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Abstract

We show that market fragmentation, induced by an informational friction resulting
from high frequency trading, can induce strategic complementarities between liquidity
consumption and provision: traders consume more liquidity when the cost of liquidity
provision increases, which in turn jacks up the cost of liquidity provision. This can
generate market instability, where an initial dearth of liquidity degenerates into a liquidity
rout (as in a flash crash). While in a transparent market, liquidity is increasing in the
proportion of high frequency traders, in an opaque market strategic complementarities
can make liquidity U-shaped in this proportion.
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“The report describes how on October 15, some algos pulled back by widening

their spreads and other reduced the size of their trading interest. Whether such

dynamic can further increase volatility in an already volatile period is a question

worth asking, but a difficult one to answer.” (Remarks Before the Conference on the

Evolving Structure of the U.S. Treasury Market (Oct. 21, 2015), Timothy Massad,

Chairman, CFTC.)

1 Introduction

Concern for crashes has recently revived, in the wake of the sizeable number of “flash events”

that have affected different markets. For futures, in the 5-year period from 2010, more than

a 100 flash events have occurred (see Figure 1). For other contracts, the list of events where

markets suddenly crash and recover is by now quite extensive.1

Hourly Flash Events for Selected 
Contracts 
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Figure 1: Number of flash events in futures contracts from 2010 to 2015. A flash event is
an episode in which “the price of a contract moved at least 200 basis points within a trading
hour but returned to within 75 basis points of the original or starting price within that same
hour.” (Source: Remarks Before the Conference on the Evolving Structure of the U.S. Treasury
Market (Oct. 21, 2015), Timothy Massad, Chairman, CFTC.).

A common trait of these episodes seems to be the apparent jamming of the “rationing”

function of market illiquidity. Indeed, in normal market conditions, traders perceive a lack

of liquidity as a cost, which in turn leads them to limit their demand for immediacy.2 This

eases the pressure on liquidity suppliers, thereby producing a stabilizing effect on the market.

1Starting with the May 6, 2010 U.S. “flash-crash” where U.S. equity indices dropped by 5-6% and recovered
within half an hour; moving to the October 15, 2014 Treasury Bond crash, where the yield on the benchmark
10-year U.S. government bond, dipped 33 basis points to 1.86% and reversed to 2.13% by the end of the trading
day; to end with the August 25, 2015 ETF market freeze, during which more than a fifth of all U.S.-listed
exchange traded funds and products were forced to stop trading. More evidence of flash events is provided by
NANEX.

2To minimize market impact and the associated trading costs they incur e.g., by using algorithms that parcel
out their orders.
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However, during a crash, a liquidity drought, short of limiting traders’ demand for immediacy,

produces the opposite effect: traders attempt to place orders despite the liquidity shortage.

In these conditions, a bout of illiquidity no longer has a stabilizing impact, and can instead

foster a disorderly “run for the exit,” that is conducive to a rout. What can account for such

a dualistic feature of market illiquidity?

In this paper, we argue that an important ingredient in the answer to this question is

represented by the fragmentation of liquidity supply induced by computerized trading.3 Indeed,

the automation of the trading process fosters liquidity supply fragmentation in that it limits

the participation of some liquidity suppliers (Duffie (2010) and SEC (2010)), as well as some

traders’ access to reliable and timely market information (Ding et al. (2014)).4 This, in turn,

creates an informational friction that can be responsible for the type of behavior we described

above.

We analyze a model in which two classes of risk-averse dealers provide liquidity to two

cohorts of risk-averse, short-term traders who receive a common endowment shock, in a two-

period market. Traders, thus, enter the market to partially hedge their exposure to the risky

asset. In the first round of trade both dealers’ types absorb the (market) orders of the first

traders’ cohort. In the second trading round, only one class of dealers, named ‘full,’ is able to

participate. Full dealers, like stylized high frequency traders (HFTs), are continuously in the

market and can therefore accommodate the reverting orders of the first traders’ cohort, as well

as those of the incoming second cohort who observe an imperfect signal about the first period

order imbalance.5

A central finding of our analysis is that dealers’ limited market participation favors the

propagation of the endowment shock across time. This is because when first period traders load

their positions, a part of their orders is absorbed by standard dealers. These agents, however,

are not in the market in the second period, when first period traders unwind. As a consequence,

an order imbalance (induced by first period traders’ unwinding orders and) affecting the second

period price, arises. As standard dealers are unable to rebalance in the second period, they

require a larger price concession to absorb traders’ orders. This implies that as liquidity dries

up, standard dealers absorb more of the imbalance, magnifying the propagation effect.

We first study a benchmark market in which second period traders have access to a perfect

signal on the first period imbalance. This situation is likely to arise at low trading frequencies

(e.g., intradaily), or in a transparent setup where all market participants have access to the same

type of feed, even at high frequencies. In this case we show that first period traders’ demand

3Automated trading is by now pervasive across different markets. For financial futures, automated trading
accounts for about two-thirds of the activity in Eurodollars and Treasury contracts (Source: Keynote Address
of CFTC Commissioner J. Christopher Giancarlo before the 2015 ISDA Annual Asia Pacific Conference).

4Ding et al. (2014) argue that in the U.S. “. . . not all market participants have equal access to trade and
quote information. Both physical proximity to the exchange and the technology of the trading system contribute
to the latency.”

5In a companion paper, we then embed the baseline model in a simple platform competition setup in which
exchanges compete in the supply of trading services (co-location capacity). In this framework we endogenize the
decision of a dealer to acquire the technology to be continuously in the market, and the number of exchanges
supplying trading services.
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for liquidity is a decreasing function of illiquidity (i.e., the compensation that dealers demand

to hold the asset inventory in equilibrium): the less liquid is the market, the higher is the cost

these traders incur to reduce exposure, and the less aggressive is their liquidity consumption (the

closer to zero is their hedging aggressiveness). Conversely, illiquidity is decreasing in traders’

hedging aggressiveness. This is because lower aggressiveness limits liquidity consumption, which

in turn shrinks dealers’ inventory, allowing for cheaper liquidity provision. Thus, illiquidity

in this case has a direct, “rationing” effect on traders’ liquidity consumption, and a unique

equilibrium arises. Furthermore, along this equilibrium, small shocks to the model’s parameters

have a minimal impact on market liquidity.

In contrast, when access to imbalance information is impaired, the market is opaque, and

illiquidity also displays a feedback, liquidity consumption “expanding” effect. This can create

a self-sustaining loop where a liquidity evaporation, short of curtailing traders’ liquidity de-

mand, fosters a stronger liquidity consumption. As a consequence, the demand for liquidity

can become increasing in illiquidity, and multiple equilibria can arise. To see this, note that

due to propagation, second period traders speculate against the imbalance generated by their

first period peers the more, the stronger is such propagation. Suppose now that liquidity evap-

orates in the first period market. As a consequence, standard dealers intermediate more of the

outstanding imbalance, magnifying the propagation of the first period endowment shock, and

leading second period traders to trade more aggressively against it. However, as information

on the first period imbalance is noisy, these trades increase the first period uncertainty about

the second period price. This can lead first period traders to consume more liquidity (as hold-

ing exposure to the asset becomes riskier), and liquidity suppliers to charge more to absorb

the order imbalance (as their inventory of the risky asset increases), eventually reinforcing the

initial, negative shock to market liquidity.

Equilibrium multiplicity induces three levels of liquidity that can be ranked in an increasing

order (low, intermediate, and high). At the low (respectively, intermediate, and high) liquidity

equilibrium, volatility and liquidity consumption are high (respectively, intermediate, and low).

Thus, our paper highlights a channel through which the combined effect of a heightened demand

for liquidity, and a reduced liquidity provision conjure to increase market volatility, providing

a positive answer to this paper’s opening quotation.

The liquidity consumption ranking across equilibria is a further manifestation of the fact

that opaqueness jams the direct, rationing effect of illiquidity, while it strengthens its feedback,

liquidity consumption enhancing effect. The end result is that traders aim to hedge the largest

portion of their endowment, at the equilibrium where the cost of trading is at its highest.

Importantly, we also find that: (i) depending on parameters’ values, uniqueness obtains either

at an equilibrium with high or one with low liquidity (corresponding respectively to the high

and low liquidity equilibrium when multiplicity arises), and (ii) that the comparative statics

properties of these equilibria differ. For instance, when the market hovers along an equilibrium

with low liquidity, illiquidity can be hump-shaped in the proportion of fast dealers, something

that does not happen in an equilibrium with high liquidity.
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The strategic complementarity loop arising with market opaqueness implies that liquidity

can be “fragile” in our setup. We show this with two types of examples. In the first one, we

exploit equilibrium multiplicity and illustrate how a small shock to some parameter values can

produce a switch from the high liquidity equilibrium to an equilibrium with low liquidity. In

particular, we focus on the consequence of a shock that disconnects a small mass of full dealers

from the market (a technological ‘glitch’). We then analyze the effect of a positive shock to the

volatility of first and second period traders’ demand. These are meant to capture, respectively,

an increase in the probability of a large order hitting the first period market (which is consistent

with some narratives of the flash crash, see e.g. Easley et al. (2011)), and an increase in the

uncertainty first period traders face on their endowment value. In all these examples small

parameter shocks produce large liquidity withdrawals.

In the second type of example we review the impact of the glitch, but in this case leveraging

on the hump-shaped relationship between illiquidity and full dealers’ participation that can

obtain along an equilibrium with low liquidity. Based on this finding, we show that a high level

of liquidity can suddenly evaporate because of a reduction in full dealers’ participation along

the same equilibrium.

This paper is related to four strands of the literature. First, equilibrium multiplicity, liq-

uidity complementarities, and liquidity fragilities are known to obtain in economies where asset

prices are driven by fundamentals information and noise trading (see, e.g., Cespa and Foucault

(2014), Cespa and Vives (2015), Goldstein et al. (2014), and Goldstein and Yang (2015)). In

this setup, in contrast, asset prices are exclusively driven by endowment shocks. However,

the demand of all the traders is responsive to the volatility of the price at which these agents

unwind their positions. In turn, such volatility depends on traders’ demand. As we argued

above, in an opaque market this two-sided loop—which in a noise traders’ economy cannot

possibly arise—is responsible for the multiplicity result. Other authors obtain multiple equilib-

ria in setups where order flows are driven by only one type of shock (see, e.g., Spiegel (1998)).

However, multiplicity there arises from the bootstrap nature of expectations in the steady-state

equilibrium of an overlapping generations (OLG) model in which investors live for two periods.

Our setup, in contrast, considers an economy with a finite number of trading rounds.

