply) approach the equilibrium 

in the continuum economy is 1 n , the same rate at which the average signal of the 

traders tends to the limit average valuation parameter. Convergence accelerates as we 

approach a common value environment with better signals or with less prior uncertainty. 

The corresponding (per capita) welfare loss in the finite market with respect to the limit 

market is of the order of 1 n , and again convergence is faster when closer to the common 

value case or when there is less prior uncertainty. However, the effect of noise in the 

signals is ambiguous here because it has opposing effects on allocative and distributive 

efficiency.  

 

The convergence results extend to the endogenous information acquisition case as long as 

the equilibrium in the continuum economy calls for a positive purchase of information. 

However, when this is not the case we have situations where the limit of equilibria with 

positive information acquisition in finite economies as the market grows large has no 

information purchase but this is not an equilibrium in the continuum economy, or where 

an equilibrium with no information purchase in the continuum economy cannot be 

approximated by equilibria in finite economies. In the latter case the equilibrium in the 

continuum economy is an artifact of the continuum specification. The root of those 

results is a discontinuity in the equilibrium which obtains when one trader purchases 

information when the others have not in a finite market. The informed trader acquires a 

discrete amount of market power by purchasing a little bit of private information. This 

may destroy a no information purchase equilibrium. On the other hand, market power 

may induce information purchase in a finite market when in the continuum market there 

would be no equilibrium. 
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The model developed here can be applied to explaining how banks bid for liquidity in 

central bank auctions (or how bidders behave in Treasury auctions). In particular, the 

model can be used to simulate the impact of a financial crisis on central bank liquidity 

auctions. We will see how adverse selection in a context where auction prices are 

informative may explain the fact that aggregate bid demands became much steeper after 

the subprime crisis episode in 2007 or Lehman Brothers failure in 2008. 

 

There have been several attempts to resolve the Grossman-Stiglitz paradox in a common 

value environment. The most popular approach is to include noise traders who make 

prices not fully revealing as in Grossman and Stiglitz (1980), Hellwig (1980) or Admati 

(1985).5 This approach has been refined with the consideration of endowment shocks to 

traders (Diamond, and Verrecchia (1981), Verrecchia (1982), Ganguli and Yang (2009), 

Manzano and Vives (2011)), and uncertainty with larger dimension than prices (Allen 

(1981), Ausubel (1990)). In this approach it is found that there is strategic substitutability 

in information acquisition.6  

 

Another line of attack has been to consider traders with market power in models with a 

finite number of traders. This is the case of Kyle (1989) and Jackson (1991) studying 

demand submission games.  Kyle (1989) shows that equilibrium is well defined when 

noise trading is nonzero and as this noise vanishes prices do not become fully revealing 

because informed agents trade smaller and smaller amounts. Jackson (1991) shows the 

possibility of fully revealing prices with costly information acquisition, under some 

specific parametric assumptions, because traders realize that their actions influence 

prices. Kovalenkov and Vives (2013) show that risk neutral competitive traders would 

not enter a market and become informed (a variant of the Grossman-Stiglitz paradox). 

But if they are strategic, as the market grows large (parameterized by the amount of noise 

trading) the number of informed traders grows less than proportionately than the size of 

                                                 
5  According to Black (1986) noise trading "makes financial markets possible" and provides incentives 

"for people to seek out costly information which they will trade on". 
6  This explains, for example, that as noise trading vanishes the informativeness of the price is bounded 

above (Verrechia (1982)). The strategic substitutability result is robust in a model with endowment 
shocks which induce multiple equilibria (Manzano and Vives (2011)).   
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the market. Then prices become fully revealing because the aggregate response to private 

information grows even faster than noise trading and the incentives to acquire 

information are preserved. 

 

Still, other work assumes non-expected utility traders: Krebs (2007) and Muendler (2007) 

resolve the paradox with schizophrenic agents who take into account the impact on 

market prices when choosing the quality of their information but not when they trade in 

the asset market; Condie and Ganguli (2011) and Mele and Sangiorgi (2009) consider  

ambiguity-averse traders. 

 

This paper is related to the literature of information aggregation in auctions, Cournot 

markets, and markets in which traders compete in demand and/or supply functions. First, 

it is related to work on information aggregation, and on the foundations of REE in 

auction games, that developed from the pioneering studies of Wilson (1977) and Milgrom 

(1981) and have more recently been extended by Pesendorfer and Swinkels (1997). The 

convergence to price taking and to efficiency as double auction markets grow large has 

been analyzed in Wilson (1985), Satterthwaite and Williams (1989), and Rustichini, 

Satterthwaite, Williams (1994), and Cripps and Swinkels (2006). Our results on the 

model’s double auction version are more closely related to Reny and Perry (2006), who 

present a double auction model with unit bids with a unique and privately revealing REE 

that is implementable as a Bayesian equilibrium, and also offer an approximation in a 

finite large market. Given the nature of our own model, the results presented here deal 

with multi-unit demands and enable characterizations of an equilibrium’s comparative 

static properties and of information acquisition. Furthermore, the model allows us to 

study convergence rates and to analyze the effect of an exogenous supply of the good. 

Second, a parallel literature on information aggregation has developed in the context of 

Cournot markets (Palfrey (1985); Vives (1988)). Dynamic extensions of the models have 

allowed fully revealing prices, but with a temporal lag, not allowing agents to condition 
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their demands on current prices (e.g. learning from past prices; Hellwig (1982), Dubey, 

Geanakoplos and Shubik (1987), Vives (1988)).7  

 

Third, the paper is related to the literature on strategic competition in terms of schedules 

in uniform price auctions developed from the seminal work of Wilson (1979) and Kyle 

(1989) (see also Wang and Zender (2002)). Vives (2011a,b) considers strategic supply 

competition and provides a finite-trader counterpart to the model in this paper.8  

 

The balance of the paper is organized as follows. Section 2 presents the model. Section 3 

summarizes the problems with the concept of a fully revealing REE and introduces our 

approach and the interpretations of the model. Section 4 characterizes the equilibrium and 

its properties; Section 5 presents some extensions of the model, the case of inelastic 

supply and complementarities. Section 6 deals with information acquisition, and Section 

7 considers large but finite markets. Concluding remarks close the paper and the 

Appendix gathers the proofs of the results. 

 

 

2. The model 

A continuum of traders—indexed in the unit interval  0,1i , which is endowed with the 

Lebesgue measure—face a linear, downward-sloping inverse supply for a homogenous 

good p x    . Here , 0    and x  denotes aggregate quantity in our continuum 

economy (and also per capita quantity, since we have normalized the measure of traders 

to 1). We have 
1

0 ix x di  , where ix  is the individual quantity demanded by trader i . We 

interpret 0ix   to mean that the trader is a (net) supplier. 

 

                                                 
7  See also Golosov et al. (2013) for a dynamic decentralized foundation of fully revealing equilibria.  

8 In this latter paper a rate of convergence to price-taking behavior of 1 n  is obtained, which is faster 

than the rate of convergence of prices to the equilibrium in the continuum economy 1 n  in the 

present paper. Rostek and Weretka (2012) consider competition in schedules with an asymmetric 
correlation structure for valuation parameters. 
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Traders are assumed to be risk neutral. The profits of trader i  when the price is p  are 

  2

2
i i i ip x x

    , 

where i  is a value idiosyncratic to the trader and ix  is a marginal transaction, 

opportunity or limit to arbitrage cost (it could also be interpreted as a proxy for risk 

aversion). 

 

We assume that i  is normally distributed (with mean    and variance 2
 ). The 

parameters i  and j , j i , are correlated with correlation coefficient  0,1  . We 

therefore have 2cov ,i j        for j i . Trader i  receives a signal i i is    ; all 

signals are of the same precision, and i is normally distributed with   0iE    and 

  2var i   . Error terms in the signals are correlated neither with themselves nor with 

the i  parameters. 

