
Market Power and Welfare in Asymmetric Divisible

Good Auctions∗

Carolina Manzano

Universitat Rovira i Virgili†
Xavier Vives

IESE Business School‡

June 2016

Abstract
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power of a group increases with the precision of its private information and decreases

with(its transaction costs. Consistent with the empirical evidence, we find that an increase

in the transaction cost of a group of bidders induces a strategic response of the other

group according to which they diminish their reaction to private information and submit

steeper schedules. The "stronger" group (with more precision of private information, lower

transaction costs and/or more oligopsonistic) has more market power and has to receive a
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1 Introduction

Divisible good auctions are common in many markets such as government bonds, liquidity (re-

financing operations), electricity, and emission markets.1 In those auctions both market power

and asymmetries among the participants are important. Even in large markets, asymmetries

may make market power relevant. However, the diffi culties in dealing with asymmetric bidders

with market power competing in demand or supply schedules, compounded by the presence

of private information, have been hampering theoretical work in this area. The present paper

contributes to fill the gap in analyzing asymmetric auctions.

Treasury auctions have bidders with significant market shares. This is particularly so in

systems where there is a primary dealership system with participation in the auctions limited

to a reduced number of bidders (this occurs, for example, in 29 out of 39 countries in the survey

of Arnone and Iden (2003)). A prime example are U.S. Treasury auctions (which are uniform-

pricing).2 In these auctions, it should be noted that the top five bidders typically purchase

close to one-half of US Treasury issues (Malvey and Archibald (1998)). Experimental work

finds substantial demand reduction in uniform-price auctions (see Kagel and Levin (2001) and

Engelbrecht-Wiggans et al. (2006), among others).

Armantier and Sbaï (2006) test whether bidders in French Treasury auctions are symmetric.

The authors conclude that participants in French Treasury auctions may be divided into two

distinct groups, differentiated by their level of risk aversion and the quality of their information

about the value of the security to be sold. One small group consists of large financial institutions,

which possess better information and are willing to take more risks. Kastl (2011) also finds

evidence of two differentiated groups of bidders in (uniform price) Czech Treasury auctions.

Other papers that also report asymmetries between bidders in Treasury auctions are Umlauf

(1993) in Mexico, Bjonnes (2001) in Norway, and Hortaçsu and McAdams (2010) in Turkey,

among others.

Bindseil et al. (2009) and Cassola et al. (2013) also find that heterogeneity between bidders

in liquidity auctions is relevant. Cassola et al. (2013), analyzing the evolution of bidding data

in the European Central bank’s weekly refinancing operations before and during the early part

of the financial crisis, show that the impact of the 2007 subprime market crisis was hetero-

geneous among European banks. Moreover, the authors conclude that the significant shift in

1See Lopomo et al. (2011) for examples of such auctions.
2The reduced number of primary dealers makes the U.S. Treasury market imperfectly competitive (Bikhchan-

dani and Huang (1993)). Uniform-price auctions have been and are used often in Treasury, liquidity and elec-

tricity auctions, among others. See Brenner et al. (2009) for Treasury auctions, with the US a leading example

since November 1998.
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bidding behavior after August 9, 2007 may reflect a change in their cost of obtaining short-term

funding in the interbank market and/or a strategic response to other bidders. Concretely, the

authors find that one third of bidders did not experience any change in their costs of short-term

funds from alternative sources and the change in their bidding behavior was simply a strategic

response: they increased their bids so as to best-respond to the higher bids of their rivals.3

Market concentration is high in other markets, such as wholesale electricity. This issue

has attracted attention of academics and policymakers. A number of empirical studies have

concluded that sellers have exercised significant market power in wholesale electricity markets

(see Green and Newbery (1992), Wolfram (1998), Borenstein et al. (2002), and Joskow and Kahn

(2002), among others). 4 Most, but not all, wholesale electricity markets use a uniform-price

auction which tends to be preferred to a pay-as-you-bid auction (see Cramton and Stoft (2006,

2007)). In several of those markets (such as in California or Australia) generating companies

bid to sell power and wholesale customers bid to buy power. In addition, in these markets

asymmetries are prevalent. For example, in wholesale electricity markets some generators have

a high proportion of nuclear technology, with very flat marginal costs, while others have a

high proportion of fossil fuel technologies with steep marginal costs. Holmberg and Wolak

(2015) argue specifically that in wholesale electricity markets there is asymmetric information

in the production costs of suppliers. Evidence of the impact of cost heterogeneity on bidding in

wholesale electricity markets is provided in Bustos-Salvagno (2015) and Crawford et al. (2007).

This paper makes progress within the linear-Gaussian family of models by incorporating

bidders’asymmetries in terms of payoffs and information. We present a model of a uniform price

auction where asymmetric strategic bidders compete in demand schedules for an inelastic supply

(supply schedule competition for an inelastic demand is easily accommodated). Bidders may

differ in their valuations, transaction costs and/or the precision of their private information.5

For simplicity, and with empirical foundation, heterogeneity is reduced to two groups. Agents

are identical within each group. In this setting, we analyze under which conditions a linear

equilibrium with symmetric treatment of agents of the same group exists, i.e., equilibria such

3Bidder asymmetry has also been found in procurement markets such as school milk (Porter and Zona (1999)

and Pesendorfer (2000)) and public works (Bajari (1998)).
4In January 2007, the European Commission asserted that “...at the wholesale level, gas and electricity

markets remain national in scope, and generally maintain the high level of concentration of the pre-liberalization

period. This gives scope for exercising market power. . . ”(Inquiry pursuant to Article 17 of Regulation (EC) No

1/2003 into the European gas and electricity sectors (Final Report), Brussels, 10.1.2007).
5One reason behind the differences in private information among bidders maybe the presence of both dealers

and direct bidders in auctions (such as in U.S. Treasury auctions). Dealers aggregate the information of clients

and bid with a higher precision of information (see the evidence of Hortaçsu and Kastl (2012) for Canadian

Treasury auctions and Boyarchenko et al. (2015) for a theoretical model).