Second, this paper adds to the theoretical literature on the impact of high frequency trad-

ing (HFT) on market performance, by showing that an informational friction arising from

liquidity provision fragmentation can be responsible for liquidity fragility, and reverses the

common wisdom that associates an increase in computerized trading with more liquid mar-

kets. Differently from our setup, the HFT literature has mostly concentrated on modeling risk

neutral agents (e.g., Budish et al. (2015), Hoffmann (2014), Du and Zhu (2014), Bongaerts

and Van Achter (2015), Foucault et al. (2015), and Menkveld and Zoican (2015); see O’Hara

(2015) and Menkveld (2016) for literature surveys).6 Easley et al. (2011, 2012), find that in the

6Biais et al. (2015) study the welfare implications of investment in the acquisition of HFT technology. In their
model HFTs have a superior ability to match orders, and possess superior information compared to human (slow)
traders. They find excessive incentives to invest in HFT technology, which, in view of the negative externality
generated by HFT, can be welfare reducing.
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hours preceding the flash crash, signed order imbalance for the E-mini S&P500 futures contract

was unusually high. They interpret this evidence as supportive of a high order flow “toxicity,”

which led HFTs to flee the market, eventually precipitating the crash. As argued above, our

model also predicts that large imbalances can lead to a huge liquidity withdrawal. However,

the channel we highlight is not related to adverse selection, but emphasizes the multiplier effect

of illiquidity on the demand for immediacy that can arise when some traders have access to

opaque information on imbalances. Menkveld and Yueshen (2012) argue that market spatial

fragmentation can be detrimental to stability. In their model, HFTs have access to a private

reselling opportunity which, due to impaired intermarket connectivity, can break down. When

this happens, HFTs trade among themselves, providing an ‘illusion’ of liquidity to traders who

observe volume, which in turn fosters further liquidity demand. Our focus is on the liquidity

provision fragmentation induced by an informational friction in a single, concentrated market,

a feature that is consistent with the futures markets flash events discussed above.

Third, the paper relates to the literature that assesses the impact of limited market par-

ticipation. Heston et al. (2010) and Bogousslavsky (2014) find that some liquidity providers’

limited market participation can have implications for return predictability. Chien et al. (2012)

focus instead on the time-series properties of risk premium volatility. Hendershott et al. (2014)

concentrate on the effect of limited market participation for price departures from semi-strong

efficiency. Our focus is, instead, on the destabilizing dynamics that is generated by bouts of

illiquidity. In this respect, our paper is also related to Huang and Wang (2009) who show

that with costly market participation, idiosyncratic endowment shocks can yield crashes. Note,

however, that in our setup traders are exposed to the same shock, which yields a different

mechanism for market instability.

Fourth, by highlighting the first order asset pricing impact of uninformed traders’ imbal-

ance predictability, this paper shares some features of our previous work (Cespa and Vives

(2012), and Cespa and Vives (2015)). In that setup, however, predictability obtained because

of the assumed statistical properties of noise traders’ demands, whereas in this paper it arises

endogenously, because of a participation friction. A growing literature investigates the asset

pricing implications of noise trading predictability. Collin-Dufresne and Vos (2015) argue that

informed traders time their entry to the presence of noise traders in the market. This, in turn,

implies that standard measures of liquidity (e.g., Kyle’s lambda), may fail to pick up the pres-

ence of such traders. Peress and Schmidt (2015) estimate the statistical properties of a noise

trading process, finding support for the presence of serial correlation in demand shocks.

The rest of the paper is organized as follows. In the next section we introduce the model,

and show that with limited market participation, endowment shocks propagate across trading

dates. Next, we analyze the benchmark with a transparent market. We then illustrate how the

presence of an informational friction can generate strategic complementarities between traders’

demand for immediacy and market illiquidity. We show that such complementarities are at the

root of the loop responsible for equilibrium multiplicity and liquidity fragility. A final section

contains concluding remarks. All proofs are in the appendix.
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2 The model

A single risky asset with liquidation value v ∼ N(0, τ−1v ), and a risk-less asset with unit return

are exchanged in a market during two trading rounds. Three classes of traders are in the

market. First, a continuum of competitive, risk-averse, High Frequency Traders (which we

refer to as “Full Dealers” and denote by FD) in the interval (0, µ), are active at both dates.

Second, competitive, risk-averse dealers (D) in the interval [µ, 1], are active only in the first

period. Finally, a unit mass of short-term traders enters the market at date 1. At date 2, these

traders unwind their position, and are replaced by a new cohort of short-term traders (of unit

mass). The asset is liquidated at date 3. We now illustrate the preferences and orders of the

different players.

2.1 Liquidity providers

A FD has CARA preferences (we denote by γ his risk-tolerance coefficient) and submits price-

contingent orders xFDt , t = 1, 2, to maximize the expected utility of his final wealth: W FD =

(v− p2)xFD2 + (p2− p1)xFD1 .7 A Dealer also has CARA preferences with risk-tolerance γ, but is

in the market only in the first period. He thus submits a price-contingent order xD1 to maximize

the expected utility of his wealth WD = (v − p1)xD1 . The inability of D to trade in the second

period captures some liquidity suppliers’ limited market participation. This friction could be

due to technological reasons (as, e.g. in the case of standard dealers with impaired access to a

technology that allows trading at high frequencies).

2.2 Short-term traders

In the first period a unit mass of short-term traders is in the market. A short-term trader

receives a random endowment of the risky asset u1, and posts a market order xL1 anticipating

that it will unwind its holdings in the following period, and leave the market. We assume

u1 ∼ N(0, τ−1u1 ), and Cov[u1, v] = 0.8 First period traders have identical CARA preferences

(we denote by γL1 the common risk-tolerance coefficient). Formally, a trader maximizes the

expected utility of his wealth πL1 = u1p2 + (p2 − p1)xL1 :

E
[
− exp{−πL1 /γL1 }|ΩL

1

]
,

where ΩL
1 denotes his information set. In period 2, first period traders are replaced by a new

(unit) mass of traders receiving a random endowment of the risky asset u2, where u2 ∼ N(0, τ−1u2 )

and Cov[u2, v] = Cov[u2, u1] = 0. A second period trader has CARA utility function with

risk-tolerance γL2 , and submits a market order to maximize the expected utility of his wealth

7We assume, without loss of generality with CARA preferences, that the non-random endowment of FDs
and dealers is zero. Also, as equilibrium strategies will be symmetric, we drop the subindex i.

8The assumption of a random endowment in the risky asset is akin to Huang and Wang (2009), and Vayanos
and Wang (2012) who instead posit that traders receive an endowment in a consumption good that is perfectly
correlated with the value of the risky asset at the terminal date.
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πL2 = u2v + (v − p2)xL2 :

E
[
− exp{−πL2 /γL2 }|ΩL

2

]
,

where ΩL
2 denotes his information set.9

2.3 Information sets

We now describe the information sets of the different market participants. At equilibrium, we

conjecture that a period 1 trader submits an order xL1 = bL1 u1, where bL1 denotes the first period

“hedging” aggressiveness, to be determined in equilibrium, while a FD and a dealer respectively

post a limit order xFD1 = ϕFD1 (p1), x
D
1 = ϕD1 (p1) where ϕFD1 (·), ϕD1 (·) are linear functions of

p1. In the second period, a FD submits a limit order xFD2 = ϕ2(p1, p2), where ϕ2(·) is a linear

function of prices. A second period trader observes a signal of the first period endowment shock

su1 = u1 + η, with η ∼ N(0, τ−1η ), and independent from all the other random variables in the

model, and submits a market order xL2 = bL21u2 + bL22su1 , where bL21 and bL22 denote respectively

the second period hedging and speculative aggressiveness. With these assumptions, we obtain

Lemma 1. At equilibrium, p1 is observationally equivalent to u1, and the sequence {p1, p2} is

observationally equivalent to {u1, xL2 }.

A first period trader observes the endowment shock u1. Therefore, his information set

coincides with the one of Ds and FDs: ΩL
1 = ΩFD

1 = ΩD
1 = {u1}. A second period trader

receives an endowment shock u2, and can observe a signal su1 . Thus, his information set is

ΩL
2 = {u2, su1}. Finally, a FD in period 2 observes the sequence of prices: ΩFD

2 = {p1, p2} from

which he retrieves {u1, xL2 }.
Thus, according to our model, liquidity provision is fragmented because (i) only one class

of dealers is able to participate in the second period and (ii) some traders (the second cohort of

short-term traders) have access to opaque information on the first period price. This assumption

is consistent with the evidence that exchanges sell fuller access to their matching engine, as well

as direct feeds of their market information at a premium (see, e.g., O’Hara (2015)).10 Figure 2

displays the timeline of the model.

9Our results are robust to the case in which the first period market is populated by a mass β of short-term
traders, that unwind at date 2, and a mass (1− β) of long-term ones that hold their position until liquidation.

10This assumption is also similar to Foucault et al. (2015) who posit that HFTs receive market information
slightly ahead of the rest of the market Ding et al. (2014) compare the NBBO (National Best Bid and Offer,
which is the price feed computed by the Security Industry Processors in the US) to the fuller feeds market
participants obtain via a direct access to different trading platforms. Their findings point to sizeable price
differences that can yield substantial profits to HFTs. Latency in the reporting of market data can also be
profitably exploited for securities with centralized trading, see “High-speed traders exploit loophole,” Wall
Street Journal, May 1, 2013.
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1

− Liquidity traders
receive u1 and
submit market
order xL1 .

− FDs submit limit
order µxFD

1 .

− Dealers sub-
mit limit order
(1− µ)xD1 .

2

− 1st period
liquidity traders
liquidate their
positions.

− New cohort of
liquidity traders re-
ceives u2, observes
su1

, and submits
market order xL2 .

− FDs submit limit
order µxFD

2 .

3

− Asset liquidates.

Figure 2: The timeline.

2.4 Limited market participation and the propagation of endow-

ment shocks

Due to limited market participation, the first period endowment shock propagates to the second

trading round, thereby affecting p2. To see this, consider the first period market clearing

equation

µxFD1 + (1− µ)xD1 + xL1 = 0. (1)

At equilibrium the orders of first period traders are absorbed by both FDs and Ds. Thus,

when µ < 1, FDs’ aggregate position falls short of xL1 : µxFD1 + xL1 6= 0. As a consequence, the

inventory FDs carry over from the first period is insufficient to absorb the reverting orders that

first period traders post in period 2. This creates an order imbalance driven by the first period

endowment shock u1 that adds to the one originating from second period trades, and affects

the second period price. Formally, from the second period market clearing equation we have

µ(xFD2 − xFD1 ) + (xL2 − xL1 ) = 0.

Substituting (1) in the latter and rearranging yields:

µxFD2 + xL2 + (1− µ)xD1 = 0. (2)

According to Lemma 1, at equilibrium xD1 depends on u1. Thus, when µ < 1, p2 also reflects

the first period endowment shock.
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2.5 Strategies

We now discuss the strategies of the different market participants. In the second period, FDs

act like in a static market:

XFD
2 (p1, p2) = −γτ vp2.