 

Our information structure encompasses the case of a common value and also that of 

private values. If 1  , the valuation parameters are perfectly correlated and we are in a 

common value model. When 0 1  , we are in a private values model if signals are 

perfect and 2 0   for all i; traders receive idiosyncratic, imperfectly correlated shocks, 

and each trader observes her shock with no measurement error. If 0  , then the 

parameters are independent and we are in an independent values model. Under our 

assumption of normality, conditional expectations are affine.9 

 

                                                 
9 With Gaussian distributions there is positive probability that prices and quantities are negative in 

equilibrium. We can control for this if necessary by restricting the variances of the distributions and of 

the parameters  ,  ,  , and  . 
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Let the average valuation parameter be j dj   , normally distributed with mean   

and 2cov , vari           
  10  The dispersion in valuations is given by 

   
2 21i         

 . It is maximal for 0  and minimal for 1  . An equivalent 

formulation that highlights the aggregate and idiosyncratic components of uncertainty is 

to let i i      and observe that i i    , where cov , 0i    
  and cov , 0i j      

for i j . It is worth emphasizing that signal i i is       provides “bundled” 

information on the aggregate   and idiosyncratic i  components. 

 

We adopt the convention that the average of independent and identically distributed 

random variables with mean zero is zero.11 We then have i i is s di di di          

almost surely, since 0i di   according to our convention. Note that if 0   then 

  (a.s.). 

 

 

3. Rational expectations equilibrium and the demand schedule game 

In this section we begin by defining REE and expounding on its problems. We then move 

on to our game-theoretic approach and interpretations of the model. 

 

                                                 
10 This can be justified as the continuum analogue of the finite case with n  traders. Then, under our 

assumptions, the average parameter 
n

  is normally distributed with mean  , 

     2 1var 1 1
n

n n      , and    cov , var
n i n

    . The result is obtained by letting n  tend 

to infinity. 
11 See Vives (1988) for a justification of this convention. In any event, we will see that the equilibrium 

in the continuum economy is the limit of equilibria in the appropriate finite economies under the 
standard laws of large numbers. 
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3.1. Rational expectations equilibrium 

A (competitive) rational expectations equilibrium is a (measurable) price function 

mapping the average valuation (state of the world)   into prices  P   and a set of trades 

 ,  0,1ix i , such that the following two statements hold. 

(1) Trader i  maximizes its expected profit, ,i iE s p   , conditional on knowing the 

functional relationship     as well as the underlying distributions of the 

random variables. 

(2) Markets clear:    
1 1

0
 0iZ p x di p     . 

Thus each trader optimizes while taking prices as given, as in the usual competitive 

equilibrium, but infers from prices the relevant information. 

 

This equilibrium concept may be problematic. Consider the common value case ( 1  ); 

we shall present a fully revealing REE that is not implementable. Suppose there is a 

competitive equilibrium of a full information market in which the traders know  . At this 

equilibrium, price equals marginal benefit, ip x   ; therefore, individual demand is 

 1
ix p   . The equilibrium price is given by the market-clearing condition 

  0Z p   and is equal to    p       . This allocation is also a fully 

revealing REE of our economy (Grossman (1981)). Indeed, looking at the price allows 

each trader to learn  , which is the only relevant uncertainty, and the allocation is a REE 

equilibrium because traders optimize and markets clear. However, this REE has a strange 

property: the price is fully revealing even though a trader’s demand is independent of the 

signals received. The question is then how has the information been incorporated into the 

price or what is the game and the market microstructure that yields such a result. In this 

case we cannot find a game that delivers as an equilibrium the fully revealing REE.12 

                                                 
12 If we were to insist that prices be measurable in excess demand functions, then the fully revealing 

REE would not exist (see Beja (1977); Anderson and Sonnenschein (1982)). However, fully revealing 
REE are implementable if each agent is informationally “small” or irrelevant in the sense that his 
private information can be predicted from the joint information of other agents (Palfrey and Srivastava 
(1986); Postlewaite and Schmeidler (1986); Blume and Easley (1990)). 
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3.2. The demand schedule game 

We will restrict our attention to REE that are the outcome of a well-specified game—that 

is, implementable REE. The natural way to implement competitive REE in our context is 

to consider competition among demand functions (see Wilson (1979); Kyle (1989)) in a 

market where each trader is negligible.13 

 

We assume that traders compete in terms of their demand functions for the exogenous 

supply of the good. The game’s timing is as follows. At 0t  , random variables    0,1i i



 

are drawn but not observed. At 1t  , traders observe their own private signals,    0,1i i
s


, 

and submit demand functions  ,i iX s   with  ,i i ix X s p , where p  is the market price. 

The strategy of a trader is therefore a map from the signal space to the space of demand 

functions. At 2t   the market clears, demands are aggregated and crossed with supply to 

obtain an equilibrium price, 14  and payoffs are collected. An implementable REE is 

associated with a Bayesian Nash equilibrium of the game in demand functions. Hereafter 

we discuss only the linear Bayesian demand function equilibrium (DFE). 

 

3.3. Interpretations of the model 

The model and game admit several interpretations in terms of financial markets and 

markets for goods as long as there are enough participants to justify the use of the 

continuum model assumption (this issue is dealt formally with in Section 7). 

 

The good may be a financial asset such as central bank funds or Treasury notes, and the 

traders are the bidders (banks and other intermediaries) in the auction who use demand 

functions. In the open-market operation of central bank funds, the average valuation   is 

related to the average price (interest rate) in the secondary interbank market which is 

mostly over-the-counter. The valuation i  for bank i  reflects thus the terms that this 

                                                 
13 See Gul and Postlewaite (1992) and Mas-Colell and Vives (1993) for results on the implementation of 

efficient allocations in large economies. 

14 If there is no market-clearing price then assume that the market closes; if there are many market-
clearing prices, choose the one that maximizes volume. 
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bank obtains in the secondary market as well as its liquidity needs (because of reserve 

requirements for example) and the bank receives an imperfect signal about its valuation. 

A bidder bank must offer the central bank collateral in exchange for funds, and the 

bidder’s first preference is to offer the least liquid one. Given an increased allotment of 

funds, the bank must offer more liquid types of collateral at a higher opportunity cost; 

this implies a declining marginal valuation for the bidder with  reflecting the structure 

of a counterparty’s pool of collateral.15  

 

In a Treasury auction, bidders will have private information related to different 

expectations about the future resale value   of the securities (e.g., different beliefs 

concerning how future inflation will affect securities denominated in nominal terms) and 

to the idiosyncratic liquidity needs of traders.16 We should expect that the common value 

component is more significant in Treasury auctions than in central bank auctions, since 

the main dealers buy Treasury bills primarily for resale.17 

 

The good could also be an input (such as labor of uncertain productivity) whose traders 

are the firms that want to purchase it. Our model also accommodates the case where firms 

compete in supply functions to fill an exogenous demand, as in procurement auctions. In 

this case we assume that   , since i  is now a cost parameter and typically 0ix  . 

For example, i  could be a unit ex post pollution or emission penalty to be levied on the 

firm and about which the producer has some private information. 

 

 

                                                 
15 See Ewerhart et al. (2010) and Cassola et al. (2013). 

16 For example, Hortaçsu and Kastl (2011) cannot reject the hypothesis that bidders in Canadian 3-
month T-bill auctions have private values. 

17 See Bindseil et al. (2002). 
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4. Bayesian demand function equilibrium 

In this section we use Proposition 1 to characterize the symmetric18 equilibrium of the 

demand schedule game before discussing its properties. We then extend the range of the 

model in the next section to double auctions and inelastic supply and market structures 

with complementarities. 

 

Proposition 1. Let  0,1   and 2 2
     . Then there is a unique symmetric DFE 

given by 

    1, ,i i i iX s p E s p p b as cp         . 

Here 

      1 1
, 1 , 1 ,

1
a b a c a

M

   
  

      


 

and   2 21M      . Moreover, 0a   and 1 1c a      . Also, c  is 

decreasing in M and   and is increasing in  ;  1 0Z ' c      ; and the equilibrium 

price is given by 

p
 
 






. 

 

It is worthwhile to highlight some properties of this equilibrium. 