2



that the demand functions are linear and identical among individuals of the same type. We

show that when equilibrium exists it is unique and we derive comparative statics results.

In particular, our analysis shows that the number of individuals of a group, the transactions

costs, the correlation of values and the precision of private information affect the sensitivity of

traders’demands to private information and prices. More correlated values induce traders to

react less to the private signal and the price. We also find that the relative market power of a

group increases with the precision of its private information and decreases with its transaction

costs. For example, an increase in the transaction cost of a group of bidders induces a strategic

response of the other group according to which they diminish their reaction to private informa-

tion and submit steeper schedules. This is consistent with the empirical findings of Cassola et

al. (2013) in the post-crisis liquidity auctions in Europe.

If a group of traders is "stronger" (with more precision in private information, lower trans-

action costs and/or more oligopolistic/oligopsonistic) then they react more to the private signal

and the price. This may help explain the finding by Hortaçsu and Puller (2008) in the Texas

balacing market, where there is no accounting for private information on costs, that small firms

use steeper schedules than predicted by theory.6

We find also that with asymmetric groups bid shading may turn into a bid premium. Ex-

pected revenue in the auction where the expected values between groups differ need not be

decreasing in the transaction costs of bidders, the noise in their signals, or the correlation of

values. This contrasts with the result when groups are symmetric. We bound the expected

revenue of the auction between the revenues of auctions with symmetric extremal identical

groups.

We consider large markets and find that when there is a small group and a large group, then

the oligopsonistic group commands a higher degree of market power but the large group does

not behave competitively, retaining some market power. We also prove that the equilibrium

under imperfect competition converges to a price-taking equilibrium in the limit as the number

of traders of both groups becomes large.

Finally, we provide a welfare analysis. We characterize the deadweight loss at the equilibrium

and show how a subsidy scheme may induce an effi cient allocation. We find that if there is a

group with more precision in private information, with lower transaction costs or/and less

6It is worth noting that the linear supply function model has been used extensively in the estimation of

market power in wholesale electricity auctions. Holmberg et al. (2013) provide a foundation for the continuous

approach as an approximation to the discrete supply bids in a spot market. Brandts et al. (2013) find in

their experimental work that observed behavior is consistent with the supply function model rather than with

a discrete multi-unit auction model. Ciarreta and Espinosa (2010) provide empirical support for the smooth

supply model over the discrete-bid auction model with Spanish data.
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numerous, then this group should receive a higher subsidy. This is so since the "stronger" group

will behave more strategically and has to be compensated more to become competitive. In

addition, we highlight how the heterogeneity of bidders documented in the empirical papers, be

it informational or in terms of preferences or size of groups, may increase deadweight losses. In

particular, we find that the deadweight loss increases with the quantity auctioned and payoff

and informational asymmetry when the strong group values the asset at least as much as the

weak group.

This paper is related to the received literature on divisible good auctions. Results in sym-

metric pure common value models have been obtained by Wilson (1979), Back and Zender

(1993), and Wang and Zender (2002), among others.7

Results in interdependent values models with symmetric bidders are obtained by Vives

(2011, 2014) and Ausubel at al. (2014), among others. Vives (2011), focusing on the tractable

family of linear-Gaussian models, shows how private information yields more market power

than full information levels. Bergemann et al. (2015) generalize the information structure in

Vives (2011) keeping the symmetry assumption. Rostek and Weretka (2012) partially relaxes

the symmetry assumption in Vives (2011) and replaces it with a weaker “equicommonality”

assumption on the matrix correlation among the agents’values. This assumption states that

the sum of correlations in each column of this matrix (or, equivalently, in each row) is the same,

and that the variances of all traders’values are also the same. Unlike our model, Rostek and

Weretka’s model maintains the symmetry assumption of the precision of private signals and

transaction costs. As a result, the equilibrium derived in their paper is still symmetric, with all

traders using identical strategies.8

Despite the importance of bidder asymmetry, results in multiunit auctions have been diffi cult

to obtain. This is the reason why most of the papers that deal with this issue focus on auctions

for a single item. In sealed-bid first price single-unit auctions an equilibrium exists under quite

general conditions (Lebrun (1996), Maskin and Riley (2000a) and Athey (2001), Reny and Zamir

(2004)) and uniqueness is explored in Lebrun (1999) and Maskin and Riley (2003). Maskin and

Riley (2000b) study asymmetric auctions and Cantillon (2008) shows that the seller’s expected

7Wilson (1979) compares a uniform-price auction for a divisible good with an auction in which the good is

treated as an indivisible good. This author finds that the price can be significantly lower if bidders are allowed to

submit bid schedules rather than a single bid price. Back and Zender (1993), extending Wilson (1979), compare

a uniform-price auction with a discriminatory auction. It is shown that there exist equilibria in which the seller’s

revenue can be much lower than the revenue obtained in the discriminatory auction. Wang and Zender (2002)

show that if there is supply uncertainty and bidders are risk averse, there may exist equilibria of a uniform-price

auction that provide higher expected revenue than the revenue obtained in a discriminatory auction.
8Ausubel at al. (2014) find that in symmetric auctions with decreasing linear marginal utility, the seller’s

revenue is larger in a discriminatory auction than in a uniform-price auction.
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revenue is lower the more asymmetric bidders are. Under complete information progress has

been made in linear divisible good auction models by characterizing linear supply function

equilibria (e.g., Akgün (2004) and Anderson and Hu (2006)). One exception incorporating

incomplete information is Kyle (1989). This author considers a Gaussian model of a divisible

good double auction where some bidders are privately informed and others are uninformed.

The remainder of this paper is organized as follows. Section 2 outlines the model. Section

3 characterizes the equilibrium, analyzes its existence and uniqueness and derives comparative

statics results. Large markets are dealt with in Section 4 and the welfare analysis is developed

in Section 5. Concluding remarks are presented in Section 6 and the proofs are gathered in the

Appendix.