Therefore, they speculate on the asset payoff (recall that E[v] = 0), and supply liquidity,

demanding a compensation that is inversely related to the risk they bear. In the first period,

as we show in the appendix, we have

XD
1 (p1) = − γ

Var[v]
p1 (3a)

XFD
1 (p1) = γ

E[p2 − p1|u1]
Var[p2|u1]︸ ︷︷ ︸

Speculation

− γ

Var[v]
p1︸ ︷︷ ︸

Market making

. (3b)

The above expressions imply that standard dealers accommodate the residual imbalance, while

FDs also speculate on short term returns. The speculative component in FDs first period

strategy has two implications. First, it makes the price adjustment FDs require to accommodate

an increase in the aggregate demand for liquidity smaller compared to that required by Ds:(
∂XFD

1 (p1;u1)

∂p1

)−1
=

1

γ

(
1

Var[p2|u1]
+

1

Var[v]

)−1
<

(
∂XD

1 (p1;u1)

∂p1

)−1
=

Var[v]

γ
. (4)

Second, it reduces the imbalance that liquidity providers (both Ds and FDs) have to clear at

equilibrium. In particular, the larger is FDs speculative position, the smaller is the residual

imbalance.

Consider now short-term traders. In the appendix we show that a second period trader

trades according to

XL
2 (u2, su1) = γL2

E[v − p2|ΩL
2 ]

Var[v − p2|ΩL
2 ]︸ ︷︷ ︸

Speculation

− Cov[v − p2, v|ΩL
2 ]

Var[v − p2|ΩL
2 ]

u2︸ ︷︷ ︸
Hedging

(5)

=
γL2 Cov[v − p2, u2]

Var[v − p2|ΩL
2 ]Var[u2]

u2︸ ︷︷ ︸
Speculation on u2

+
γL2 Cov[v − p2, su1 ]

Var[v − p2|ΩL
2 ]Var[su1 ]

su1︸ ︷︷ ︸
Speculation on u1

− Cov[v − p2, v|ΩL
2 ]

Var[v − p2|ΩL
2 ]

u2︸ ︷︷ ︸
Hedging

.

Thus, a trader’s strategy has a speculative and a hedging component. According to the first

line in (5), a trader speculates on value change the more, the less liquid is the market (see the

first term on the r.h.s. in (5)), while lowering his exposure to the asset risk the more, the higher

is the covariance between the return on his position (i.e., v− p2) and the final liquidation value

(v), given his information. In this way he reduces the risk that his speculative strategy goes

sour precisely when the value of his endowment collapses. Expanding the expectation operator

at the numerator of (5) shows that there are two sources of speculation. Other things equal,

given u2 a trader retains part of his asset exposure to the extent that this is positively correlated
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with the capital gain v − p2, to profit from the latter. Additionally, he uses his information on

u1 to speculate on the reverting orders of first period traders.

First period traders’ strategies are similar to (5):

XL
1 (u1) = γL1

E[p2 − p1|u1]
Var[p2|u1]︸ ︷︷ ︸

Speculation on u1

− u1︸︷︷︸
Hedging

. (6)

First period traders can partially anticipate the second period price, and thus speculate on it,

for example by holding part of their endowment when u1 > 0. Substituting (6) in (3b) yields

the following expression:

XFD
1 (p1) =

γ

γL1

(
XL

1 (u1) + u1
)
− γ

Var[v]
p1. (7)

According to (7), for given u1, a contraction of first period traders’ holdings (i.e., an increase

in their demand for liquidity), leads to a corresponding contraction in FDs speculative activity,

and thus to an increase in the residual imbalance that liquidity suppliers have to clear in

equilibrium.

3 Market transparency and the rationing effect of illiq-

uidity

In this section, we assume that second period traders have a perfect signal on the first period

endowment shock: τ η →∞. This captures a scenario in which information on the first period

imbalance is public, as is the case in a low frequency trade environment (e.g., intradaily).

Alternatively, it represents an ideal setup in which second period traders have access to the

same information as FDs. In this case, we obtain the following result:

Proposition 1. When the market is transparent there exists a unique equilibrium in linear

strategies, where xL1 = bL1 u1, x
L
2 = bL21u2 + bL22su1,

p2 = λ2(b
L
21u2 + bL22su1) + λ2(1− µ)γτ vΛ

∗
1u1 (8a)

p1 = −Λ∗1u1, (8b)
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λ2 = 1/(µγτ v) > 0, and

Λ∗1 =
1

γτ v

(
1− (µγ + γL1 )(1 + bL1 )

γL1

)
(9a)

bL1 = γL1
Cov[p2, u1]τu1 + Λ∗1

Var[p2|u1]
− 1 ∈

(
−1,− µγ

µγ + γL1

)
(9b)

bL21 = − µγ

µγ + γL2
(9c)

bL22 =
γL2 b

L
21(1− µ)Λ∗1τ v

µ
. (9d)

The coefficient Λ∗1, i.e. the first period endowment shock’s negative price impact, is our

measure of liquidity:

Λ∗1 = −∂p1
∂u1

. (10)

As is standard in economies with noise traders and risk-averse liquidity suppliers, Λ∗1 reflects

dealers’ compensation to absorb the outstanding imbalance in their inventory: the cost of

supplying liquidity. However, differently from a noise trader economy, in this model dealers’

inventory depends on the equilibrium trading decisions of FDs and first period traders. To see

this, consider (9a). In view of (6) and (9b), at equilibrium first period traders hold a fraction

1 + bL1 = γL1
Cov[p2, u1]τu1 + Λ∗1

Var[p2|u1]
, (11)

of their endowment shock. At the same time, comparing (3b) with (6), FDs aggregate specu-

lative position per unit of endowment shock is given by

µγ
E[p2 − p1|u1]
Var[p2|p1]u1

= µγ
1 + bL1
γL1

. (12)

Thus, summing (11) and (12) yields the total speculative exposure of FDs and first period

traders per unit of u1 (i.e., the fraction of the endowment shock that is not absorbed by

liquidity suppliers):

1 + bL1 + µγ
1 + bL1
γL1

=
(µγ + γL1 )(1 + bL1 )

γL1
, (13)

and the complement to one of (13) captures dealers’ inventory (per unit of endowment shock):

Dealer’s inventory per unit of endowment shock = 1− (µγ + γL1 )(1 + bL1 )

γL1
. (14)

At date 1 FDs know that they will be able to unwind their inventory in the second trading

round, when xL1 reverts. However, at that point in time, a new generation of traders enters

the market. These traders hedge a new endowment shock, exposing FDs to the risk of holding

their initial inventory until the liquidation date. Thus, for given inventory (14), the riskier is

the asset, and the more risk averse FDs are, the higher is the risk borne by liquidity suppliers,

and, according to (9a), the less liquid is the market.
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According to (9b) and (9c), first and second period traders demand liquidity to hedge a

fraction of their endowment. In the second period, such a fraction corresponds to FDs’ relative

risk-bearing capacity (see (9c)); in the first period, instead, it is larger than that (see (9b)).

This is because second period traders’ hedging activity creates price volatility which heightens

first period traders’ uncertainty, and leads them to demand more liquidity and FDs to cut

back on their speculative activity. Indeed, when second period traders’ endowment shock is

null, first period traders’ hedging aggressiveness reaches its upper bound, and the market is

infinitely liquid:

Corollary 1. In a transparent market, when the second period endowment shock is null (τu2 →
∞), first period traders’ liquidity demand matches FDs’ relative risk-bearing capacity, and the

market is infinitely liquid (bL1 → −(µγ + γL1 )−1µγ, and Λ∗1 → 0).

According to (9d), second period traders also speculate on the propagated order imbalance

by putting a negative weight on their signal (bL22 < 0), which is increasing in Λ∗1. This is because,

for u1 > 0, the reversion of first period trades creates a positive imbalance at date 2, which

prompts second period traders to short the asset. A less liquid first period market makes it

more profitable for Ds to absorb u1, which strengthens the positive dependence between p2,

and u1:

Cov[p2, u1] =
(1− µ)λ2τ vΛ

∗
1

τu1

(
γL2 b

L
21

µ
+ γ

)
. (15)

Thus, as Λ∗1 increases, second period traders step up their speculative aggressiveness.

Analytically, the equilibrium obtains as the unique solution to the system (9a)–(9b):

Λ∗1 =
1

γτ v

(
1− (µγ + γL1 )(1 + bL1 )

γL1

)
(16a)

bL1 = γL1 (γ + γL2 )(µγ + γL2 )τ 2vτu2Λ
∗
1 − 1, (16b)

which can be understood as the intersection between the inverse supply and demand of liquidity

(respectively, (16a) and (16b)). This is so because bL1 measures the fraction of the endowment

shock that first period traders hedge in the market, while Λ∗1 captures the price adjustment

dealers require to accommodate the order imbalance. A less liquid first period market increases

the cost of scaling down traders’ exposure, and leads the latter to hedge less of their endowment.

Thus, in this case a drop in liquidity has a “rationing” effect on liquidity consumption, and the

demand for liquidity is a decreasing function of Λ∗1.
11 Conversely, a lower hedging aggressiveness

implies a larger speculative position for FDs, which shrinks the imbalance that liquidity sup-

pliers have to clear in the first period, and leads to a more liquid market. Hence, the (inverse)

supply of liquidity is decreasing in bL1 . In Figure 3 we provide a graphical illustration of the

equilibrium determination.

In Figure 3 we also graphically analyze the effect of an increase in the mass of FDs on Λ∗1.

11As bL1 < 0, and positively sloped in Λ∗1, a higher illiquidity implies that traders shed a lower fraction of their
endowment, or that their liquidity demand subsides.
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Figure 3: Transparency and equilibrium uniqueness. The solid (dashed) curves are drawn
assuming µ = 1/10 (µ = 1/5). When µ = 1/10, {Λ∗1, bL1 } = {.4,−.2}, while when µ = 1/5,
{Λ∗1, bL1 } = {.3,−.3}.

The solid (dashed) curves in the figure are drawn for µ = 1/10 (µ = 1/5). A larger µ has a

positive effect on the cost of trading for all levels of bL1 , since, according to (12), the aggregate

speculative position of FDs increases, lowering dealers’ inventory. As a result, when µ increases,

the new function Λ∗1 shifts downwards. Consider now bL1 . Based on (11), a larger µ has two

contrasting effects on first period traders’ hedging aggressiveness: on the one hand, as one can

compute using (8a) and (8b), first period return uncertainty is given by:

Var[p2|u1] =
(λ2b

L
21)

2

τu2
=

1

(µγ + γL2 )2τ 2vτu2
, (17)

which is decreasing in µ. Therefore, a larger µ lowers first period traders’ uncertainty about

p2, and makes them consume less liquidity. However, according to (15),

∂Cov[p2, u1]

∂µ
< 0 (18)

and a higher µ lowers the positive association between the second period price and the first

period endowment shock, making speculation less profitable. This pushes first period traders

to shed a larger fraction of their endowment, increasing dealers’ inventory, and consuming more

liquidity. When the market is transparent, this latter effect is never strong enough to offset the

former two and we obtain:

Corollary 2. In a transparent market, liquidity increases in the proportion of fast dealers

(∂Λ∗1/∂µ < 0).

We concentrate our analysis on the liquidity of the first period market. However, note that
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as the volatility of the first period price is given by

Var[p1] = (Λ∗1)
2τ−1u1 ,

our liquidity results can also be interpreted in terms of price volatility.