 

The equilibrium is, first of all, privately revealing.19 The price p  reveals the average 

parameter   and, for trader i , either pair  ,is p  or  ,is   is a sufficient statistic for the 

joint information in the market  ,is s  in the estimation of i . In particular, at equilibrium 

we have , ,i i i iE s p E s        
 . The privately revealing character of the equilibrium, 

                                                 
18 The symmetry requirement could be relaxed. Then the (linear and symmetric) equilibrium would be 

unique in the class of (linear) equilibria with uniformly bounded second moments (equivalently, in the 

class of equilibria with linear price functional of the type  P  ). 

19 See Allen (1981). 
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which derives from the “bundled” nature of the signal is  about the common   and the 

idiosyncratic component i ,  implies that the incentives to acquire information are 

preserved under certain conditions as we shall see in Section 6. 

 

Second, the equilibrium is efficient: it is a price-taking equilibrium, the price reveals  , 

and traders act with a sufficient statistic for the shared information in the economy.20 

Indeed, at equilibrium we have that price equals marginal benefit with full (shared) 

information: ,i i ip E s x     
 . This would not be the case if traders had market 

power, since then a wedge would be introduced between price and marginal benefit (see 

Vives (2011a)). Neither would the equilibrium be efficient if price were noisy, since then 

a trader would not take into account the information externality that her trade has on 

other traders through the effect on the informativeness of the price (see, e.g., Amador and 

Weill (2010); Vives (2013)). 

 

Let  0,1   and 2 2
     . When signals are perfect ( 2 0   and 

   12 21 0M    


   ), we have that 1a c   , 0b  , and  1
i ix p   . Then 

bidders have nothing to learn from prices, and the equilibrium is just the usual complete 

information competitive equilibrium (which, we remark, is independent of  ). When 

0M  , bidders learn from prices and the demand functions are steeper: 1c  . Indeed, 

the larger is M  (which is increasing in   and in 2 2
    and which is related to the 

degree of adverse selection), the more important is the common value component and the 

steeper are the demand functions (lower c ). The response to a price increase is to reduce 

the amount demanded according to the usual scarcity effect, but this impulse is 

moderated (or even reversed) by an information effect, via ,i iE s p   , because a high 

price conveys the good news that the average valuation is high. Indeed, if 1 M   then 

                                                 
20 A fully revealing REE must be ex post Pareto optimal. The reason is that it can be viewed as the 

competitive equilibrium of an economy with fully informed agents and so, according to the first 
welfare theorem, it cannot be improved on by a social planner with access to the pooled information 
of agents (Grossman (1981)). 
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0c  ; for larger values of M , we have 0c   and demand is upward sloping.21 Increases 

in M make the demand function (evaluated at is  )  rotate around the point 

 x , p where    x        and    p        are, respectively, the 

expected output and price. (See Figure 1.)  This follows easily from the fact that 

   X , p x c p p    .  

 

 
Figure 1. Equilibrium demand as a function of  . Demands go through the point 

   3 2 4 2x , p . , . . 

 

As M   (be it because 1   or 2
  ) we have that 0a  , b    , and 

1c   . Then the linear equilibrium collapses because, in the limit, traders put no 

weight on their private signals. If 1   (and 20    ) then, as stated in Section 3, 

there is a fully revealing REE but it is not implementable. In the common value case, the 

equilibrium breaks down. When signals are pure noise ( 2
   ), the equilibrium is 

                                                 
21 C. Wilson (1980) finds an upward-sloping demand schedule in a market with asymmetric information 

whose quality is known only to the sellers. 
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   1X p p    because ,i iE s p      (even if 1  ). However, this equilibrium 

is not the limit of DFE as 2
   ( M  ). 

 

If 0   then there is asymmetric information but the price conveys no information on 

values, 1c  , and    1,i i iX s p E s p      . Again this is not the limit of DFE 

as 0  . However, it can be checked that there is no discontinuity in outcomes. 

 

As the transaction cost   increases, a  decreases and demand becomes steeper ( c  

decreases). As 0   and limits to arbitrage disappear we have that ,a c   and 

p tends to  . As   decreases supply becomes flatter and equilibrium demand is less 

elastic until the point it becomes vertical (from M  ); beyond that point demand is 

upward sloping, and as 0   demand becomes flat at the level p  .22 

 

In summary, demand schedules, as long as they are downward sloping,  are steeper with a 

higher degree of adverse selection in the market (increasing with the correlation of 

valuations and with the noise in the signals); with a steeper slope of the marginal 

valuation; and with a flatter slope of exogenous supply. 

 

 

5. Extensions 

In this section we extend the model to some boundary cases and new interpretations: 

inelastic supply and double auctions and complementarities. 

 

5.1. Inelastic supply and double auctions 

The case in which an auctioneer supplies q  units of the good is easily accommodated by 

letting    and q    . From the inverse supply function we obtain the average 

                                                 
22  Note that the equilibrium demand can also be written as follows: 

       1, 1
i i

X s p a p a s p       . 
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quantity  y p q    ; then c a  and  1b a q  . Here demand is always 

downward sloping, and the strategy of a trader is      , 1i iX s p a q a s p     and 

p q   . The good can be in zero net supply ( 0q  ) as in a double auction, in which 

case 0b   and p   .23 A trader is a buyer or a seller depending on whether her private 

signal is larger or smaller than the price. 

 

Reny and Perry (2006) obtain a related result in a double auction with a unit mass of 

traders, each of whom desires at most one unit of the good. In contrast to our model, in 

Reny and Perry’s model there is a common value for the good but the payoff of a trader 

depends directly on the signal he receives. This signal provides a private value 

component to the trader’s valuation. Unlike the case for our DFE, traders in a double 

action with unit bids cannot condition on the market price because they submit a single 

bid that is contingent only on private information.24 Nonetheless, there is a unique (and 

privately revealing) REE that is implementable as a Bayesian equilibrium of the double 

auction in symmetric increasing bidding strategies. The equilibrium is privately revealing 

because the price reveals the value of the good and this, together with the signal received 

by a trader, determines his payoff. The equilibrium is efficient because the privately 

revealing REE is just the competitive equilibrium when the state is known. This REE is 

implementable as a double auction even in a pure common value case (when the 

valuation of a trader is independent of his signal), in contrast to the demand competition 

model, owing to the double auction mechanism with bids for a single unit. At the REE 

both buyers and sellers are indifferent between using (or not) their private signal, so they 

might as well use it. 

 

                                                 
23  In this case there is also a no-trade equilibrium. 

24  Once traders have received their signals, they submit bids to the auctioneer. A buyer (resp., seller) 
indicates the maximum (minimum) price she is willing to pay for (resp., for which he is willing to 
sell) the desired unit. The auctioneer then uses the bids to form supply and demand schedules and 
finds a market-clearing price. Buyers whose bids are above the market-clearing price obtain one unit, 
and those with bids below the market-clearing price come away with nothing. 
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5.2. Complementarities 

Letting 0   allows for complementarities. For example, if traders are suppliers ( 0ix  ) 

then 0   means that increasing the aggregate quantity leads to price increases, a 

dynamic typical of network goods; conversely, if traders are demanders ( 0ix  ) then 

0   means that increasing the aggregate quantity lowers the price, as may occur with 

labor supply when the income effect dominates. We can allow negative values of   

with 0      . The last inequality ensures that   0E p   in equilibrium and 

implies that 0    (since 0   ). When 0   we have that 1 c a     and that 

c increases in M; in other words, the exogenous supply is downward sloping and an 

increase in M  makes demand flatter. Furthermore, excess demand is upward sloping: 

 1 0Z c       . Now the information and the scarcity effect work in the same 

direction, and a high price conveys the unequivocal bad news that the average valuation 

is low. 

 

 

6. Information acquisition 

Now suppose that, in a first stage of the game, private signals must be purchased at a 

cost, which is increasing and convex in the precision 21   of the signal,25 according 

to a smooth function  H   that satisfies  0 0H   with 0H    for 0  , and 0H   . 