2 The model

A finite number of traders face an inelastic supply for a risky asset. Let Q denote the aggregate

quantity supplied in the market. In this market there are buyers of two types: type 1 and type

2. Suppose that there are ni traders of type i, i = 1, 2. The profits of a representative trader of

type i, trader h, when the price of the asset is p, are given by

πh = (θi − p)xh −
λi
2
x2
h.

Thus, for any trader of type i, the marginal benefit of buying xh units of the asset is θi − λixh,
where θi denotes the valuation of the asset and the parameter λi > 0 is an adjustment for

transaction costs, opportunity costs or proxy for risk aversion. Traders maximize expected

profits and submit demand schedules, and an auctioneer selects a price that clears the market.

The case of supply schedule competition for an inelastic demand is easily accommodated by

considering negative demands (x < 0 ) and an inelastic demand Q < 0. In this case a producer

of type i has a quadratic production cost −θixi + λi
2
x2
i .

We assume that θi is normally distributed with mean θi and variance σ2
θ, i = 1, 2. Moreover,

θ1 and θ2 can be correlated, with correlation coeffi cient ρ ∈ [0, 1] . Thus, cov(θ1, θ2) = ρσ2
θ.
9 All

traders of type i receive the same noisy signal si = θi + εi, where εi is normally distributed,

with null mean and variance σ2
εi
. Error terms in the signals are uncorrelated across groups

(cov(ε1, ε2) = 0) and with the valuations of the asset (cov(εi, θj) = 0, i, j = 1, 2).

In our model two traders of distinct types may differ in several aspects:

1) different ex-ante willingness to possess the asset
(
θ1 6= θ2

)
,

9Notice that the value of ρ will depend of the type of security. In this sense, Bindseil et al. (2009) argue

that the common value component is less important in a central bank repo auction than in a T-bill auction.
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2) different transaction costs (λ1 6= λ2) , or

3) different precisions of private information (σ2
ε1
6= σ2

ε2
).

Applications of this model are Treasury auctions and liquidity auctions. For Treasury auc-

tions, θi is the private value of the securities to bidder i which incorporates the resale value

as well as idiosyncratic elements such as different liquidity needs between bidders of the two

groups. The private information in this context stems from different expectations about θ (for

instance, bidders have different forecasts of inflation, and securities are denominated in nominal

terms). For the case of liquidity auctions, θi is the price or interest rate that group i may

command in the secondary interbank market (which is OTC). Here λi reflects the structure of

a counterparty’s pool of collateral in a repo auction. A bidder bank prefers to offer illiquid

collateral to the central bank in exchange for funds, but as allotment increases, the bidder must

offer more liquid types of collateral, which have a higher opportunity cost.

3 Equilibrium

Denote byXi the strategy of a bidder of type i, i = 1, 2, a mapping from signal space to the space

of demand functions. Thus, Xi(si, ·) is the demand function of a bidder of type i corresponding
to a given signal si. In a Bayesian equilibrium, given his signal si, each bidder chooses a demand

function to maximize his conditional profit, taking as given the strategies of other traders. We

will restrict attention to anonymous linear Bayesian equilibria where strategies are identical

among the traders of the same type, "equilibrium" for short.

Definition. An equilibrium is a linear Bayesian equilibrium such that the demand functions
for traders of type i, i = 1, 2, are identical and equal to

Xi(si, p) = bi + aisi − cip,

where bi, ai and ci are constants.

3.1 Equilibrium characterization

Consider a trader of type i. Given linear strategies of rivals and market clearing (i.e., (ni −
1)Xi(si, p) + xi +njXj(sj, p) = Q, where j = 1, 2 and j 6= i), this trader faces a residual inverse

supply

p = Ii + dixi,

where the intercept Ii = ((ni − 1) (bi + aisi) + nj (bj + ajsj)−Q) / ((ni − 1) ci + njcj) reveals

sj (together with si and when aj 6= 0) and the slope di = ((ni − 1) ci + njcj)
−1 is an index of
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the market power of the trader.10 Hence, this trader’s information set (si, p) is informationally

equivalent to (si, Ii). Therefore, this bidder chooses xi to maximize

E [πi|si, p] = (E [θi|si, Ii]− Ii − dixi)xi −
λi
2
x2
i .

The F.O.C. is given by

E [θi|si, Ii]− Ii − 2dixi − λixi = 0

or, equivalently,

Xi (si, p) =
E [θi|si, p]− p

di + λi
. (1)

The S.O.C. that guarantees a maximum is 2di +λi > 0. Using the expression of Ii and provided

that aj 6= 0, (si, p) is informationally equivalent to (s1, s2). Hence, since E [θi|si, p] = E [θi|si, Ii] ,
we have that

E [θi|si, p] = E [θi|s1, s2] . (2)

From Gaussian distribution theory,

E [θi|si, sj] = θi + Ξi

(
si − θi

)
+ Ψi

(
sj − θj

)
, (3)

where

Ξi =
1− ρ2 + σ̂2

εj(
1 + σ̂2

εi

) (
1 + σ̂2

εj

)
− ρ2

and Ψi =
ρσ̂2

εi(
1 + σ̂2

εi

) (
1 + σ̂2

εj

)
− ρ2

,

with σ̂2
εi

= σ2
εi
/σ2

θ and σ̂
2
εj

= σ2
εj
/σ2

θ. Notice that (3) implies that

1) the private signal si is useful in the prediction of θi whenever 1 − ρ2 + σ̂2
εj
6= 0, i.e.,

the liquidation values are not perfectly correlated (ρ 6= 1) or traders of type j are imperfectly

informed about θj (σ2
εj
6= 0), and

2) the private signal sj is useful in the prediction of θi, i, j = 1, 2, i 6= j, whenever ρσ̂2
εi
6=

0, i.e., when the private liquidation values are correlated (ρ 6= 0) and traders of type i are

imperfectly informed about θi (σ2
εi
6= 0).

The next proposition summarizes the previous results, shows the relationship between ai and ci
in equilibrium and the positiveness of these coeffi cients.