4 Opaqueness and the feedback effect of illiquidity

Suppose now that second period traders’ signal on u1 has a bounded precision (τ η <∞). This

setup characterizes a scenario where some traders (FDs, in our setup) have access to better

market information (for example on order imbalances) compared to others (the second cohort

of traders), and given our previous discussion, is likely to hold at a high trading frequency. In

this case, we obtain the following result:

Proposition 2. When 0 < τ η <∞, at equilibrium: xL1 = bL1 u1, x
L
2 = bL21u2 + bL22su1,

bL21 = − µγ

γL2 + µγκ
(19a)

bL22 = γL2 b
L
21τ vτ ηCov[p2, u1|ΩL

2 ], (19b)

where

κ ≡ τ vVar[v − p2|ΩL
2 ] > 1, (19c)

and the first and second period return uncertainty are respectively given by Var[p2|u1] = λ22((b
L
21)

2/τu2+

(bL22)
2/τ η), and Var[v − p2|ΩL

2 ] = Var[v] + (λ2(1− µ)γτ vΛ
∗
1)

2Var[u1|su1 ].

Differently from the transparent market benchmark, second period traders now face uncer-

tainty on the price at which their order is executed, besides that on the liquidation value. This

additional source of uncertainty is captured by the coefficient κ (see (19c)). As a consequence,

they hedge a lower fraction of their endowment shock (see (19a)). Other things equal, as µ

increases, u1 propagates less to period 2, κ tends to 1, and second period traders (i) hedge more

of their endowment shock, and (ii) speculate less aggressively on the propagated shock:

lim
µ→1

bL21 = − γ

γL2 + γ
, lim
µ→1

bL22 = 0. (20)

We are now ready to analyze the effect of a shock to liquidity on the equilibrium coefficients:

Corollary 3. At equilibrium, the impact of the first period endowment shock on the second

period price, second period traders’ return uncertainty and hedging aggressiveness are increasing

in illiquidity:

∂Cov[p2, u1]

∂Λ∗1
> 0,

∂Var[v − p2|ΩL
2 ]

∂Λ∗1
> 0,

∂bL21
∂Λ∗1

> 0. (21)

15



An increase in Λ∗1 has an ambiguous effect on first period traders’ hedging responsiveness and

return uncertainty, and on second period traders’ speculative aggressiveness (bL1 , Var[p2|u1], and

bL22).

According to (21) as in the transparent market case, a less liquid first period market increases

the positive association between p2 and u1. Furthermore, as second period traders do not

perfectly observe u1, this also augments these traders’ uncertainty and, according to (21),

lowers their hedging responsiveness (recall that bL21 < 0).

Importantly, an increase in Λ∗1 has two contrasting effects on the speculative aggressive-

ness of second period traders (bL22). Direct computation yields: Cov[p2, u1|ΩL
2 ] = λ2(1 −

µ)γτ vΛ
∗
1Var[u1|su1 ]. Thus, differentiating bL22 we obtain:

∂bL22
∂Λ∗1

= γL2 τ vτ η

 Cov[p2, u1|ΩL
2 ]
∂bL21
∂Λ∗1︸ ︷︷ ︸

Uncertainty effect (+)

+ bL21
∂Cov[p2, u1|ΩL

2 ]

∂Λ∗1︸ ︷︷ ︸
Speculation effect (−)

 . (22)

On the one hand, like in the transparent market benchmark, an increase in Λ∗1 augments

second period traders’ speculative opportunities, and drives them to trade more against the

u1-led imbalance (the second term in the parenthesis in (22)). On the other hand, a higher Λ∗1

augments second period traders return uncertainty, and makes them speculate less (the first

term in the parenthesis). Consider now the effect of an increase in Λ∗1 on Var[p2|u1]:

∂Var[p2|u1]
∂Λ∗1

= 2λ22

 bL21
τu2

∂bL21
∂Λ∗1︸ ︷︷ ︸

(−)

+
bL22
τ η

∂bL22
∂Λ∗1︸ ︷︷ ︸

(±)

 . (23)

In the transparent market benchmark, an increase in Λ∗1 has no impact on first period traders’

uncertainty over p2 (see (17)). In contrast, according to (21), opaqueness introduces two chan-

nels through which a shock to liquidity feeds back to first period traders’ uncertainty. First, an

increase in Λ∗1 lowers second period traders’ hedging activity, lowering Var[p2|u1]. However, as

we argued above, a less liquid first period market can spur more speculation by second period

traders. As traders’ information is imprecise, this yields a second feedback channel that can

instead magnify first period traders’ uncertainty. Thus, according to (23), the ultimate impact

of a shock to Λ∗1 on first period traders’ uncertainty depends on the strength of the speculation
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effect. Finally, because of opaqueness, an increase in Λ∗1 introduces an additional effect on bL1 :

∂bL1
∂Λ∗1

=
γL1

Var[p2|u1]2
× (24)(∂Cov[p2, u1]

∂Λ∗1
τu1 + 1

)
Var[p2|u1]︸ ︷︷ ︸

Direct effect (+)

− ∂Var[p2|u1]
∂Λ∗1

(Cov[p2, u1]τu1 + Λ1)︸ ︷︷ ︸
Feedback effect (±)

.

For given Var[p2|u1], as p2 is more positively associated with u1, a larger Λ∗1 leads first pe-

riod traders to speculate more (and hedge less), as per the direct liquidity consumption “ra-

tioning” effect of the transparent market benchmark. However, when the speculation effect

leads Var[p2|u1] to increase in Λ∗1, a less liquid market now also has a feedback liquidity con-

sumption “expanding” effect on bL1 . As a higher Λ∗1 increases the risk to which first period

traders are exposed, a less liquid market can lead them to hedge more. As a result, first period

traders’ demand for liquidity can become increasing in Λ∗1, as shown in Figure 4: an increase

in the cost of liquidity provision incites more liquidity consumption.

The expanding effect of illiquidity can be responsible for a destabilizing dynamic whereby

to a sizeable evaporation of liquidity, first period traders respond with an even more aggressive

liquidity consumption. In the figure we use the same parameter values of Figure 3, but assume

that τ η = 10 (instead of τ η →∞). As a result, at equilibrium we obtain

bL1 |τη=10 = −0.5, Λ∗1|τη=10 = 3.8.

Compared to the values of the example of Figure 3, these results correspond to a more than

two- and an almost ten-fold increase in liquidity consumption and illiquidity.

Λ1*, Opaque

b1L, Opaque

b1L, Transparent

1 2 3 4
Λ1*

-2.0

-1.5

-1.0

-0.5

0.0
b1L
γ=1, γ1L=1/2, γ2L=1, τu1=1/10, τu2=200, τv=1/10, τη=10, μ=1/10

Figure 4: When the market is opaque, first period traders’ demand for liquidity can turn
increasing in Λ∗1. The dashed curve corresponds to bL1 in the transparent market case.

4.1 Equilibrium multiplicity

A second effect of opaqueness is the possibility of multiple, self-fulfilling equilibria. According

to Corollary 3, a less liquid first period market heightens the time-propagation of the first
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period shock. This, in turn, can lead second period traders to speculate more aggressively on

the u1-led imbalance (see (22)), which can increase the uncertainty faced by first period traders

on p2 (see (23)). As a consequence, first period traders can decide to hedge more, and FDs

to speculate less (see (24)).12 This chain of effects turns out to be particularly strong when

the risk bearing capacity of FDs is not too low, first period traders are sufficiently risk averse,

second period traders have a sufficiently informative signal, and face low endowment risk, and

the risk of the asset payoff is large. In these conditions, an initial dearth of liquidity escalates

into a loop that sustains three equilibrium levels of liquidity:

Proposition 3. There exists a set of parameter values {τu2 , τ̄ v, τ η, µ̄, γ, γL1 }, such that for

τu2 > τu2, τ v < τ̄ v, τ η > τ η, µ < µ̄, γ > γ, and γL1 < γ̄L1 , three equilibrium levels of liquidity

(Λ∗1)
H , (Λ∗1)

I , (Λ∗1)
L arise, where

0 < (Λ∗1)
H <

µ

1− µ
< (Λ∗1)

I <
1

1− µ
< (Λ∗1)

L <
1

γτ v
. (25)

We will refer to the equilibrium where Λ∗1 is low (resp., intermediate, and high) as the High,

(resp., Intermediate, and Low) liquidity equilibrium (HLE, ILE, and LLE). Note that since

the function Λ∗1(b
L
1 ) is decreasing in bL1 (see (16a)), the hedging activity of first period traders

is respectively high, intermediate, and low along (Λ∗1)
L, (Λ∗1)

I , and (Λ∗1)
H . This is a further

manifestation of the fact that the feedback effect of liquidity jams the stabilizing impact of an

increase in illiquidity on traders’ hedging demand.

We can interpret the ratios

µ

1− µ
,

1

γτ v
, (26)

in (25), respectively, as the likelihood that FDs second period liquidity supply is enough to

absorb the demand coming from first period traders’ reverting orders, and as liquidity suppliers’

perceived uncertainty about the asset payoff. Then, condition (25) states that when multiplicity

arises, the likelihood that FDs’ inventory is sufficient to stave off a liquidity shortage is smaller

than FDs’ perceived asset payoff risk. Figure 5 provides a numerical example of the proposition.
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γ=9/10, γ1L=1/5, γ2L=9/10, τu1=2, τu2=600, τv=1/10, τη=10, μ=1/5

Λ1
*

Λ1
*

Figure 5: Market opaqueness and equilibrium multiplicity. At equilibrium {Λ∗1, bL1 } ∈
{{0.4,−0.5}, {1,−0.5}, {3.9,−0.7}}.

12Because of (12), whenever first period traders consume more liquidity, FDs speculate less, increasing the
inventory held by liquidity suppliers.
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The following corollary follows from Proposition 3:

Corollary 4. When the volatility of the second period endowment shock grows unboundedly

(τu2 →∞) and the following parameter restriction applies: τ v < τ̄ v, τ η > τ η, µ < µ̄, γL1 < γ̄L1 ,

we can rank liquidity at the different equilibria as follows:

0 = (Λ∗1)
H < (Λ∗1)

I <
1

1− µ
< (Λ∗1)

L <
1

γτ v
. (27)

When τu2 → ∞, second period traders have no endowment to hedge, and only trade to

speculate on the u1-induced imbalance. In the equilibrium where Λ∗1 = 0, xD1 = 0, so that

first period traders’ orders are absorbed by FDs’ speculative trades, no imbalance arises in

the second period, and bL22 = 0 (see (19b)). When second period traders’ signal on u1 is fully

revealing, this equilibrium is unique (Corollary 1). For τ η finite, however, first period traders

cannot rule out the possibility that second period traders speculate on a certain realization

of su1 that gives an incorrect signal about u1 (e.g., su1 > 0, while u1 < 0). This increases

the uncertainty they face, and trigger the loop that can lead to the appearance of two further

equilibria. Figure 6 provides a graphical illustration of the equilibrium determination when the

conditions in Corollary 4 are satisfied.
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Figure 6: Equilibrium multiplicity with no second period endowment risk. At equilibrium
{Λ∗1, bL1 } ∈ {{0,−0.5}, {1.1,−0.5}, {4.2,−0.7}} (the function bL1 is very steep at Λ∗1 = 0).