Hence there are nonincreasing returns to information acquisition. At a second stage, 

traders receive signals according to the precision purchased and compete in demand 

functions. We look for subgame-perfect equilibria of the game. 

 

Suppose that, at the first stage, all traders but i  have chosen a precision 0  . Then the 

market equilibrium (which is unaffected by the actions of a single trader) exhibits, 

according to Proposition 1, the price     p       , a price that reveals  . 

                                                 
25 For a random variable  , we use   to denote 21  . 



 20

This implies that the expected profit of trader i  at the second stage  iE   does not 

depend on the average precision  , because the price reveals  , but it does depend on 

his precision of information 
i

 since his private signal is used to estimate i . It can be 

checked then that the marginal benefit of increasing 
i

 is 

   
  

2

2

1

2 1i
i

iE

  

 
    

 


  
. 

This marginal benefit is decreasing in  , 
i

 ,   and   provided that 1  . This fact 

leads to the following result.  

 

Proposition 2. Let  0,1   and  1 2 0H     . There is a unique symmetric 

equilibrium in the two-stage game with costly information acquisition where: 

 * 0   if    122 0H


 , or equivalently 0  . 

 * 0   if       12 20 1 2H  


   , or equivalently 0   , then *
  is decreasing 

in  ,  , and  . 

Otherwise, if        1 122 22 0 1 2H   
 

   , or equivalently 0   , there is 

no equilibrium.  

 

In short, if 0   there is no information acquisition since the marginal benefit of 

acquiring information at 0 is lower than the marginal cost    122 0H


 . If 0   

(    122 0H


 ) then with not too high correlation,   , there is an equilibrium 

with information acquisition. However, as    we have * 0  , and the demand 

function equilibrium collapses. With high correlation, 0   , we would have no 

information acquisition at a candidate equilibrium but in fact no equilibrium exists. 
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 No equilibrium 
  (G-S paradox) 

* 0 

    2

2

1

2 



  0    0 

* 0 

0
2

1

2 

 0H 

Indeed, if    122 0H


  it will benefit a single trader to purchase information if the 

others do not and no information acquisition cannot be an equilibrium. (See Figure  2.)26  

 

 

 

 

 

 

Figure 2. The range of the Grossman-Stiglitz paradox in the information acquisition game 
(where:  1 2 0H     ). 

 

The range of parameters where there is no equilibrium,  1 2 0 0H       , is 

where the Grossman-Stiglitz paradox of the impossibility of an informationally efficient 

market survives. Therefore, in particular, we find that when 1   an equilibrium exists if 

 0 0H    or if the prior is diffuse (   small). In this case moving away from the pure 

common value case we resolve the Grossman-Stiglitz paradox. In general, a more diffuse 

prior, a lower cost of transacting  , or less correlation of valuations induces more 

acquisition of information. In fact, as 0   we have that *
   . Hence we see that 

the incentives to acquire information are preserved because the equilibrium is privately 

revealing—as long as we are not too close to the common value case, or otherwise the 

marginal cost of acquiring information at zero precision is zero (and 1  ).  

 

Remark: It can be shown (see Lemma A in the Appendix) that for 

      12 20 1 2H  


    the private and social incentives to purchase information are 

aligned: the marginal social and private benefits are the same and the market acquires the 

right amount of information * 0  . However, when       12 20 1 2H  


    and 

                                                 
26  We have argued for a symmetric equilibrium, but in fact, we can show that neither is there an 

asymmetric equilibrium in the class of trading strategies with bounded second moments. 
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0   there is no welfare-optimal level of information purchase because of a 

discontinuity at 0  : We have that  E TS  is decreasing in   for 0   but 

   2 2

0

1

2
lim E TS 



  
 

 


  while    2

0

1

2
E TS



 
 




  is strictly lower for 

0  . The planner would like to set   as low as possible but 0   delivers less 

surplus. The discontinuity arises since the privately revealing equilibrium is efficient but 

discontinuous in   when  0   for 0  . 

 

It is worth noting that in contrast to the classical model with noise traders where there is 

an upper bound in price informativeness (e.g. Verrecchia (1982)) here either the price is 

fully revealing or not at all. In the classical case information acquisition decisions are 

strategic substitutes and the more informative is the price, the less incentives there are to 

acquire information. In fact, the result in the Grossman-Stiglitz model is that price 

informativeness is constant as noise trading vanishes. In our model information 

acquisition decisions are strategically independent since once a positive mass of traders 

buy information the price is fully revealing of  . 

 

It is worth remarking that the same outcome would obtain as a Nash equilibrium in a one-

shot game where traders choose simultaneously the demand function and the precision of 

the signal. This corresponds to the case where information acquisition is covert 

(nonobservable). The equivalence of the games follows from the existence of a 

continuum of traders. In the covert information acquisition case the equilibrium exists 

even when 1    while in the sequential game if at the first stage traders where to 

choose a positive average precision the no equilibrium could exist at the market stage. 
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Figure 3. Impact of a crisis. Equilibrium demands with endogenous precision when  and 

 increase and, as a consequence, equilibrium precision *
  decreases. 

 

Application. Consider the example of banks bidding for liquidity and the impact of a 

crisis. In this scenario we may expect that the correlation  of the values of the banks 

increases (equivalently, that the volatility of the average price   in the secondary market 

for liquidity increases) and that   also increases as it becomes more costly to supply 

more liquid collateral (this may correspond to a decrease in collateral quality).27 The 

direct effect of an increase in   or   is to make the demand schedules of the banks 

steeper (Proposition 1), and this effect is reinforced by the induced decrease in 

information precision ( *
  goes down, according to Proposition 2). The effect of the crisis 

is thus that demand schedules are steeper and the signals noisier. (See Figure 3 where the 

model with inelastic supply is simulated). These effects are consistent with the empirical 

evidence gathered by Cassola et al (2013) when studying European Central Bank 

auctions and by Allen, Hortaçsu, and Kastl (2011) for Canadian liquidity auctions. These 

authors find, respectively,  that the aggregate bid curve became steeper after the subprime 

                                                 
27  See Heider, Hoerova and Holthausen (2010). 
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crisis in August 2007 and after Lehman's turmoil in 2008.28 (See Figure 4, taken from 

Allen et al. (2011)). In Cassola et al. (2013) it is found also that bank's bids reflect not 

only the opportunity costs of obtaining funds in the interbank market but also a response 

to other bidders. Suppose that some bidders suffer a deterioration shock to the quality of 

their collateral and have an increased lambda parameter but others not. Then in 

equilibrium  the first  set of bidders use steeper demand schedules and the second do as 

well in response to them since there is strategic complementarity in the slope of demands 

because of an information effect with the price being less responsive to  .29  

 

 
Figure 4. Aggregate demand curves in Canadian liquidity auctions (Fig. 4 in Allen et al. (2011)) 
and how they become steeper after the crisis of Lehman Brothers and go back to normal 
afterwards. The vertical axis displays the bid minus the Overnight Index Swap (OIS).30 
 
 

 

                                                 
28  Market power leading to bid shading may reinforce the steepness of the bid curve (see Vives (2011a)). 

It should be noted, however, that both ECB and Canadian auctions have been discriminatory, and not 
uniform price, so far. 

29  This can be checked in a model where traders have different   parameters. 

30     The spread  measures the difference between bids and the rates paid on overnight index swaps (OIS), 
instruments that are not exposed to the default risk of intermediaries. 
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7. Finite markets and convergence to the limit equilibrium 

The question arises of whether the results obtained in the large market are simply an 

artifact of the continuum specification. In this section, we answer this question in the 

negative whenever the equilibrium calls for some information acquisition. In this case, 

we show, building on the results in Vives (2011a), that the equilibria in finite markets 

tend to the equilibrium of the continuum economy as the market grows large, which 

justifies our use of a continuum model to approximate the large market. Furthermore, we 

check how large a market has to be for the continuum approximation to be useful by 

computing the rate of convergence to the continuum limit. We also check in what cases 

the equilibrium in the continuum economy is not a good approximation of large finite 

markets. 