Proposition 1. Let ρ < 1. In equilibrium, the demand function of a trader of type i,

i = 1, 2, is given by

Xi (si, p) =
E [θi|si, p]− p

di + λi
,

10We assume that (ni − 1) ci + njcj 6= 0.
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with di + λi > 0, di = ((ni − 1) ci + njcj)
−1, and ai = ∆ici > 0, ∆i =

(
1 + (1 + ρ)−1 σ̂2

εi

)−1
,

i = 1, 2.11

The equilibrium demand function depends on E [θi|si, p]. Concerning the price coeffi cient
(see Lemma A1 in the Appendix), ci =

(
1−Ψi (nici + njcj) (njaj)

−1) / (di + λi) , in Expression

(11) the term Ψi (nici + njcj) (njaj)
−1 is the information-sensitivity weight of the price. Notice

that the more informative the price is (Ψi (nici + njcj) (njaj)
−1 higher), the lower the price

coeffi cient will be (ci lower). Moreover, notice that this term vanishes when Ψi = 0, i.e., when

the liquidation values are uncorrelated or the private signal si is perfectly informative (ρ = 0 or

σ2
εi

= 0), since in these cases the price does not convey any additional information to a trader

of type i.

Concerning the case ρ = 1, an equilibrium does not exist. The reason of this fact is the

following: if the price reveals a suffi cient statistic for the common liquidation value, then no

trader has an incentive to put any weight on his signal. But if traders put no weight on signals

then the price cannot contain any information on the common valuation. This is the basically

the Grossman-Stiglitz paradox (1980). From now on, we focus on the cases in which ρ < 1.

Since ai > 0 and ci > 0, i = 1, 2, in an equilibrium the higher the value of the private

signal observed by a trader or the lower the price, the higher the quantity demanded by him.

Therefore, in an equilibrium (2) holds and, consequently, we have that the equilibrium price is

privately revealing, i.e., the private signal and the price allows a trader of type i to learn about

θi as much as he would if he had access to all the information available in the market, (s1, s2) .

When ρ = 0 or when both signals are perfectly informative (σ2
εi

= 0, i = 1, 2), the optimal

demand functions are given by Xi (si, p) = (E [θi|si]− p) / (di + λi), i = 1, 2. Hence, it follows

that ci = (di + λi)
−1 , and using the expressions of di, it follows that

di =

(
ni − 1

di + λi
+

nj
dj + λj

)−1

, i, j = 1, 2, j 6= i.

It can be shown that whenever n1 + n2 > 2, then this system has a unique solution satisfying

di + λi > 0, i = 1, 2.

Another setup where the price is also not useful in providing information is the full (shared)

information framework. In fact, the equilibrium values of d1 and d2 when ρ = 0 are equal to

those corresponding to the full (-shared) information setup (denoted by dfi , i = 1, 2). We have

that dfi < di for i = 1, 2. Asymmetric information induces market power over and above the

full information level.

The following proposition shows under which conditions an equilibrium exists. In case of

existence, its uniqueness is guaranteed.
11Notice that 2di + λi > 0 implies that di + λi > 0, i = 1, 2.
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Proposition 2. There exists a unique equilibrium if and only if zN > zD, where zN and

zD denote the highest root, respectively, of qN (z) and qD (z), with

qN (z) = n2
2

Ξ1

∆1

+ n2

(
Ξ1

∆1

(2n1 − 1)− (n1 + 1)

)
z − (n1 − 1)

(
1− Ξ1

∆1

)
n1z

2

and

qD (z) = −n2 (n2 − 1)

(
1− Ξ2

∆2

)
+ n1

(
Ξ2

∆2

(2n2 − 1)− (n2 + 1)

)
z + n2

1

Ξ2

∆2

z2.

Let z = c1
c2
. If λi > 0, i = 1, 2, in equilibrium zD < z < zN and lim

λ1→0
z = zN and lim

λ2→0
z = zD.

For an equilibrium to exist we need that ci > 0, i = 1, 2. For a better understanding of the

equilibrium and the condition that guarantees its existence, we develop some particular cases.

Remark 1. If n1 = 1 and n2 = 1, we have that zN =
(
2∆1Ξ−1

1 − 1
)−1

and zD = 2∆2Ξ−1
2 −

1. Given that ∆iΞ
−1
i > 1, i = 1, 2, direct computations yield zN < zD. Applying Proposition

2, we can conclude that in this case an equilibrium does not exist. Therefore, n1 + n2 ≥ 3 is a

necessary condition for the existence of an equilibrium in our model. This result is in line with

Kyle (1989) and Vives (2011).

We consider two particular cases of the model: a monopsony competing with a fringe and

symmetric groups.

Monopsony with fringe

Corollary 1. If n2 = 1, the equilibrium exists if 1 − ρ2 > (2ρ− 1) σ̂2
ε1
and n1 >

n̄1

(
ρ, σ̂2

ε1
, σ̂2

ε2

)
, where n̄1 increases in ρ, σ̂2

ε1
and σ̂2

ε2
. If, furthermore, λ2 = 0 and σ2

ε2
= 0,

then n̄1

(
ρ, σ̂2

ε1
, σ̂2

ε2

)
=

(1+ρ+σ̂2
ε1)(1−ρ)

1−ρ2−(2ρ−1)σ̂2
ε1

, and x2 = c2 (θ2 − p) , with c2 = n1c1.

An equilibrium with linear demand functions exists provided there is a suffi ciently competi-

tive trading environment (n1 high enough). In the particular case in which λ2 = 0 and σ2
ε2

= 0,

the expressions of the equilibrium coeffi cients can be explicitly characterized (see the Appen-

dix). Using the expressions of ci, i = 1, 2, it follows that if n1 = n̄1, then the equilibrium does

not exist because the demand functions would be completely inelastic (ci = 0, i = 1, 2).

Symmetric groups

Consider the following symmetric case: n2 = n1 = n, λ1 = λ2 = λ, and σ2
ε1

= σ2
ε2

= σ2
ε.