4.2 Uniqueness and comparative statics

Equilibrium uniqueness can occur at both an equilibrium with a high level of liquidity and one

with a low level of liquidity (corresponding respectively to the HLE and the LLE when there

are multiple equilibria), depending on parameters’ values. A high FDs’ risk bearing capacity

(large γ and/or µ), low payoff risk (high τ v), low volatility or high risk tolerance of first period

traders’ endowments (respectively, high τu1 and γL1 ), high signal precision (high τ η), and low

risk tolerance of second period traders (low γL2 ) can lead to uniqueness at a high liquidity

equilibrium. Indeed, for such parameters’ values, first period traders have a lower need for

immediacy, face a lower risk from holding the asset, and benefit from a larger FDs presence at

interim. Furthermore, second period traders’ orders create less first period return uncertainty.

All of these effects contribute to weaken the strategic complementarity loop, facilitating a high
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liquidity equilibrium. Conversely, a high volatility of second period traders’ endowments works

to strengthen the loop, as it heightens second period traders’ demand for immediacy, which in

turn increases the return uncertainty faced by first period traders. As a consequence, a lower

τu2 can instead lead to uniqueness at an equilibrium with low liquidity. Figures 10 and 11 (in

the Appendix) illustrate how uniqueness at an equilibrium with high and low liquidity arises.

Along the equilibrium with high liquidity, shocks to parameters have a monotone effect

on market liquidity. More in detail, a higher dealers’ risk bearing capacity (higher γ or µ),

lower payoff risk (higher τ v), lower volatility of first period endowment and higher first period

risk-tolerance (higher τu1 or γL1 ), make the market more liquid; a higher signal precision (τ η),

instead, makes the market less liquid. An example of these effects is presented in Figure 7,

Panel (a) (for µ), and Panel (b). Along the equilibrium with low liquidity, shocks to parameters

can have non-monotone effects. We illustrate this feature for the proportion of FDs in Figure 7,

Panel (c). The intuition for the non-monotonicity is as follows. An increase in µ triggers two

potentially contrasting effects on liquidity:

∂Λ∗1
∂µ

= − 1

γτ v
×

 γ(1 + bL1 )

γL1︸ ︷︷ ︸
Direct effect (+)

+
∂bL1
∂µ

(
1 +

µγ

γL1

)
︸ ︷︷ ︸

Indirect effect (±)

 . (28)

For given bL1 , the direct effect captures the increase in FDs’ aggregate speculative position,

which works to lower dealers’ inventory, and make the market more liquid. The indirect effect

reflects the impact of the change in µ on first period traders’ demand for liquidity (∂bL1 /∂µ),

and on each FD’s speculative position ((µγ/γL1 )(∂bL1 /∂µ)). The sign of this effect is, instead,

ambiguous. Indeed, an increase in the mass of FDs can lower the impact of second period

traders’ orders on p2, thereby lowering Var[p2|u1] and leading first period traders to hold more

of their endowment, and each FD to speculate more on the short term capital gain;13 at the

same time, however, it can also lower the propagation of u1 to the second period, impairing

the predictability of p2, and inducing traders to shed more of their endowment, and each FD

to speculate less.14 When the market is opaque, second period traders face execution risk,

which tames their hedging aggressiveness (see (19a)), and lowers first period traders’ return

uncertainty. In this situation, the uncertainty reduction effect of µ on bL1 can be dwarfed by

the one due to reduced predictability. As a consequence, when µ increases, first period traders’

demand for immediacy can increase (Figure 7, Panel (c)) and the individual speculative activity

of each FD can abate, offsetting the direct positive effect of FDs’ aggregate speculative trades.

Hence, a wider FDs’ participation can impair liquidity.

13The volatility reduction can happen for two different reasons. As µ increases, (i) less of the first period
endowment shock propagates to the second period, and (ii) more FDs absorb second period liquidity traders’
orders, enhancing risk sharing.

14In a transparent market, this latter effect is never strong enough to overcome the previous two, and liquidity
increases in the mass of FDs (see Corollary 2).
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(a) (b)

(c)

Figure 7: Comparative statics along the High and Low Liquidity Equilibrium. A higher proportion of FDs, increases liquidity (Panel (a)),
while a higher signal precision, decreases it (Panel (b)). Along the low liquidity equilibrium, an increase in µ can have a non-monotone effect
on market liquidity (Panel (c)).
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4.3 Fragility

The feedback loop induced by market opaqueness implies that liquidity can be “fragile,” in

the sense that a relatively small shock to one of the model’s parameters can lead to a dispro-

portionately large change in liquidity. We show this with two examples. In the first one, we

consider the effect of a parameter shock yielding a switch from the HLE to an equilibrium with

low liquidity. In the second example, we show that along an equilibrium with low liquidity, Λ∗1

can be hump-shaped in µ. This implies that a sudden reduction in the mass of FDs can lead

to a large drop in liquidity.

4.3.1 Equilibrium switch

Consider Panel (a) in Figure 8, and suppose that initially the market is at the high liquidity

equilibrium, where Λ∗1 = 0.22. Suppose that a technical “glitch” disconnects 6% of the FDs.

In this new situation, as argued in Section 4.1, the plot for Λ∗1(b
L
1 ) shifts upwards, while the

one for bL1 (Λ∗1) moves downwards, as illustrated in panel (b) of the figure. As a result, a new,

unique equilibrium obtains with Λ∗1 = 3.5, which corresponds to a 16-fold liquidity decrease.

A similar effect also arises if we shock the volatility of first or second period traders’ en-

dowment. To see this, suppose now that starting from Panel (a) in the figure, we introduce

a 5% negative shock to τu1 (i.e., we move τu1 from 2 to 1.9), which increases the likelihood

that an order of an unusual magnitude hits the first period market. As argued in Section 4.2

this leads to a downward shift in the plot for bL1 which, as we show in Panel (c) of Figure 8,

is large enough to eliminate the HLE and move the market towards a new equilibrium with

low liquidity in which Λ∗1 = 3.5 and bL1 = −0.6. Finally, suppose that we increase the volatility

of the second period endowment shock, introducing a 7% negative shock to τu2 (lowering it

to 620). In this new situation, the plot for the function bL1 (Λ∗1) moves downwards, while the

one for Λ∗1(b
L
1 ) is unchanged (see Panel (d) in Figure 8). A unique equilibrium obtains, where

Λ∗1 = 3.5, implying liquidity dry-up comparable to the one of the previous examples.

Table 1 summarizes the results of these exercises and compares them with the effects that

obtain in the transparent market case.
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Figure 8: Liquidity fragility. Comparing panel (a) with (b) illustrates the effect of a decrease in the mass of FDs. Comparing panel (a) with
(c) and (d) illustrates the effect of an increase in the volatility of first and second period liquidity traders’ demand.
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Status quo Λ∗1 Shock to parameter New Λ∗1 ∆Λ∗1/Λ
∗
1

Transparent market (τ η →∞) 0.237

∆µ/µ = −6% 0.245 3.2%

∆τu1/τu1 = −5% 0.237 0%

∆τu2/τu2 = −7% 0.252 6.3%

Opaque market (τ η <∞) 0.22

∆µ/µ = −6% 3.5 1470%

∆τu1/τu1 = −5% 3.5 1470%

∆τu2/τu2 = −7% 3.5 1470%

Table 1: Equilibrium switch: The impact of a shock to µ, τu1 , and τu2 , in the transparent, and
opaque market case. Other parameters’ values are as in Figure 8.

4.3.2 Fragility along a unique equilibrium with low liquidity

In Section 4.2 we have shown that along an equilibrium with low liquidity, an increase in the

mass of FDs can have a non-monotone impact on Λ∗1. This implies that illiquidity can be

hump-shaped in the proportion of FDs, as shown in Figure 9 (Panel (a)). The non-monotone

relationship between Λ∗1 and µ illustrates an additional channel through which liquidity fragility

can arise. To see this, suppose that the proportion of FDs in the market is initially µ = 0.4.

According to the figure, for this fraction of FDs’ participation, in the opaque market case we

have Λ∗1 = 0.5, and bL1 = −0.47 (see Panel (a) and Panel (b)). Suppose now that a glitch

disconnects 10% of FDs, implying that a proportion µ = 0.36 of FDs supplies liquidity. In

the opaque market case, this implies a new illiquidity level Λ∗1 = 1.58, corresponding to a

216% liquidity withdrawal. Conversely, in the case with transparent markets, when µ = 0.4,

Λ∗1 = 0.38, while when µ = 0.36, Λ∗1 = 0.41, corresponding to an 8% liquidity decrease. This

shows that along an equilibrium with low liquidity, following a reduction in FD participation,

liquidity can dry up quite dramatically.

The example highlights an additional implication of our analysis. When µ = 0.36, bL1 =

−0.51 (see Figure 9, Panel (b)), which, compared to the status quo liquidity demand, corre-

sponds to a 9% increase in liquidity consumption by first period traders (i.e., bL1 = −0.47 when

µ = 0.4). How can such a comparatively small increase in liquidity consumption generate an

illiquidity spike of this magnitude? To understand this, note that increased liquidity consump-

tion only accounts for part of the total effect, as it occurs jointly with a steep increase in first

period return uncertainty (according to Panel (c) in the figure, Var[p2|u1] experiences a 310%

increase across the two equilibrium outcomes). This, as noted in Section 4.2, leads each FD to

scale down his speculative position, thereby adding to the aggregate effect of a reduced liquidity
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supply. Using expression (28) to break down the different effects yields:

∆Λ∗1
∆µ︸ ︷︷ ︸
≈ −27

≈ − 1

γτ v︸︷︷︸
= −10

× (29)

(
γ(1 + bL1 )

γL1︸ ︷︷ ︸
∆ in FDs’ aggregate specula-

tive position ≈ 1

+
µγ

γL1︸︷︷︸
= 4/5

× ∆bL1
∆µ︸︷︷︸

∆ in each FD speculative po-

sition ≈ 1

+
∆bL1
∆µ

)
︸ ︷︷ ︸

∆ in liquidity demand ≈ 1

Thus, the increase in liquidity consumption accounts for roughly 36% of the drought, whereas

the lion share of it (about 64%) is due to the combined effect of the aggregate and individual

reduction in FDs’ speculative activity.15 This suggests that the empirical analysis seeking to

explain sudden and large changes in liquidity has to look beyond the impact of changes in

the demand for immediacy, and also account for the effect of changes in HFTs’ short-term

speculative activity.16

A final implication of this example is that when information on prices and/or order im-

balances is opaque, an increase in the mass of HFTs (promoting full participation), can lower

market liquidity. This finding is consistent with Boehmer et al. (2015) who show that greater

algorithmic trading intensity is associated with more liquidity for average firm size, the same

is not true for small market cap firms. For these firms, when algorithmic trading increases,

liquidity declines.17

Summarizing: this section highlights the role of informational frictions in generating a

liquidity feedback loop that can have a destabilizing effect on the market. Second period

traders, endowed with a noisy signal on the first period endowment shock, speculate against

the propagated order imbalance, generating additional volatility. This can feed back on first

period traders’ strategies, leading them to consume more liquidity and FDs to retreat from

speculation, thereby magnifying the inventory held by liquidity suppliers, and further lowering

market liquidity. This self-sustaining loop can induce multiple equilibria and liquidity fragility.