 

7.1. Equilibrium in a finite market and convergence  

Consider the following replica economy. Suppose that inverse supply is given by 

  1
nP y n y    ; here y  is total quantity and n  is the number of traders (buyers), 

each with the same benefit function as before. Increasing n  will increase the number of 

buyers and increase the supply at the same rate. Denote with subscript n  the magnitudes 

in the n -replica market. The information structure is the finite-trader counterpart of the 

structure described in Section 2. We have that 

     1 2

1
 , 1 1

n

n ii
n N n n     


     and cov , varn i n        

  . As n  grows 

large the finite economy converges to the continuum economy since 1n y  is average 

quantity and  2 ,n N      , in mean square, and that cov , varn        
   .31 

 

It follows from Proposition 1 in Vives (2011a) that, for  0,1  , there is a unique 

(symmetric) DFE of the form  ,n i n n i nX s p b a s c p    for any n . The equilibrium is 

privately revealing, and the price reveals the average signal of the traders, ns .  The 

                                                 
31 See the Appendix for definitions of “in mean square” and of convergence (and rates of convergence) 

for random variables. 
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demand function of a trader is of the form       1
, ,n i i i nX s p E s p p d        where   

   11 1n nd n n c
   is the wedge or distortion introduced by market power in the 

presence of asymmetric information. With symmetric information (either 0   or 

   ) then the equilibrium is independent of  , and it exists even if 1  , and nd  

equals the full information equilibrium level market power distortion. 

 

Consider the case of an inelastic per capita supply of q  to illustrate the derivation of 

equilibrium and its convergence properties as the market grows large.32 

 

Suppose that traders j i  employ linear strategies,  j jX s , p b as cp   . Then the 

market-clearing condition,  ,j ij i
X s p x nq


  , 0c  , implies that trader i faces a 

residual inverse supply: ,i ip I dx  where     1
1d n c


   and 

 1i j
j i

I d n b a s qn


 
    

 
 . The (endogenous) parameter d  is the slope of inverse 

residual supply and the wedge introduced by market power. All the information that the 

price provides to trader i  about the signals of others is contained in the intercept iI . The 

information available to trader i  is  is , p  or, equivalently,  i is ,I . Trader i  chooses ix  

to maximize 

   2 2

2 2i i i i i i i i i i i iE s , p x E s , p p x x E s , p I dx x
                     . 

 

The first-order condition (FOC) is  i i iE s , p p d x       . An equilibrium requires 

that 0d  . 33 A trader bids according to  i i ip E s , p d x       , and competitive 

                                                 
32  See Vives (2010) for an overview of this model and its properties. 

33 The second-order sufficient condition is fulfilled when 0d  . 
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bidding obtains when 0d  . A buyer ( 0ix  ) underbids, i i ip E s , p x      ; since 

0d  , a seller ( 0ix  ) overbids, i i ip E s , p x      . 

 

From the FOC and the Gaussian updating formulas for i iE s , p   , we immediately 

obtain the coefficients of the linear equilibrium strategy: 

    
2

1 1
, , ,n

n i n n i n n
n

n M

n M
X s p b a s c p c


 
 

     

where 

     
 
    

22
1

2 22 2

1
and

11 1 1
n n n

n
M a d

n


  

  
     


  

    
 

for    1
1n nd n c


  . We require 2 0nn M    in order to guarantee the existence of an 

equilibrium (i.e., to obtain 0nd   and 0nc  ). (Observe that the inequality is always 

fulfilled for n  large because nM  is bounded.) The reason for this requirement is that, if 

the inequality does not hold, then traders will seek to exploit their market power by 

submitting vertical schedules, and that is incompatible with the existence of equilibrium 

when there is no elastic exogenous supply. 

 

The equilibrium price np  reveals the average signal ns ; therefore, 

i i n i i nE s , p E s ,s          and 1

1

n

i i n n ni
n E s ,s E s 


         . Averaging the FOCs, we 

obtain that    n n n n n nE s p d x d q         
    and hence 

 n n n np E s d q     
  . 
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We have that      , 1n
n i iX s p a q a s p    , the trading strategy in the inelastic 

supply case in the limit economy.34 Furthermore, n
np p q     in mean square at 

the rate 1 n . This follows because 0n
nd   and n

n n
E s    

   in mean square 

(given that n
n    and   0n

ii
n   in mean square, both at rate 1 n ). In fact, 

we have  2

AVn
n n

nE E s       
   , where   2 2AV 1        if 0   and 

  14 2 2AV     


   if 0  . This means that the convergence is faster (in terms of 

asymptotic variance) the closer we are to the common value case, the less prior 

uncertainty there is, and the less noisy are the signals (if 0  ).35 The market power 

distortion    1
1n nd n c


   (i.e., the amount of over- or underbidding) is of the order 

1 n . 

 

It is worth to compare our results with those of Reny and Perry (2006). In a finite-market 

counterpart of their double auction continuum model, the authors36  prove that, with 

enough buyers and sellers and with a sufficiently fine grid of prices, the following 

statement holds: generically in the valuation functions of the traders and the fineness of 

the grid, there is a Bayesian equilibrium in monotonically increasing bid functions that is 

very close to the unique REE of the continuum economy. The main obstacle in their 

involved proof is that, with a finite number of traders, in the double auction the strategies 

of buyers and sellers are not symmetric. 37  The incentives of buyers to underbid and of 

                                                 
34 This statement is proved as follows:   11 1n

n
c a M    if 0   (since then n

n
M M ), 

and 1n

n
c   if 0   (since then 0

n
M  ); furthermore, n

n
a a  because 

   1
1 0n

n n
d n c


   . It can be checked similarly that  1n

n
b a q . 

35 If 0   then    ; in this case, more noise in the signals makes  n n
E s   closer to  , which 

speeds up convergence. See the Appendix for the definition of the asymptotic variance of convergence. 

36 They assume a symmetry-preserving rationing rule. 

37 The consequence is that the signal of each agent need not be affiliated with the order statistics of the 
bids of other agents. This failure of “single crossing” implies that standard proofs from auction theory, 
which rely on relationships between affiliation and order statistics with symmetric strategies, do not 
apply here. 
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sellers to overbid in order to affect the price disappear as the market grows large and 

price-taking behavior obtains. In our DFE, the strategy of a trader is symmetric and the 

trader perceives that her influence on the price is given by 0nd  . A buyer underbids and 

a seller overbids, and the incentives to manipulate the market also disappear as n grows 

and 0nd  . We can in addition characterize the rate at which this happens (and at which 

convergence to the limit equilibrium obtains) and distinguish between the dissipation of 

market power and the averaging of noise terms. 

 

Consider now the general case with an elastic supply. The following lemma (with proof 

in the Appendix) establishes that, as n  grows large, the equilibria of finite markets, for 

given information, converge to the limit equilibrium and characterizes the convergence 

rates for prices and for welfare losses. Denote by ETS (resp., 1ETSnn ) the per capita 

expected total surplus in the continuum market (resp., in the n -replica markets). 

 

Lemma. Consider the n-replica market. Let  0,1  . For given 2 0  , the symmetric 

DFE of the n-replica market converge to the equilibrium in the continuum economy as n 

tends to infinity: 

(a) n
na a , n

nc c , and n
nb b ; 

(b) 0n
np p   in mean square at rate 1 n  with   

 
2

2
AVn

nnE p p


 
       

, 

where    2 2 2AV 1         if 0   and     12 4 2 2AV       


   if 

0  ; 

(c) the per capita welfare loss 1WL ETS ETS 0n
n nn    at the rate 1 n , and the 

total welfare loss 

 
 
  

2 4

2 2

1AV
WL

2 2 1
n

nn 

 

 
     


 

  
. 
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In a finite n -replica market, traders have the capacity to influence prices; and the price 

reveals the average signal of the traders ns , which is a noisy estimate of n . We find that, 

for n  large, such an equilibrium is close to the equilibrium in the limit economy where 

traders have no market power and where the price reveals the average parameter  . 