In this case in equilibrium z = 1. From Proposition 2, we know that when the equilibrium

exists the value of z belongs to the interval (zD, zN) . Therefore, zN > 1 > zD, or equivalently,
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qN (1) > 0 and qD (1) > 0. After some algebra, we have that the previous inequalities are

satisfied if and only if n > 1 + ρσ̂2
ε

(
(1− ρ)

(
1 + ρ+ σ̂2

ε

))−1
, where σ̂2

ε = σ2
ε/σ

2
θ. Therefore, the

existence of equilibrium is guaranteed provided that n is high enough, or when ρ or σ̂2
ε are low

enough.

Vives (2011) also analyzes divisible good auctions with symmetric bidders, but in his model

the private signals of bidders are different among them. In his setup the condition that guaran-

tees the existence of equilibrium is 2n > 2+M , whereM = 2nρσ̂2
ε

(
(1− ρ)

(
1 + (2n− 1)ρ+ σ̂2

ε

))−1
.

Direct computations yield that the condition derived in Vives’model is more stringent than the

one derived in the present setup. The reason is that in Vives (2011) the degree of asymmetric

information (and induced market power) is higher since each of the 2n traders obtains a private

signal.

The remaining of this section is devoted to show some properties that satisfy the equilibrium

coeffi cients and to compare the equilibrium quantities.

Comparative statics

Corollary 2. Suppose that σ2
ε1
≥ σ2

ε2
, λ1 ≥ λ2, and n1 ≥ n2, with one (or more) of these

inequalities strict. In equilibrium,

a) group 2 ("strong" ) reacts more to information ( a1 < a2, c1 < c2) and has more market

power ( d1 < d2);

b) the difference d1 + λ1 − (d2 + λ2) is in general ambiguous. If

(1− ρ)n1n2

(
1 + ρ+ σ̂2

ε1

)
n2

(
1− ρ2 + σ̂2

ε1

)
+ n1ρσ̂

2
ε1

+
(1− ρ)n1 (n2 − 1)

(
1 + ρ+ σ̂2

ε2

)
n1

(
1− ρ2 + σ̂2

ε2

)
+ n2ρσ̂

2
ε2

≤ 1, (4)

then d1 + λ1 < d2 + λ2 always holds. Otherwise, d1 + λ1 > d2 + λ2 if and only if λ1/λ2 is high

enough.

The first part of Corollary 2 shows that if a group of traders is less informed, has higher

transaction costs or is more numerous, then it reacts less to both private signals and prices.

In particular, notice that traders of group 1 with less precise private information rely more on

the price for information (a higher Ψ1 (n1c1 + n2c2) (n2a2)−1) and this makes the overall price

response
(
c1 =

(
1−Ψ1 (n1c1 + n2c2) (n2a2)−1) / (d1 + λ1)

)
smaller. Similarly, traders of group

1 with n1 larger put more information weight on the price (which depends more strongly on s1).

The second part of Corollary 2 is useful to compare the allocations across groups. It indicates

that the inequality d1 + λ1 > d2 + λ2 holds whenever the differences between groups mainly
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stem from the transaction costs and λ1/λ2 is high enough.12 When signals are perfect (σ2
εi

= 0,

i = 1, 2), then d1 + λ1 > d2 + λ2 if and only if λ1 > λ2.

Corollary 3. Let Xi(si, p) = bi + aisi − cip be the equilibrium demand function of bidders

of type i, i = 1, 2. For i = 1, 2, i 6= j :

a) An increase in θi, Q, or a decrease in θj, raises bi.

b) An increase in λi, λj, σ2
εi
, σ2

εj
, or ρ makes demands less responsive to private signals and

prices (lower ai and ci) and increases market power ( di)

c) If σ2
εi
and/or λi increase, then di/dj decreases.

d) If ni and/or nj increase, then di decreases.

From Lemma A1, we know that the only equilibrium coeffi cient affected by the quantity

offered in the auction (Q) and the prior mean of the valuations (θi and θj) is the coeffi cient bi.

Corollary 3a indicates that if Q increases, all the bidders will increase their demand (higher b1

and b2). Moreover, if the prior mean of the valuation of group i increases, the bidders of this

group demand a higher quantity of the risky asset (higher bi). Then, the intercept of the inverse

residual supply for a bidder of group j is higher with an increase in θi. This makes traders of

group j to reduce their demand of the risky asset (lower bj).

Corollary 3b shows how the response to private information and price varies with several

parameters. If the transaction costs for a bidder increase, then the bidder is less interested

in the risky asset and ai and ci decrease in λi. Moreover, an increase in the transaction costs

parameter of a group also affects the behavior of the traders of the other group. If λi increases,

then ci decreases. Then the slope of the inverse residual supply for group j increases (higher

dj). This induces traders of group j to reduce their demand sensitivity to signals and prices

(lower aj and cj). We see, therefore, how an increase in the transaction cost of group i (say

a deterioration of their collateral in liquidity auctions) leads not only to a steeper demand for

group i but also to a steeper demand for group j as a reaction. Figure 1 depicts the case of

initially identical groups which differentiate with a shock that raises the willingness to pay for

liquidity in a weak group (2) with higher λ and a higher impact on θ.

Figure 1 here

We also analyze how the response to private information an price varies with a change in

the precision of private signals. If the private signal of bidders of type i is less precise (σ2
εi

rises), then the demand of these bidders is less sensitive to private information and prices. A

trader finds optimal to rely less on his private information when his private signal is less precise.

Moreover, the reduction in the precision of the private signal makes a bidder of type i to have

12This is due to the fact that when n1 = n2 and σ̂
2
ε1 = σ̂2ε2 , then (4) does not hold.
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more incentives to take prices into consideration when predicting θi and this leads to a steeper

demand function slope for this bidder (lower ci) and the same happens for a bidder of type j

(in this case because of strategic complementarity in the slopes of the demand functions).13

We also obtain the higher the correlation among the value parameters (higher ρ), the lower

the responsiveness to the private signals (lower ai, i = 1, 2) and steeper inverse demand functions

(lower ci, i = 1, 2). To understand these results recall that when there is correlation between

the value parameters (ρ > 0), a trader of type i learns about θi from prices. In fact, the larger

is ρ, the price is more informative about θi, which makes demands less sensitive to private

information. The rationale for the relationship between correlation and the sole of demand as

follows. An increment in the price of the risky asset makes agents more optimistic about its

liquidation value, which leads to a smaller reduction in the quantities demanded as compared

to the case of uncorrelated valuations.14

In addition, taking into account that the equilibrium values of d1 and d2 when ρ = 0 are

equal to those corresponding to the full (-shared) information setup, Corollary 3 implies that

di > dfi , i = 1, 2. Thus, private information creates market power over and above the full

information level.