Equilibria can be ranked in terms of liquidity and first period traders’ hedging activity, with the

most (least) liquid equilibrium occurring with the least (highest) liquidity consumption. Thus,

with market opaqueness, the self-stabilizing mechanism whereby an illiquidity spike depresses

liquidity consumption can jam, and instead be replaced by a vicious cycle that creates a liquidity

rout.

15According to (29), the sum of ∆ in FDs’ aggregate speculative position, ∆ in each FD speculative position,
and ∆ in traders’ liquidity demand amounts to 2.8, of which ∆bL1 /∆µ accounts for 1.

16In this example too, for µ small, the stabilizing effect of illiquidity is jammed and first period traders
demand more immediacy precisely when the cost of liquidity supply is increasing.

17See also Breckenfelder (2014) for other evidence on the negative impact of an increase in HFT competition
on market liquidity for a sample of stocks traded on the Stockholm Stock Exchange.
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Figure 9: Fragility at an equilibrium with low liquidity. In panel (a), (b), and (c) we plot Λ∗1, b
L
1 , and Var[p2|u1], for τ v = τu1 = 0.1, τu2 = 100,

τ η = γ = γL2 = 1, γL1 = 0.5, and µ ∈ {0.01, .02, . . . , 1}; the blue (green) plot relates to the transparent (opaque) case. A glitch disconnecting
10% of FDs yields a 9% increase in the demand for immediacy, a 310% increase in first period uncertainty and a 216% illiquidity spike. The
gridlines are drawn at µ = µ̂ ∈ {0.36, 0.4} and at the corresponding values for Λ∗1, b

L
1 , and Var[p2|u1].
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Transparent (τ η →∞) Opaque (0 < τ η <∞)

Equilibrium Unique Possible ME

Liquidity Increasing in µ Can be ‘fragile’ and
hump-shaped in µ
(Numerical)

First period traders’ demand for
immediacy

Decreasing in Λ∗1 Can be increasing in Λ∗1

Table 2: Summary of results.

5 Concluding remarks

We study a 2-period model in which two classes of dealers—full and standard—intermediate

the orders of two successive cohorts of short-term traders, in a context where markets are

fragmented due to both an informational and a participation friction. We show that dealers’

limited market participation favors the propagation of first period traders’ endowment shock

across time, inducing a predictable price pressure. This, in turn, leads second period traders to

speculate against the propagated endowment shock. The effect of speculation crucially depends

on the transparency regime governing the market. More in detail, our main findings can be

summarized as follows (see Table 2):

1. When second period traders have perfect information about the first period endowment

shock, speculation exerts a stabilizing effect. In this context, a unique equilibrium obtains,

and a dearth of liquidity increases first period traders’ cost of hedging, reducing their

liquidity consumption. Furthermore, higher FDs participation always has a beneficial

impact on liquidity.

2. When the market is opaque—in that second period traders’ information is imprecise—

speculation can augment first period traders’ uncertainty, leading them to demand more

immediacy when the market is less liquid. This can offset the rationing impact of illiq-

uidity, and trigger a liquidity feedback loop in which a liquidity dry-up breeds a further,

larger liquidity withdrawal. We show that in this scenario,

(a) Multiple equilibria—that can be ranked in terms of liquidity, price volatility, and

demand for immediacy—can arise.

(b) Uniqueness can obtain with either a high or a low level of liquidity, and compara-

tive statics is not necessarily monotone in the latter case. For example, along an

equilibrium with low liquidity, an increase in the mass of FDs can impair market

liquidity.

(c) Liquidity can be fragile, either because a shock to parameter values can prompt

a switch from the high liquidity equilibrium to an equilibrium with low liquidity;

27



alternatively, because, along an equilibrium with low liquidity, a reduction in FDs

participation can generate a large spike in illiquidity.

From a methodological point of view, our work shows that fragility can arise in a context

where prices are driven by a non-payoff related shock. We view this as a realistic feature of

trading at high frequencies since in those conditions, the chances that payoff fundamentals drive

prices are negligible. This also allows us to offer an alternative explanation for how the buildup

of a large imbalance can precipitate the market into a crash, which does not rely on the effect

of order flow toxicity (Easley et al. (2011, 2012)).

From a policy perspective, our paper has two important implications. First, our analysis

of the opaque market model shows that favoring FDs’ entry (i.e., reducing the participation

friction) doesn’t necessarily enhance liquidity. Indeed, illiquidity can be hump-shaped in the

proportion of FDs. This can also serve as a guide to empirical analysis, as it suggests that the

liquidity impact of HFT entry should be assessed taking into account the effect of frictions in the

access to market information. Second, with noisy market information, the presence of liquidity

providers acting with different trading frequencies may make liquidity fragile, either because a

shock to parameters can prompt a switch across equilibria; or because, along an equilibrium

with low liquidity, due to the hump-shaped relationship between illiquidity and the proportion of

FDs, a sudden reduction of these dealers’ participation can lead to a large liquidity withdrawal.

This supports regulatory concerns about the potential drawbacks of automated trading due to

operational and transmission risks.18 This also implies that fragility can arise in the absence of

order flow toxicity, suggesting two possible lines of intervention to reduce the likelihood of flash

episodes. First, allowing access to transparent market information to all market participants at

the same time, would limit the uncertainty-increasing effect of speculation on predictable price

pressures, besides reducing the toxicity of order flows. Furthermore, making liquidity provision

by different agents more in sync, would reduce fragmentation and help avoiding predictable,

short-lived, price pressures that, as we have argued, with opaque information can make liquidity

fragile.

Finally, our analysis of fragility along an equilibrium with low liquidity highlights the role

that changes in HFTs’ strategies in the wake of crashes have to explain huge illiquidity spikes.

As we argued in our numerical example, the total reduction in HFTs’ speculative activity can

act as a multiplier of the initial increase in traders’ liquidity consumption. This can be of

help in empirical analyses of these events, in that an exclusive focus on changes in liquidity

consumption can miss a potentially important explanatory factor.

18See Joint Staff Report: The U.S. Treasury Market on October 15, 2014.
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A Appendix

The following is a standard results (see, e.g. Vives (2008), Technical Appendix, pp. 382–383)

that allows us to compute the unconditional expected utility of market participants.

Lemma 2. Let the n-dimensional random vector z ∼ N(0,Σ), and w = c + b′z + z′Az, where

c ∈ R, b ∈ Rn, and A is a n×n matrix. If the matrix Σ−1 +2ρA is positive definite, and ρ > 0,

then

E[− exp{−ρw}] = −|I + 2ρΣA|−1/2 exp{−ρ(c− ρb′(Σ + 2ρA)−1b)}.

Proof of Lemma 1

Denote by µxFD1 =
∫ µ
0
xFD1 di, (1 − µ)xD1 =

∫ 1

µ
xD1 di, and by xL1 respectively the aggregate

position of FDs, dealers and liquidity traders in the first period. Imposing market clearing

yields:

µxFD1 + (1− µ)xD1 + xL1 = 0 ⇐⇒ µϕFD1 (p1) + (1− µ)ϕD(p1) + bL1 u1 = 0. (A.1)

At equilibrium the coefficients of traders’ strategies are known, which implies that p1 is ob-

servationally equivalent to u1 and that both FDs and dealers can retrieve u1 from the price.

Therefore, the information set of a FD and a dealer in the first period coincide and are given by

ΩFD
1 = ΩD

1 = {u1}. In the second period, denote by µxFD2 =
∫ µ
0
xFD2 di and by xL2 , respectively

the aggregate position of FDs and second period liquidity traders. Impose market clearing:

µ(xFD2 − xFD1 ) + (xL2 − xL1 ) = 0,

and rearrange the first period market clearing condition as follows

(1− µ)xD1 = −
(
µxFD1 + xL1

)
.

Substitute the latter in the second period clearing equation to obtain

µxFD2 + xL2 + (1− µ)xD1 = 0. (A.2)

Once again, at a linear equilibrium the coefficient of traders’ strategies are known, which

implies that the price sequence {p1, p2} is observationally equivalent to {u1, xL2 }. Thus, the

second period information set of a FD is given by ΩFD
2 = {sv, u1, u2}. 2

Proof of Proposition 1

When τ η →∞, explicit computation of bL1 yields

bL1 = γL1 (γL2 + γ)(γL2 + µγ)Λ∗1τu2τ
2
v − 1.
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The above, together with (9a) yield a system of two equations in (bL1 ,Λ
∗
1) which can be solved

to obtain the following explicit expressions:

bL1 = − γ(1 + (γ + γL2 )(µγ + γL2 )µτu2τ v)

γ + (γ + γL2 )(µγ + γL2 )(µγ + γL1 )τu2τ v
(A.3a)

Λ∗1 =
1

τ v(γ + (µγ + γL1 )(µγ + γL2 )(γL2 + γ)τu2τ v)
. (A.3b)

From the expression in (A.3b) it is easy to see that an increase in any one of the model’s

parameters increases the liquidity of the market. For (A.3a) the expressions for the relevant

derivatives are as follows:

∂bL1
∂µ

=
γγL1 τu2τ v(γ − τu2τ v(γ + γL2 )(µγ + γL2 )2)

(γ + (γ + γL2 )(µγ + γL2 )(µγ + γL1 )τu2τ v)
2

(A.4a)

∂bL1
∂γ

=
γL1 τu2τ v(µγ

2 − (γL2 )2 − µτu2τ v(γ + γL2 )2(µγ + γL2 )2)

(γ + (γ + γL2 )(µγ + γL2 )(µγ + γL1 )τu2τ v)
2

(A.4b)

∂bL1
∂γL1

=
γ(γ + γL2 )(µγ + γL2 )τu2τ v(1 + µτu2τ v(γ + γL2 )(µγ + γL2 ))

(γ + (γ + γL2 )(µγ + γL2 )(µγ + γL1 )τu2τ v)
2

(A.4c)

∂bL1
∂γL2

=
γγL1 τu2τ v(µγ + γ + γL2 )

(γ + (γ + γL2 )(µγ + γL2 )(µγ + γL1 )τu2τ v)
2

(A.4d)

∂bL1
∂τ v

=
γγL1 τu2(γ + γL2 )(µγ + γL2 )

(γ + (γ + γL2 )(µγ + γL2 )(µγ + γL1 )τu2τ v)
2

(A.4e)

∂bL1
∂τu2

=
γγL1 τ v(γ + γL2 )(µγ + γL2 )

(γ + (γ + γL2 )(µγ + γL2 )(µγ + γL1 )τu2τ v)
2
. (A.4f)

Expressions (A.4c)-(A.4f) are positive. For (A.4a) to be positive, we need

τ v <
γ

(γ + γL2 )(µγ + γL2 )2τu2
, (A.5)

whereas for (A.4b) to be positive the following two conditions are required:

µ >

(
γL2
γ

)2

, τ v <
µγ2 − (γL2 )2

µτu2(γ + γL2 )2(µγ + γL2 )2
. (A.6)

2

Proof of Corollary 1

Taking the limit for τu2 →∞ in (A.3a) yields the desired result.