Convergence to the equilibrium of the continuum economy occurs as 1 n , the rate at 

which the average signal ns  of the traders (or the average estimate n n
E s  

  ) tends to 

the average parameter   in the continuum economy. Convergence to price-taking 

behavior is faster (at the rate 1 n , since nd  is of the order 1 n ; see Proposition 7 in Vives 

(2011a)), but convergence to the limit is delayed by the slower convergence of the 

agents’ average signal. This latter convergence is faster (in terms of asymptotic variance) 

as we approach a common value environment (i.e., as 1  ), when there are better 

signals (low 2
  for 0  ), and/or with less prior uncertainty (low 2

 ). 

 

In the finite market, the per capita welfare loss (with respect to that in the limit market) is 

of the order of 1 n ; see part (c) of the Lemma. Here again, convergence is faster (in terms 

of asymptotic variance) when closer to the common value case and slower if there is 

more prior uncertainty. The effect of noise in the signals is ambiguous if 0   since an 

increase in 2
  will tend to raise allocative inefficiency while diminish distributive 

inefficiency. The explanation for those results lies in the expression for total expected 

welfare loss in the finite market, 

      2 2
WL 2n n in in n E x x E u u               

 
(where in in nu x x  

 
and i iu x x   ), which has two components on the right-hand side; 

the first component reflects allocative inefficiency (is the average quantity at the right 

level?), and the second reflects distributive inefficiency (is a given average quantity 

efficiently distributed among market participants?). The first term converges to 

     2 21 2         if 0  , and the second term converges to 

     2 4 2 21 2 1           as n  . Increases in the correlation of parameters 
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  or in the precision of the prior   12
  


  will decrease both terms; however, the first 

term increases with 2
  whereas the second term decreases with 2

  (since more noise in 

the signals aligns more individual and average quantities).38  

 

The overall convergence result is driven by the rate at which the error terms in the signals 

vanish, which is slower than the rate of convergence to price-taking behavior.  

 

7.2 Information acquisition in a large market 

Consider the case of covert information acquisition where each seller does not observe 

the precision purchased by other sellers and look therefore at a simultaneous move game 

where each seller chooses its precision and the supply function   
1,...

, ,
i i i n

X 
  . It is 

possible to show a parallel result to Proposition 2 in the n-replica market. By Section S.4 

in Vives (2011b), when 1   in the n-replica market there is a symmetric equilibrium of 

the game with covert information acquisition with traders buying a positive precision of 

information  * 0n  — provided that the cost of information acquisition at zero 

precision is not too high (see Claim 1 in the Appendix). 

 

The following proposition (with proof in the Appendix) characterizes convergence when 

information acquisition is endogenous in the case where in the limit market there is 

positive precision purchase (i.e. for  0,   in Proposition 2). Things are more 

complicated in the other cases as we shall see. 

Proposition 3. Consider covert information acquisition in the n -replica market. Let  

 0,    where   1 2 0 0H       . Then  

(i) There is a unique equilibrium    0n     for  n   large and   n    0   as  

n   .  

                                                 
38 When 0  , an increase in the noise of the signals reduces both terms. 
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(ii) Convergence to the limit equilibrium is "slow":  0n
np p   in mean square at 

rate 1 n  with constant of convergence   1* *AV =AV 


. 

 

We have seen that whenever there is an equilibrium with * 0   in the continuum 

economy it is the limit of equilibria of finite economies. (See Figure 5a.) However, this 

need not be the case when the equilibrium in the continuum economy calls for * 0  . 

(See Figure 5b.) Furthermore, it need not be the case either that a sequence of equilibria 

 * n  in the replica markets always converges to an equilibrium of the limit economy. 

(See Figure 5c.) 

 

The reason behind those phenomena is that the equilibrium correspondence is not 

continuous in the precision of private information at 0 whenever the parameter 

correlation  is positive. In this case the order in which we take the limits 0   and 

n   matters. Indeed, it can be checked that for a given 0   we have that 

 lim 0n
n

d 
 and therefore  

0
lim lim 0n

n
d





 
  and there is no market power in the limit, 

but    
0

lim lim lim 0 0n n
n n

d d





  
    except if 0  . In other words,  nd   is not 

jointly continuous in  and n  at 0  . 

 

 
Figure 5.a. Convergence to the equilibrium in the limit market when       12 20 1 2H  


    or 

  . 
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Figure 5.b. Case where the limit of equilibria of finite markets is not an equilibrium in the 

continuum market. It obtains, for example, when       120 2 2 and  is close to 1H    


   . 

 
 

 
 
Figure 5.c. Case where the equilibrium with no information acquisition in the limit market is an  

artifact of the continuum specification. It obtains when    122 0H


  and   is small. 

 
 

Equilibrium in the large market may exist while its limit is not an equilibrium of the 

continuum market. We may have existence of equilibrium with positive purchase of 

information  * 0n   with  *lim 0
n

n
  when * 0   is not an equilibrium of the 

continuum economy. (See Figure 5b.)39  For example, it can be checked that this happens 

for   close to 1 and     122 2 ' 0H  


   (recall that * 0   is an equilibrium of the 

continuum economy only when    122 0H


 ). In this case the region where the 

Grossman-Stiglitz paradox obtains for   close to 1 and n  large is reduced from the 

                                                 
39  In technical terms this is a failure of upper-hemi continuity of the equilibrium correspondence. 
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nonexistence region in the continuum economy        1 122 22 0 1 2H   
 

   . 

(See Claim 2 in the Appendix for a general statement of the result.) 

 

The equilibrium with * 0   may be an artifact of the continuum specification. We may 

have non-existence of equilibrium for large n in the region where there is no information 

acquisition equilibrium in the continuum economy (     120 2H 


  ). This happens 

when  is small (see Figure 5c and Claim 4 in the Appendix). Then * 0   is an 

equilibrium in the continuum economy but there is no equilibrium in the finite economy 

for large n . The equilibrium with * 0   is then an artifact of the continuum 

specification. 

 

 If a trader purchases information when other traders do not purchase information then 

this trader gains some market power which, importantly, does not depend on the amount 

of information purchased. This is so since the signal of the trader will be revealed to 

others traders in the equilibrium and this relevant when 0  . This will mean that there 

will be a discontinuity in the marginal benefit to acquire information at 0 for this trader. 

If a trader purchases a little bit of information he will gain a discrete amount of market 

power but if he does not he has no market power. For an equilibrium with no information 

purchase to exist we need that expected profits with no purchase of information be larger 

than with any positive purchase of information when other traders do not buy 

information. The problem may be that the marginal return to information purchase may 

be negative for any positive precision (and this will be true for     120 2H 


  ), but 

then purchasing no precision implies a discrete change to a no information equilibrium 

where profits are smaller than with some information purchase. Then there cannot be an 

equilibrium with no purchase of information since a trader would like to be as close as 

possible to 0   (since marginal profits decrease with  ) but at 0  profits 

discontinuously jump down. This can happen when the parameter correlation  is small. 

Then starting from a no correlation situation ( 0  ) --where the profits with no 
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information acquisition for an individual trader are just the limit of those obtained 

purchasing information when this purchase tends to 0- and adding some correlation (with 

0  ), we have that profits increase by purchasing some information because of the 

gained market power by the trader.  This destroys the no information equilibrium. 