Corollary 3c suggests that an increase in the noise in the signal of one group or in its

transaction costs parameter decreases relatively its market power since di/dj, i 6= j, decreases.

Corollary 3d provides the foreseeable result that an increase in the number of participants

in the auction (higher ni or nj) reduces their market power.

Equilibrium quantities

Finally, we examine the equilibrium quantities. Let ti = E [θi|s1, s2] , i = 1, 2, be the

predicted values with full information (s1, s2). After some algebra, it follows that equilibrium

quantities are functions of the vector of predicted values t = (t1, t2):

xi (t) =
nj (ti − tj)

ni (dj + λj) + nj (di + λi)︸ ︷︷ ︸
xIi (t)

+
dj + λj

ni (dj + λj) + nj (di + λi)
Q︸ ︷︷ ︸

xCi (t)

, i = 1, 2, j 6= i. (5)

Notice that these expressions indicate that the equilibrium quantities can be decomposed into

two terms: an information trading term and a clearing trading term, denoted respectively by

13This result (in the supply competition model) may help explain the fact that in the Texas balancing market

small firms use steeper supply functions than those predicted by theory (Hortaçsu and Puller (2008)). Indeed,

smaller firms may have signals of worse quality because of economies of scale in information gathering.
14Note that a high price conveys the good news that the private signal received by traders of the other group

is high. When the valuations are positively correlated, a bidder infers that a high private signal of the others

means that his own valuation is high.
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xIi (t) and xCi (t) for the group i, i = 1, 2. Regarding the information trading term, notice that it

vanishes when t1 = t2, whereas it has a positive (negative) value for the group with the higher

(lower) value of ti. Moreover, n1x
I
1 (t) + n2x

I
2 (t) = 0. Concerning the clearing trading term,

notice that it vanishes when Q = 0; otherwise, it is positive for both groups and it is lower

(higher) for the group with higher (lower) di + λi. In addition, n1x
C
1 (t) + n2x

C
2 (t) = Q.

Taking expectations in (5), we have

E [x1 (t)]− E [x2 (t)] =
n1 + n2

n1 (d2 + λ2) + n2 (d1 + λ1)

(
θ1 − θ2

)
+

d2 + λ2 − (d1 + λ1)

n1 (d2 + λ2) + n2 (d1 + λ1)
Q.

Combining the previous expression and Corollary 2, we obtain the following remarks.

Remark 3. If Q is low enough, then E [x1 (t)] > E [x2 (t)] whenever θ1 > θ2. By contrast, if

Q is high enough, then E [x1 (t)] > E [x2 (t)] whenever d2 +λ2 > d1 +λ1. Under the assumptions

of Corollary 2, this inequality if satisfied provided that (4) holds or whenever λ1/λ2 is low

enough.

Remark 4. If Q = 0, a the double auction case, then E [x2 (t)] < 0 < E [x1 (t)] if and only

if θ1 > θ2. Then group 1 are buyers and group 2 sellers. When Q = 0 it is easy to see that

bi =
σ̂2
εi
ai

1−ρ2

(
θi − ρθj

)
, i 6= j, i = 1, 2.

3.2 Bid shading, expected discount and expected revenue

In this subsection we would like to determine factors that affect the magnitudes of bid shading,

expected discount and expected revenue. Let t̃ = n1t1+n2t2
n1+n2

. From the demands of bidders, it

follows that p (t) = ti − (di + λi)xi (t) , i = 1, 2. Hence,

p (t) = t̃− (d1 + λ1)n1x1 (t) + (d2 + λ2)n2x2 (t)

n1 + n2

. (6)

Bid shading

For a trader of type i, the expected marginal benefit of buying xi units of the asset is

ti− λixi. Therefore, the average marginal benefit is given by t̃− (λ1n1x1 + λ2n2x2) / (n1 + n2) .

The magnitude of bid shading is the difference between the average marginal valuation and the

auction price, i.e., (d1n1x1 + d2n2x2) / (n1 + n2) . Using (5), bid shading is given by:

n2d2 (d1 + λ1) + n1d1 (d2 + λ2)

(n1 + n2) (n1 (d2 + λ2) + n2 (d1 + λ1))
Q+

(t2 − t1) (d2 − d1)n2n1

(n1 + n2) (n1 (d2 + λ2) + n2 (d1 + λ1))
, (7)

Some remarks are in order:
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• Bid shading increases in Q.

• When d1 = d2 = d (as, for instance, in the symmetric case), bid shading consists of only

one term (the first one) and it is equal to dQ/ (n1 + n2) .

• When d1 6= d2, the second term of (7) is negative whenever whenever the group that values

more the asset (t1 > t2) has less market power (d1 < d2).

• If group 1 has higher transaction costs (λ1 > λ2), is more numerous (n1 > n2), and less

informed (σ2
ε1
> σ2

ε2
), then c1 < c2, and hence, d1 < d2. If t1 > t2 the second term of (7)

is negative, and both terms have opposite sign. Therefore, we have that if Q is low (zero

for example) or if the difference of the predicted values of the asset is high, we obtain

negative bid shading.

Expected Discount

The expected discount is defined as E
[
t̃
]
−E [p (t)] . Using (6), we have that the expected dis-

count is equal to ((d1 + λ1)n1E [x1 (t)] + (d2 + λ2)n2E [x2 (t)]) / (n1 + n2) . After some algebra,

we obtain the following expression:

(d1 + λ1) (d2 + λ2)

n1 (d2 + λ2) + n2 (d1 + λ1)
Q+

n1n2 (d2 + λ2 − d1 − λ1)
(
θ2 − θ1

)
(n1 + n2) (n1 (d2 + λ2) + n2 (d1 + λ1))

. (8)

• When d1 + λ1 = d2 + λ2 = d + λ (as in the symmetric case), the expected discount is
(d+λ)Q
n1+n2

.