2

Proof of Proposition 2

In the second period a new mass of liquidity traders endowed with risk-tolerance coefficient

γL2 > 0 enter the market. A date-2 liquidity trader submits a market order

XL
2 (u2, su1) = bL21u2 + bL22su1 , (A.7)
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with u2 ∼ N(0, τ−1u2 ), and su1 = u1 + η, with η ∼ N(0, τ−1η ) and u2, η independent of all the

other random variables in the model. Consider the sequence of market clearing equations

µxFD1 + (1− µ)xD1 + xL1 = 0 (A.8a)

µ(xFD2 − xFD1 ) + (bL21u2 + bL22su1 − xL1 ) = 0. (A.8b)

Rearrange (A.8a) as follows:

(1− µ)xD1 = −
(
µxFD1 + xL1

)
.

Substitute the latter in (A.8b):

µxFD2 + bL21u2 + bL22su1 + (1− µ)xD1 = 0. (A.9)

A FD maximizes the expected utility of his second period wealth:

E

[
− exp

{
− 1

γ

(
(p2 − p1)xFD1 + (v − p2)xFD2

)}
|p1, p2

]
=

= E

[
exp

{
− 1

γ
(p2 − p1)xFD1

}(
− exp

{
− 1

γ
(v − p2)xFD2

})
|p1, p2

]
= exp

{
− 1

γ
(p2 − p1)xFD1

}
E

[
− exp

{
− 1

γ
(v − p2)xFD2

}
|p1, p2

]
(A.10)

= exp

{
− 1

γ
(p2 − p1)xFD1

}(
− exp

{
− 1

γ

(
E[v − p2|p1, p2]xFD2 − (xFD2 )2

2γ
Var[v − p2|p1, p2]

)})
,

where the last expression in (A.10) is due to CARA and normality. For given xFD1 the above

is a concave function of the second period strategy xFD2 . Solving the FOC, yields that in the

second period a FD’s limit order is given by XFD
2 (p1, p2) = −γτ vp2. Similarly, due to CARA

and normality, in the first period a traditional market maker maximizes

E

[
−exp

{
− 1

γ
(v−p1)xD1

}
|p1
]

= − exp

{
− 1

γ

(
E[v−p1|p1]xD1 −

(xD1 )2

2γ
Var[v−p1|p1]

)}
. (A.11)

Hence, his strategy is given by XD
1 (p1) = −γτ vp1. Substituting these strategies in (A.9) and

solving for p2 yields

p2 = λ2
(
bL21u2 + bL22su1

)
− 1− µ

µ
p1, (A.12)

where λ2 = 1/µγτ v. The assumption that first period liquidity traders’ strategies are linear

implies that p1 = −Λ1u1 (see below). As a consequence we can rewrite (A.12) as follows:

p2 = λ2(b
L
21u2 + bL22su1) + λ2(1− µ)γτ vΛ1u1. (A.13)

CARA and normality assumptions imply that the objective function of a second period liquidity
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trader is given by

E[− exp{−πL2 /γL2 }|ΩL
2 ] = − exp

{
− 1

γ

(
E[πL2 |ΩL

2 ]− 1

2γ
Var[πL2 |ΩL

2 ]

)}
, (A.14)

where ΩL
2 = {u2, su1}, and πL2 ≡ (v − p2)xL2 + u2v. Maximizing (A.14) with respect to xL2 , the

strategy of a second period liquidity trader is given by

XL
2 (u2, su1) = γL2

E[v − p2|ΩL
2 ]

Var[v − p2|ΩL
2 ]
− Cov[v − p2, v|ΩL

2 ]

Var[v − p2|ΩL
2 ]

u2. (A.15)

Computing

E[v − p2|ΩL
2 ] = −

(
λ2(b

L
21u2 + bL22su1) +

1− µ
µ

Λ1
τ η

τ η + τu1
su1

)
(A.16a)

Var[v − p2|ΩL
2 ] =

µ2(τu1 + τ η) + ((1− µ)Λ1)
2τ v

µ2(τu1 + τ η)τ v
(A.16b)

Cov[v − p2, v|ΩL
2 ] =

1

τ v
. (A.16c)

Substituting (A.16a), (A.16b), and (A.16c) in (A.15) and identifying coefficients yields

XL
2 (u2, su1) = bL21u2 + bL22su1 ,

where

bL21 = − 1

τ v(γL2λ2 + Var[v − p2|ΩL
2 ])

(A.17a)

bL22 = − γL2 τ ηλ2(1− µ)γτ vΛ1

(τ η + τu1)(γ
L
2λ2 + Var[v − p2|ΩL

2 ])
. (A.17b)

According to (A.15) second period liquidity traders’ strategies react both to endowment and

informational shocks. Thus, there are two measures of the price impact of trades in the second

period (see (A.13)):

λ21 ≡
∂p2
∂u2

= λ2b
L
21 (A.18a)

λ22 ≡
∂p2
∂su1

= λ2b
L
22. (A.18b)

Expressions (A.18a) and (A.18b) respectively correspond to the price impact of a marginal

increase in the endowment shock and in the realization of the signal about u1 observed by

second period liquidity traders.

Consider now the first period. We start by characterizing the strategy of a FD. Substi-

tuting the optimal strategy in (A.10), rearranging and applying Lemma 2 yields the following
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expression for the first period objective function of a FD:

E[U((p2 − p1)xFD1 + (v − p2)xFD2 )|u1] = −
(

1 +
Var[p2|u1]

Var[v]

)−1/2
× (A.19)

exp

{
−1

γ

(
γτ v
2
ν2 + (ν − p1)xFD1 − (xFD1 + γτ vν)2

2γ

(
1

Var[p2|u1]
+

1

Var[v]

)−1)}
,

where

ν ≡ E[p2|u1] =

(
λ2b

L
22 +

1− µ
µ

Λ1

)
u1 (A.20a)

Var[p2|u1] = λ22

(
(bL21)

2

τu2
+

(bL22)
2

τ η

)
. (A.20b)

Maximizing (A.19) with respect to xFD1 and solving for the first period strategy yields

XFD
1 (p1) =

γ

Var[p2|u1]
ν − γ

(
1

Var[p2|u1]
+

1

Var[v]

)
p1. (A.21)

As we argued above, due to CARA and normality, for traditional market makers at date 1 we

have XD
1 (p1) = −γτ vp1. At equilibrium we then have

µ

(
γ

Var[p2|u1]
ν − γ

(
1

Var[p2|u1]
+

1

Var[v]

)
p1

)
+ (−(1− µ)γτ vp1) + bL1 u1 = 0,

implying that p1 is linear in u1: p1 = −Λ1u1, with Λ1 to be determined.

We now turn to the characterization of first period liquidity traders’ strategies. CARA and

normality imply

E[− exp{−πL1 /γL1 }] = − exp

{
− 1

γ

(
E[πL1 |u1]−

1

2γL1
Var[πL1 |u1]

)}
, (A.22)

where πL1 ≡ (p2 − p1)x
L
1 + u1p2. Maximizing (A.22) with respect to xL1 , and solving for the

optimal strategy, yields

XL
1 (u1) = γL1

E[p2 − p1|u1]
Var[p2 − p1|u1]

− Cov[p2 − p1, p2|u1]
Var[p2 − p1|u1]

u1. (A.23)

Computing

p2 − p1 =

(
λ2b

L
22 +

Λ1

µ

)
u1 + λ2

(
bL21u2 + bL22η

)
,

and

E[p2 − p1|u1] =

(
λ2b

L
22 +

Λ1

µ

)
u1 (A.24a)

Cov[p2 − p1, p2|u1] = Var[p2|u1]. (A.24b)
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Substituting the above in the strategy of a first period liquidity trader and identifying yields

XL
1 (u1) = bL1 u1, (A.25)

where

bL1 = γL1
µλ2b

L
22 + Λ1

µVar[p2|u1]
− 1. (A.26)

Substituting (A.21), xD1 , and (A.25) in the first period market clearing condition and solving

for the price yields p1 = −Λ1u1, where

Λ1 = ψ(Λ1) ≡ −
(
µγ

(
1

Var[p2|u1]
+

1

Var[v]

)
+ (1− µ)γ

1

Var[v]

)−1(
µ

γCov[p2, u1]

Var[p2|u1]Var[u1]
+ bL1

)
= −µγCov[p2, u1]τu1 + bL1 Var[p2|u1]

γ(µ+ τ vVar[p2|u1])
. (A.27)

According to (A.26), the equilibrium coefficient of a first period liquidity trader depends on bL21,

and bL22. Therefore, recursive substitution of the equilibrium strategies’ coefficients in (A.27)

shows that Λ1 is pinned down by the solution of the following equation in Λ1:

ψ(Λ1)− Λ1 =
(µγ + γL1 )(Cov[p2, u1]τu1 + Λ1) + Var[p2|u1](γτ vΛ1 − 1)

γ(µ+ τ vVar[p2|u1])
= 0. (A.28)

For µ ∈ (0, 1] the denominator in the above expression is positive, which implies that equilibria

are pinned down by solutions to the quintic at the numerator of (A.28):

f(Λ1) ≡ g1(Λ1) + g2(Λ1) + g3(Λ1) = 0, (A.29)

where

g1(Λ1) ≡ −µ3τ 2u1(1− γτ vΛ1) + Λ1τu2τ
2
v(γ

L
1 + µγ)(γτ vΛ

2
1(1− µ)2 + µτu1(γ

L
2 + µγ))2 (A.30a)

g2(Λ1) ≡ µ3τ 2η(Λ1τ v(γ + (γL1 + γ)(γL1 + µγ)(γL2 + µγ)τu2τ v)− 1), (A.30b)

and

g3(Λ1) ≡ τ η
(
− 2µ3τu1 − (γL2 )2Λ2

1(1− µ)2µτu2τ
2
v + γΛ3

1(1− µ)2µτu2τ
3
v×

(γL2 (γL1 + γL2 ) + (2γγL1 + (γ + γL1 )γL2 )µ+ µ2γ(γL2 + 2γ))+ (A.30c)

+ µ2Λ1τu1τ v(2µγ + (γL1 + µγ)(γL2 + µγ)(γL2 + 2µγ + µγL2 )τu2τ v)
)
.
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Collecting the terms in Λ1 in the quintic equation (A.29) yields

f(Λ1) = γ2(1− µ)4Λ5
1(µγ + γL1 )τu2τ

4
v

+ µγ(1− µ)2τu2τ
3
vΛ

3
1

(
((µγ + γL1 )(2µγ + γL2 (1 + µ)) + (γL2 )2)τ η + 2τu1(µγ + γL1 )(µγ + γL2 )

)
− (γL2 )2(1− µ)2µτ ητu2τ

2
vΛ

2
1 (A.31)

+ µ2(τ η + τu1)τ vΛ1

(
µγ(τ η + τu1) + (µγ + γL1 )(µγ + γL2 )(µγ(τ η + τu1) + γL2 (µτ η + τu1))τu2τ v

)
− µ3(τ η + τu1)

2 = 0.