 

8. Concluding remarks 

A simple large-market REE model which provides conditions to solve the paradoxes 

associated to fully revealing equilibria has been presented. The key to the resolution of 

the problems is to allow for both private and common value components in the valuations 

of the traders, with bundled signals about those components, together with a continuum 

specification which makes price-taking individually optimal. Two limitations must be 

taken into account. Firstly, the resolution of the Grossman-Stiglitz paradox needs, in 

general, a bounded common value component for traders' valuation.  Second, the 

continuum resolution of the trader's schizophrenia problem comes at the cost of a "slow" 

convergence rate of equilibrium in finite markets in relation to the rate at which price-

taking behavior obtains.  
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Appendix 
 
Proof of Proposition 1: Trader i  chooses ix  to maximize 

  2, , ,
2i i i i i iE s p x E s p p x
            

which yields the FOC ,i i ip E s p x      . Positing linear strategies 

 ,i iX s p b as cp    while using the inverse supply function p x     and our 

convention is di   , we obtain (provided that 1 0c  ) an expression for the price 

   1
1p c b a         . The vector  , ,i is   is normally distributed with 

   i iE E E s      
  and with variance–covariance matrix 

2 1

1 1

1


  

  



 
 
 
 
 

, 

where         . It follows that  , 1i i iE s s         
   for 

2 2 1(1 / (1 ) )        . Given joint normality of the stochastic variables  , ,i is  , we 

obtain 

2 2 2

2 2 2 2

2 2 2 2

~ ,
i

i

D

s N D

p C D D D D

  

   

  

    
    

   

    
         

            

. 

Here    1
1C c b      and    1

1D c a   . If we use the projection theorem 

for normal random variables and assume that 0a  , then 

  
 

    
22 2

2 22 2 2 2

1
,

11 1
i i i

C
E s p s p

D D
 

    

  
       


           
. 

Using the first-order condition, we obtain 

  
 
     2

22 2

2 2 2 2 2

1 1
1

1 1 1
i

b c
s p

a a
 

     

    
         

     
       

 

 ;ib as cp     
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then, using the method of undetermined coefficients, we obtain the following system of 

equations: 

 
  

  

  
 

2

2 2

2

2 2

2

2 2

1

1

1

1
1

1

a

b
b

a

c
c

a



 



 



 

 
   

   
  

 
  




  


   
  

  
  

 

The solution to this system gives the result because for  0,1  , 2 0  , and 2
    

we have that  1 0c a      , and 

      

    

 
     

2 2

2

2 2

1 2 1 2

2 2

1 1
,

11 1

1 ,
1

1 1
1 .

1

a
M

b a

c a

 



 

 

 

   

  
   

    
 

  

 

 
 

    
 

 
   

 

 

It is immediate that 0a  , that 1 1c a       for 0  , and that c  decreases in M 

and   but increases in  . Finally, we can use    1
1p c b a          together 

with the expressions for the equilibrium coefficients to show that 

   p        and    x       . 

 

Proof of Proposition 2: Suppose that, at the first stage, all traders but i  have chosen a 

precision 0  . Then the market equilibrium (which is unaffected by the actions of a 

single trader) exhibits, according to Proposition 1, the price     p       , a 

price that reveals  . Trader i  receives a signal with precision 
i

  and chooses ix  to 

maximize 

  2,
2i i i iE s p x x
     

 , 
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which yields the first-order condition ,i i iE s p x      
 . Expected profits are given by 

  2

2
i iE E x

     , where  ,i i ix E s p     
  and    p       . Note that 

 iE   does not depend on   because the equilibrium reveals  . We remark that 

 , 1i i i i iE s s         
  , where

 
 

1

1
i

i

i


 

 

  




 
     and    

 2
2 vari i iE x E x x             with      iE x        and  

      

     

2

2
22 1 1 2 1

1 1var var 1

1 1 1 .
i

i i i i i

i

x s

  

         

         
  

           

       



 

We can use this fact to obtain 

 
      

    

21 22

2 2

1 2

2 1

i

i

iE
 

 

          
       

               

. 

It follows that the marginal benefit of increasing the precision of information is 

   
  

2

2

1

2 1i
i

iE

  

 
    

 


  
. 

Observe that this marginal benefit is decreasing in 
i

  provided that 1   (and thus  

 iE   is strictly concave in 
i

 ). Let 

     
i

iE
H

 

 
  


  





 


. 

Then   0    and 0  . We have that     12 2(0) 1 2 (0) 0H  


     if and only 

if  1 2 0H       , in which case there is a unique interior solution *
  to the 

equation   0   . Note that *
  is decreasing in  ,  , and   because   is. 
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For    we have that 0   at a candidate equilibrium. When no trader other than i 

purchases information, 

 
 2

1

2i
i

iE

  


   




 
, 

 (the price then is    p        and the expression for  
iiE     is the 

same as when 0  ). It follows that 0   is an equilibrium only if 

   122 0 0H


   (or equivalently 0  ). Otherwise (i.e., if 

     1 12 2 22 0 (1 ) 2H   
 

    or 0   ), it will benefit a single trader to 

purchase information and there is no symmetric equilibrium in the game.  

 

Lemma A. If       12 20 1 2H  


    the marginal social and private benefits to 

purchase information are the same and the market acquires the right amount of 

information * 0  . When       12 20 1 2H  


    and 0   there is no welfare-

optimal level of information purchase. 

 

Proof: (i) Gross expected total surplus is given by  

 
1

2

0 2 2i i i

x
E TS E x x di x

                   


 , 

which at the market allocation we have that ix depends on  is ,  and x  on  .  E TS  

only depends on   from   2

2i i iE x E x
     . Some computations lead to 

     
   

2 1 1

1
i i

M

M
E x 

     

    
     

  

   
 

 and using the expression for 2
iE x    in the 

proof of Proposition 2 we obtain that  

   
  

2

2

1

2 1

E TS

  


    




  
, 
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which is exactly the same as the marginal profit obtained in the market solution. We have 

similarly that at the market equilibrium  E TS  is strictly concave in   and therefore the 

interior solutions   0   , when       12 20 1 2H  


   , will coincide with the 

market. 

 

However, when       12 20 1 2H  


    and 0   there is no welfare-optimal level of 

information purchase because the maximization of  E TS  H  becomes an open 

problem. When       12 20 1 2H  


   ,  E TS  is decreasing in   for 0   but 

setting  0   delivers strictly less surplus than a small positive  since for 0  , 

       2 22

00

1 1

2 2
lim E TS E TS






    
    

  

 
   . 

  

Measures of speed of convergence. We say that the sequence (of real numbers) nb  is of 

the order n  (  a real number) whenever n n
n b k   for some nonzero constant k .40 

The constant of convergence k  is a refined measure of the speed of convergence. We say 

that the sequence of random variables  ny  converges in mean square to zero at the rate 

1 rn (or that ny  is of the order 1 rn ) if  2

nE y 
  converges to zero at the rate 1 rn  

(i.e., if  2

nE y 
   is of the order 1 rn ). Given that       22

varn n nE y E y y     , a 

sequence  ny  such that   0nE y   and  var ny  is of order 1 n  and converges to zero at 

the rate 1 n .  A more refined measure of the speed of convergence for a given 

convergence rate is provided by the asymptotic variance. Suppose that  2
0n

nE y    

at the rate 1 rn and   0nE y  . Then the asymptotic variance of convergence is given by 

                                                 
40  This definition is stronger than necessary but it will suffice for our purposes. 
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the constant  2
lim r

n
n

n E y


 
   . A higher asymptotic variance means that the speed of 

convergence is slower. 

 

Proof of Lemma: (a) From the proof of Proposition 7 in Vives (2011b) we have that 

1 1

1

n
n

M

M
c c

  


  , where 

 

2

21
M 





 
  if 0   and 1n

nc   if 0  .  

Furthermore, 
 
    

2

2 2

11

1

n
n na d a

 

 

  
 

 
    because 

   11 1 0n
n nd n n c

    . Note that   11n
nnd c

  , which is equal to 

   11 1 1 M 
    if 0   or to   11 1 

   if 0  . Convergence for nb  follows 

similarly. 

 

(b) From Proposition 1 in Vives (2011a) we have that    n n nn
x E s d        

  , 

where    1 1
n i n ii i

s n s n      ,  1n n n nn
E s s        

   , and 

 2 1var varn n n n           
  . It follows that 

   
   

22

2 2

1 1

1 1
var varn n n n

n

n n
E s 

 

 

  
  

 

  
         

  . Observe that 0n
nd   and 

n
n n

E s    
   in mean square (since n

n    and   0n
ii

n   in mean 

square, both at rate 1 n ). It is immediate that 

      
  

2 2

2 2 2

2
21 1 1

1
n n

n n

n n
E E s  

  


   

  
     

  
      
    and  

 2

AVn
n n

nE E s       
   , where   2 2AV 1        if 0   and 

  14 2 2AV     


   if 0  . We have that    x       , that 

        
  

2

2
n nn

n

n

E s d

d
E x x E

     

   

   

  

             

  
  , and that both nd  and 
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 2

n n
E E s       

    are of order 1 n ; hence we obtain 

   
2 2

AVn
nnE x x       

  . Therefore, 0n
nx x    in mean square. The results 

follow since  n np p x x    . 