• The first term is always positive provided Q > 0, whereas the second term is positive

whenever d1 + λ1 > d2 + λ2 and θ1 > θ2.

• If the group 1 ex-ante values more the asset
(
θ1 > θ2

)
, is more risk averse (λ1 > λ2), is more

numerous (n1 > n2) and less informed (σ2
ε1
> σ2

ε2
), Corollary 2 shows that d1+λ1 > d2+λ2

whenever the differences between groups mainly stem from the transaction costs (and λ1

λ2
is

high enough). In this case, both terms are positive, and hence, we have that the expected

discount is positive. On the other hand, if both groups have similar transactions costs,

then the two terms in (8) have opposite signs. In particular, when Q is low, we expect a

negative discount.

Expected Revenue
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The expected price is given by

E [p] =
n1

d1+λ1
θ1 + n2

d2+λ2
θ2 −Q

n1

d1+λ1
+ n2

d2+λ2

.

and the expected revenue for the seller is E [p]Q. It is worth noting that in the double auction

case (Q = 0), E [p] is a convex combination of θ1 and θ2 and for symmetric groups except

possibly for the means E [p] =
(
θ1 + θ2

)
/2.

Corollary 4.
a) If θ1 = θ2 the expected price is increasing in ni and decreasing in λi, σ2

εi
, or ρ, i = 1, 2.

Otherwise, if
∣∣θ1 − θ2

∣∣ is large enough these results need not hold.
b) The expected revenue:

- increases in θi, i = 1, 2, and in Q for E [p] > 0;

- is between the larger expected revenue of the auction in which both groups are ex-ante

identical with a large number of bidders (each group with max {n1, n2}), high expected valuation
(max

{
θ1, θ2

}
), low transaction costs (min{λ1, λ2}) and precise signals (min{σ2

ε1
, σ2

ε2
}) and

the smaller expected revenue of the auction in which both groups are ex-ante identical with the

opposite characteristics (i.e., min {n1, n2}, min
{
θ1, θ2

}
), max{λ1, λ2} and max{σ2

ε1
, σ2

ε2
}).

The corollary indicates that the relationship between the expected price and λi, σ2
εi
, or ρ,

i = 1, 2 is potentially ambiguous. For example, when θ2 − θ1 is high enough then E [p] is

decreasing in n1 . However, when θ1 = θ2 or Q is high enough, the derived results are in line

with the results derived in the symmetric case where E [p] = θ − (d+λ)
2n

Q (see, for instance,

Proposition 2 in Vives (2010)).

We are interested in understanding how ex-ante differences among bidders affect the seller’s

expected revenue. Suppose that the group 2 is "strong": with lower transaction cost (λ2 < λ1),

less numerous (n2 < n1) and better informed (σ2
ε2
< σ2

ε1
). If this group values less (θ2 < θ1)

(more (θ2 > θ1)) the asset, this reduces (rises) the expected revenue. If θ1 ≈ θ2, Corollary 4a

suggests that the fact that the group 2 is small (n2 < n1) reduces the expected revenue, while

the fact that they have low transaction costs and precise signals (λ2 < λ1 and σ2
ε2
< σ2

ε1
) has the

opposite effect positive effect. This means the ex-ante differences in the two groups affect the

seller’s expected revenue ambiguously in general. However, still we can obtain result b) using

result a).

4 Large markets

This section is concerned with determining whether the equilibrium under imperfect competition

converges to a price-taking equilibrium in the limit as the number of traders becomes large. We
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examine two possible scenarios: in the first one, a single group of bidders (the group 1) is large,

whereas in the second scenario both groups are large. We consider the case of an inelastic per

capita supply of q, i.e., Q = (n1 + n2)q.

4.1 Oligopsony with competitive fringe

Proposition 3. Let n1 → ∞ and n2 < ∞. Then equilibrium exists if and only if n2 >

n̄2

(
ρ, σ̂2

ε1
, σ̂2

ε2

)
, where n̄2 is increasing in ρ and σ̂

2
ε1
, and decreasing in σ̂2

ε2
whenever (2ρ− 1) σ̂2

ε1
<

1− ρ2.

• An agent in the large group just absorbs the inelastic demand in the limit ( lim
n1→∞

b1 = q,

lim
n1→∞

a1 = lim
n1→∞

c1 = 0), and keeps some market power ( lim
n1→∞

d1 > 0), while an agent in

the small group commands a higher degree of market power ( lim
n1→∞

d2 > lim
n1→∞

d1).

• The price in the limit depends only on the valuation and market power of the competitive
fringe:

lim
n1→∞

p = E [θ1|s1, s2]−
(

lim
n1→∞

d1 + λ1

)
q.

When n2 = 1, the existence condition boils down to the existence condition (2ρ− 1) σ̂2
ε1
<

1−ρ2 in Corollary 1. Proposition 3 shows that when n2 = n̄2

(
ρ, σ̂2

ε1
, σ̂2

ε2

)
, the demand function

for the group 2 would be completely inelastic
(

lim
n1→∞

c2 = 0

)
. This is the reason why the in-

equality n2 > n̄2

(
ρ, σ̂2

ε1
, σ̂2

ε2

)
is required for the existence of equilibrium. Neither the aggregate

demand of group 1 or of group 2 are flat in the limit and both groups command some market

power. We see that an agent in the large group just absorbs the inelastic supply, behaving like

a "Cournot quantity setter", and keeping some market power ( lim
n1→∞

d1 > 0), while the small

group commands a higher degree of market power ( lim
n1→∞

d2 > lim
n1→∞

d1).15

Using the expressions of the optimal demands given in Proposition 1, the market clearing

condition can be written as:

n1
E [θ1|s1, p]− p

d1 + λ1

+ n2
E [θ2|s2, p]− p

d2 + λ2

= (n1 + n2)q,

or,
n1

n1 + n2

E [θ1|s1, s2]− p
d1 + λ1

+
n2

n1 + n2

E [θ2|s1, s2]− p
d2 + λ2

= q.