The above expression shows that there are three sign changes in the sequence formed by the

quintic’s coefficients. Therefore, by Descartes’ rule of sign, there are up to three positive roots

of the equation f(Λ1) = 0.

Compute Cov[p2, u1]:

Cov[p2, u1] =
(1− µ)Λ1(τu1γ

L
2λ2 + (τu1 + τ η)Var[v − p2|ΩL

2 ])

µτu1(τu1 + τ η)(γL2λ2 + Var[v − p2|ΩL
2 ])

, (A.32)

which is positive if and only if Λ1 > 0. Consider (A.28) and suppose that at equilibrium Λ∗1 < 0.

From (A.32), Cov[p2, u1] < 0. Due to (A.28) this implies f(Λ∗1) < 0, which is impossible. Thus,

at equilibrium, Λ∗1 > 0, and Cov[p2, u1] ≥ 0. Similarly,

Cov[p2, u1|ΩL
2 ] = λ2(1− µ)γτ vΛ1Var[u1|su1 ] ≥ 0.

To sign the strategy coefficient of a first period liquidity trader, we use (A.26):

bL1 = γL1
Cov[p2, u1]τu1 + Λ1

Var[p2|u1]
− 1. (A.33)

From (A.33) we obtain

Var[p2|u1]
γL1

(1 + bL1 ) = Cov[p2, u1]τu1 + Λ1,

which substituted in (A.28) yields

f(Λ1) =
Var[p2|u1]

γL1

(
(µγ + γL1 )(1 + bL1 ) + γL1 (γτ vΛ1 − 1)

)
= 0. (A.34)

Solving the above for Λ1 yields:

Λ∗1 =
1

γτ v

(
1− (1 + bL1 )(µγ + γL1 )

γL1

)
(A.35a)

=
1

γL1 γτ v
(−µγ − bL1 (µγ + γL1 )). (A.35b)

Since Λ∗1 > 0, the last expression in (A.35a) implies that at equilibrium bL1 < 0. Furthermore,

using (A.33), 1 + bL1 > 0, which proves our result.
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Taking the limit for τ η →∞ in ψ(Λ1) yields:

lim
τη→∞

ψ(Λ1) =
1− Λ1(γ

L
2 + µγ)(γL1 (γ + γL2 ) + µγ2(1− µ))τu2τ

2
v

γτ v(1 + µ(γL2 + µγ)2τu2τ v)
. (A.36)

Identifying Λ1:

f(Λ1) = Λ1(τ v(γ + (γ + γL2 )(γL1 + µγ)(γL2 + γµ)τu2τ v)− 1 = 0,

and a unique solution with

Λ∗1|τη→∞ ≡
1

τ v(γ + (µγ + γL1 )(µγ + γL2 )(γL2 + γ)τu2τ v)
, (A.37)

obtains. Note that liquidity is in this case increasing in µ. Also, according to (A.36) we have

ψ′(Λ∗1) < 0.

2

Proof of Corollary 3

From Proposition 2 it is immediate that Var[v − p2|ΩL
2 ] is increasing in Λ1. Differentiating

Cov[p2, u1] yields

∂Cov[p2, u1]

∂Λ1

=
1− µ

µ(τu1 + τ η)
+

(1− µ)τ η(Var[v − p2|ΩL
2 ](γL2λ2 + Var[v − p2|ΩL

2 ]) + γL2λ2Λ1Var[v − p2|ΩL
2 ])

µτu1(τu1 + τ η)(γL2λ2 + Var[v − p2|ΩL
2 ])2

≥ 0,

for µ ≤ 1. Finally,

Cov[p2 − p1, p1] = − Λ2
1

µτu1

(
γL2λ2(µτ η + τu1) + Var[v − p2|ΩL

2 ](τ η + τu1)

(τ η + τu1)(γ
L
2λ2 + Var[v − p2|ΩL

2 ])

)
< 0.

2

Proof of Corollary 3

The equilibrium quintic (A.31) can be expressed as the sum of two polynomials: a quintic

in Λ∗1 that multiplies τu2 , and a first degree polynomial in Λ∗1 that does not depend on τu2 , as

shown in the expression below:

f(Λ1) =
[
Λ1(τu1(γ

L
2λ2 + Var[v − p2|ΩL

2 ]) + τ η(µγ
L
2λ2 + Var[v − p2|ΩL

2 ]))(µγ + γL1 )× (A.38)

(τu1 + τ η)(γ
L
2λ2 + Var[v − p2|ΩL

2 ])τ η + λ22(γ
L
2 τ ηλ2(1− µ)γτ vΛ1)

2(γτ vΛ1 − 1)µ
]
τu2τ

2
v

+ λ22(τu1 + τ η)
2µτ η(γτ vΛ1 − 1).
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Inspection of the equilibrium mapping ψ(Λ1) shows that if we let τu2 →∞, the corresponding

equilibrium quintic is proportional to the term in square brackets in (A.38) (i.e., the one that

multiplies τu2). We first concentrate on the analysis of this quintic:

f̂(Λ1) = Λ1(τu1(γ
L
2λ2 + Var[v − p2|ΩL

2 ]) + τ η(µγ
L
2λ2 + Var[v − p2|ΩL

2 ]))(µγ + γL1 )× (A.39)

(τu1 + τ η)(γ
L
2λ2 + Var[v − p2|ΩL

2 ])τ η + λ22(γ
L
2 τ ηλ2(1− µ)γτ vΛ1)

2(γτ vΛ1 − 1)µ.

First, note that f̂(0) = 0, implying that when τu2 →∞, Λ∗1 = 0 is an equilibrium of the model.

Additionally, considering h(Λ1) ≡ f̂(Λ1)/Λ1, a quartic in Λ1, we can pin down parameter

restrictions that ensure the existence of two additional equilibria. To see this, we start by

evaluating h(·) at Λ1 = 0 obtaining:

h(0) =
τ η(µγ + γL1 )(µγ + γL2 )(τu1 + τ η)(µγ(τu1 + τ η) + γL2 (τu1 + µτ η))

γ2µ2
> 0. (A.40)

Next, evaluating h(·) at the point Λ̄∗1 = 1/(1− µ), yields

h(Λ̄∗1) =
τ η
γ2τ 4η

× (A.41)(
(µγ + γL1 )(µ(µγ + γL2 )(τu1 + τ η) + γτ v)(µγ

L
2µ(τu1 + µτ η) + γ(µ2(τ η + τu1) + τ v))

− µ(γL2 )2τ η(1− µ− γτ v)
)
,

which is negative when the following parameter restrictions are satisfied:

0 < µ < µ̄ ≡ γL2 (
√

5γ2 + γL2 (2γ + γL2 )− (γ + γL2 ))

2γ2
(A.42a)

0 < τ v < τ̄ v ≡
(1− µ)(γL2 )2 − µγ(µγ + γL2 )

γ(γL2 )2
(A.42b)

τ η > τ η ≡
γ(µ(µγ + γL2 )τu1 + γτ v)

(1− µ− γτ v)(γL2 )2 − µγ(µγ + γL2 )
(A.42c)

0 < γL1 < γ̄L1 ≡
µ((γL2 )2τ η(1− µ− γτ v)− µγγL2 (τu1 + τ η)− γ2(τ v + µ2(τu1 + τ η)))

γτ v + µ(µγ + γL2 )(τu1 + τ η)
. (A.42d)

Therefore, when (A.42a)-(A.42d) hold, two additional equilibria exist (Λ∗1)
I ∈ (0, Λ̄∗1), and

(Λ∗1)
L ∈ (Λ̄∗1, 1/γτ v). This establishes that in the case τu2 → ∞, when (A.42a)-(A.42d) hold,

three equilibria: 0 < (Λ∗1)
I < Λ̄∗1 < (Λ∗1)

L < 1/γτ v, arise.

Consider now the general quintic (A.38). First, note that

f(0) = −τ η(τ η + τu1)
2

µ(γτ v)2
< 0. (A.43)
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Next, evaluating f(·) at Λ∗1 = µ/(1− µ) < Λ̄∗1 yields

f(Λ∗1) =
τ η
µγ2

{
(τ η + τu1)

2(µγτ v − (1− µ))

(1− µ)τ 2v
+

τu2
1− µ

(
(γL2 )2τ η(µγτ v − (1− µ)) + (A.44)

+ (µγ + γL1 )(γL2 (τu1 + τ η) + µγ(τu1 + τ η + τ v))(γ
L
2 (τu1 + µτ η) + µγ(τu1 + τ η + τ v))

)}
.

The sign of (A.44) is determined by the sign of the expression inside the curly brackets. As

Λ∗1 < 1/γτ v, the term µγτ v−(1−µ) < 0. Also, by inspection, the expression within parentheses

is positive provided that

γ > γ ≡ (1− µ)τ η − γL1 (τu1 + τ η)(τu1 + µτ η)

µ(τ vτ η + (τu1 + τ η)(τu1 + µτ η))
. (A.45)

Hence, if (A.45) holds, and

τu2 > τu2 ≡
(
(τ 2v((γ

L
2 )2(τ η(µγτ v − (1− µ)) + (µγ + γL1 )(τ 1 + τ η)(τu1 + µτ η)) + µγγL2×

(µγ + γL1 )(τ 1 + τ v + τ η)(2τu1 + τ η(1 + µ)) + (µγ + γL1 )(µγ)2(τu1 + τ η + τ v)
2))
)−1×(

(τu1 + τ η)
2(1− µ− µγτ v)

)
, (A.46)

expression (A.44) is positive. This establishes the existence of an equilibrium 0 < (Λ∗1)
H < Λ∗1.

Finally, provided (A.42a)-(A.42d) hold, f(Λ̄∗1) < 0, since f̂(Λ̄∗1) < 0 and

γτ v
1− µ

< 1.

Therefore, we can conclude that when τu2 < ∞, if (A.42a)-(A.42d), and (A.45), (A.46) hold,

the model displays three equilibria:

0 < (Λ∗1)
H < Λ∗1 < (Λ∗1)

I < Λ̄∗1 < (Λ∗1)
L <

1

γτ v
. (A.47)

2
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(a) (b)

(c) (d)

Figure 10: Uniqueness at an equilibrium with high liquidity. A higher dealers’ risk tolerance (Panel (a)), proportion of FDs (Panel (b)),
precision of the payoff distribution (Panel (c)), or precision of the first period endowment shock (Panel (d)) can lead to a unique equilibrium
with high liquidity. Other parameters’ values are as in Figure 5.

41



(a) (b)

(c)

Figure 11: Uniqueness at an equilibrium with high and low liquidity. A higher signal precision (Panel (a)), or a lower second period traders’
risk tolerance (Panel (b)) can lead to a unique equilibrium with high liquidity. A high volatility of the second period endowment can lead to a
unique equilibrium with low liquidity (Panel (c)). Other parameters’ values are as in Figure 5.
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