 

(c) Total surplus (per capita) in the continuum and in the n-replica markets are given, 

respectively, by 

1 2

0 2 2
TS i i i

x
x x di x

           
   


    and   1 1 2

1 2 2
TS n

n

n i i i n
i

x
n n x x x

   



        
   




 . 

We can then write the expected welfare loss as 
 

          2 21WL TS TS 2n n n in iE n E E x x E u u                 , 

 
where in in nu x x    and i iu x x    (this follows as in the proof of Proposition 3 in Vives 

(2011a)). We already know from the proof of part (i)(b) that 

   2 2
AVn

nnE x x        . 

 

We also know that    in n in nu t t d    and  i iu t   , where n n nt E s   
  , 

 
 
    

        
2 2 2

2 2 2 2 2 2

1

1 1 1 1

n

n

in i i

i
n

n

t E | s ,s

s s ,  

     

    
        



  




      



   



  

and  , 1i i i it E s s         
   for 

 

12

2
1

1






 







   
 

. As a result, 

 
 

 
       

2

2 2 22

2
22 11
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n
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d
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 

 
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  

 

                 
  . 

 

Further computations yield 

        
2

1 2 2 2 21 2n i n n nE s s d n d nd                  
  . 
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Therefore,     
   
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; since nd  is of order 1 n , we 

have 
   
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   . It follows that 
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  
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Proof of Proposition 3: 

 (i) Let  iE   be the expected profits of trader i  when the other traders j i  have 

information precision 0   and use identical strategies based on linear demand 

schedules with coefficients  , ,b a c . Suppose that trader i  has precision 
i

  and 

optimizes his demand schedule       1
, ,i i i i iX s p E s p p d       where 

   11 1id n n c    .  iE   are a function of  , , , ,
i

b a c    . If we let 

   11 1n nd n n c
   , where nc  is the symmetric solution when 

i    (given by 

Proposition 1 in Vives (2011a)), then it follows from Section S.4 in Vives (2011b) that 

   
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i
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 

       

   
 

      
. 

 

Interior symmetric equilibria for information precision are characterized by the solution 

of     0n H     . Observe that, since 0n
nd   for 0  , we have  then 

     
  

2
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2 1

n
n

 

 


   
   



 
  . We know that if   0,1 2 0H      , 

there is a unique * 0   which solves    
  

 
2

2

1

2 1
0H

 

 


   
  

 
   . 

Furthermore, for n  large,  n    is strictly decreasing in  . It follows that for n  large 

there is a unique symmetric equilibrium of the (covert) information acquisition game 
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 * 0n  , the unique solution to      ' 0n n H         . We conclude 

that  * * 0n     (where  * 0   ) as n  .  

(ii) The result follows since when at the n-replica we have  * n  , 

then          
     
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     and  therefore 

 2
*AVn
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nE E s       

   , where     1* 2 *AV 1    


    if 0   and 

   11* 4 2 *AV     


   if 0   since  * * 0n    . 

 

Claim 1. Equilibrium with positive information acquisition for a given n . Let 

        12
00 lim 2 2 0n n nd

      


      where    00 limn nd d
   . Let 

1  . Then:  (i) An interior symmetric equilibrium with  * 0n   exists 

if    0 0nH    .  (ii)    
0

lim lim lim 0 0n nn n
d d





  
    except if 0   and 

   
1 1

limlim 0 lim lim 0n nn n
d d

 


   
    . (iii) There is  a unique value of  , ˆ 0,  such 

that       12 2 ˆlim 0 1 2 if and only if nn     



    , and ̂    as 1  .  

Proof: (i) We have that      110 1n nd n n c
    

 where 
0

limn nc c
 


. The result 

follows from Proposition S3 in Vives (2011b). (ii) We obtain that  
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  , which is positive except if 

0  , in which case it is 0. (iii) The result follows from the expression for 

 lim 0n
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

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n
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
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Claim 2: If           
1 122 22 2 lim 0 ' 0 1 2nn

d H    
 


       (and this may happen 

if ˆ   ), then for n  large there is an equilibrium with  * 0n   with  *lim 0
n

n
  

while there is no equilibrium in the continuum market. The result obtains in particular for  

  close to 1 if         1 122 22 2 0 1 2H     
 

    . 

 

Proof: Claim 1 implies that if      
1

22 2 lim 0 ' 0nn
d H 




    then  * 0n   for n  

large and there is no equilibrium in the continuum economy since 

       1 122 22 0 1 2H   
 

   (in particular, * 0   is not an equilibrium). 

Suppose that  *lim 0
n

n  


  . Since for 0   we have that    n
n      , we 

should have *
    but we know there is no equilibrium in the continuum economy. 

Furthermore, for any n , as 1   we have that 1nc  
,  0nd   , and 

     120 2 2n    


   . The result for   close to 1  follows.  

 

Remark: For   close to 1 for any number of traders (size of replica) we need the same 

degree of diffusion of the prior in order to have positive precision acquisition. 

 

Equilibrium with no information acquisition in the n -replica market. 

Let   0
jin

j i

E  


 denote the expected profits of trader i  when the other traders j i  have 

information precision 0   and use identical strategies based on linear demand 

schedules with price coefficient c . Suppose that trader i  has precision 0
i   and 

optimizes his demand schedule:       i i i i iX s , p E s p d    , which implies 

that  1i i ic X p d     . We have that    11 1id n n c    . It is possible to 

show that for given 0
i  , there is a unique (and asymmetric) equilibrium in demand 
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functions for 1  . At equilibrium id is the only positive root of the following cubic 

polynomial 

3 2Q( d ) Ad Bd Cd D,     

with 
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Note that id  is independent of 
i . In equilibrium, we obtain 
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 and it can be shown, with some work, that  

 
   2

0

1 1

2 2
i

i

i

i
j

j i

E

d  



   






  
 , which is decreasing in 

i . It follows that if  
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i
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H
 
  then net expected profits decrease in 

i . However, if the trader 

chooses 0
i   then there is a discontinuity since when no trader acquires information at 

equilibrium we have fd d  (the value for d with symmetric information, see Vives 

(2011a)) but f
id d  and    

 
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| 2
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d
E d
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 
  . (Recall that we assume 

that  0 0H  .) The discontinuity arises since when 0
i   the price reveals the signal of 

trader i  while there is no revelation if no one acquires information. If   0|E

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  0
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j
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then there is an equilibrium with no information acquisition. But if 

  0|E
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i
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j i

E 
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 then there is no such equilibrium. Trader i  would like to set  

0
i  but when 0

i   then there is a discrete change to the no information 

equilibrium with strictly lower profits. In summary: 
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Claim 3: Equilibrium with no information acquisition for a given n . Let 

 
 
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1 1

2 2
' 0

i
d

H
 
 . Then there is an equilibrium with no information acquisition if 

and only if   0|E
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Let us examine now the case with n  large and use n  subscripts for variables in the n-

replica economy. We have that as n  tends to infinity, if 0  , ind  tends to 0id    

(which is strictly increasing in  ) and 1
nc    . (If 0   we have that 0id   .) This 

means that even for large n  trader i  keeps some market power (which is increasing in 

 ). We have also that lim 0f
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 for  small. In summary: for n  large, if 
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acquisition.  Furthermore, if  
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  then, from Claim 1 there cannot be either an 

equilibrium with  * 0n   . This is so since for n  large there is an equilibrium with 
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Claim 4: If  
2

1

2
' 0H


  and   is low enough there is no equilibrium with endogenous 

information acquisition for n  large.   
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