Taking the limit when n1 converges to infinity in the previous expression, it follows that

E [θ1|s1, s2]− lim
n1→∞

p

lim
n1→∞

d1 + λ1

= q,

15This inequality is due to the fact that 0 = lim
n1→∞

c1 < lim
n1→∞

c2.
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which implies that lim
n1→∞

p = E [θ1|s1, s2]−
(

lim
n1→∞

d1 + λ1

)
q.

4.2 A large price-taking market

Consider now the following setup: there is a continuum of bidders [0, 1]. Let q denote the ag-

gregate (average) quantity supplied in the market. Suppose that a fraction µi of these bidders

(0 < µi < 1) are traders of type i, i = 1, 2. The following proposition characterizes the equilib-

rium of this continuum economy and shows that this equilibrium is the limit of equilibrium of

a finite economy:

Proposition 4. Suppose that Q = (n1 + n2)q, and that n1 and n2 go to infinity and that

ni/(n1 + n2) converges to µi, 0 < µi < 1, i = 1, 2. Then, the equilibrium coeffi cients converge to

the equilibrium coeffi cients of the equilibrium of the continuum economy setup, which are given

by

bi =
σ̂2
εi

(
ρλjq + µj

(
θi − ρθj

))
µiρλjσ̂

2
εi

+ µjλi
(
1− ρ2 + σ̂2

εi

) ,
ai =

µj (1− ρ2)

µiρλjσ̂
2
εi

+ µjλi
(
1− ρ2 + σ̂2

εi

) , and
ci =

µj (1− ρ)
(
1 + ρ+ σ̂2

εi

)
µiρλjσ̂

2
εi

+ µjλi
(
1− ρ2 + σ̂2

εi

) ,
where i, j = 1, 2, i 6= j.

5 Welfare analysis

This section focus on the welfare loss at the equilibrium. Initially, we provide a characterization

of the equilibrium allocation and a characterization of the deadweight losses.

5.1 A characterization of the equilibrium and effi cient allocations

Recall that ti = E [θi|s1, s2] , i = 1, 2, i.e., the predicted values with full information (s1, s2) and

t = (t1, t2) . The strategies in the equilibrium induce outcomes as functions of the realized vector

of predicted values t and are given in (5). It is easy to see that the outcome at the equilibrium

maximizes the following distorted benefit maximization program:16

Max
x1,x2

E
[
n1

(
θ1x1 − (d1 + λ1)

x2
1

2

)
+ n2

(
θ2x2 − (d2 + λ2)

x2
2

2

)∣∣∣∣ t]
16See Lemma A3 in the Appendix.
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s.t. n1x1 + n2x2 = Q,

where d1 and d2 are the equilibrium parameters. The effi cient allocation would obtain if we set

d1 = d2 = 0 and corresponds to a price taking equilibrium (denoted by a superscript o). The

equilibrium strategy of a bidder of type i, will be of the form: Xo
i (si, p) = boi +aoi s1−coip, i = 1, 2;

it will arise from the maximization of the following program:

max
xi

(E [θi|si, p]− p)xi −
λi
2
x2
i ,

taking prices as given, i = 1, 2. The F.O.C. of the two optimization problems will yield

E [θi|si, p]− p− λixi = 0, i = 1, 2.

Identifying coeffi cients and solving the corresponding system of equations, it follows that there

exists a unique equilibrium in this setup. The equilibrium coeffi cients coincide with those in

Proposition 4 for the continuum market.

Proposition 5. Let Q = (n1 + n2)q and µi = ni
n1+n2

, i = 1, 2. There exists a unique price-

taking equilibrium and the equilibrium coeffi cients coincide with the equilibrium coeffi cients of

the continuous setup, whose expressions are given in the statement of Proposition 4.

The following corollary provides some comparative statics results:

Corollary 5. Let i, j = 1, 2, i 6= j. The only equilibrium coeffi cients affected by Q, θi
and θj are the demand functions’intercepts ( boi which increases in θi and Q, and decreases in

θj). Moreover, the demands of group i are less sensitive to private signals and prices (ai and ci
lower) with an increase in λi, λj, ρ, σ2

εi
and µi, with a decrease in µj, and are not affected by

σ2
εj
.

Notice that under competitive behavior we derive an additional comparative statics result:

the relationship between the equilibrium coeffi cients and the proportion of individuals of group 1.

In particular, increasing the proportion µ1 of traders of type 1 leads to an increased information

component in the price for a type 1 trader Ψ1 (n1c
o
1 + n2c

o
2) (n2a

o
2)−1 and a lower overall response

to the price co1 = λ−1
1

(
1−Ψ1 (n1c

o
1 + n2c

o
2) (n2a

o
2)−1) and the opposite for a trader of type 2.

The fact that the auction outcome can be obtained as the solution to a maximization problem

with a more concave objective function suggests that ineffi ciency may be eliminated by quadratic

subsidies that compensate for the distortions. The subsidy κi to a trader of type i must be such

that it compensates for the distortion di (κi) taking into account the existence of the subsidy.

Since the aim is to induce competitive behavior, the trader should be lead to respond coi to the
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price. This means that the exact amount of the subsidy κi must be di(co1, c
o
2) since this would

be the distortion when traders use the competitive linear strategy. The following proposition

shows that with a proper selection of subsidies, bidders act as if they were competitive and,

consequently, the equilibrium allocation is effi cient.

Proposition 6. The quadratic subsidies κix2
i /2, i = 1, 2, with κi = di(c

o
i , c

o
j) =

(
(ni − 1) coi + njc

o
j

)−1
,

i = 1, 2, i 6= j, induces an effi cient allocation. The per capita subsidies κi, i = 1, 2, increase in

ρ, σ̂2
ε1
, σ̂2

ε2
, λ1 and λ2, and decrease in n1 and n2.

Combining Propositions 5 and 6, we have that the expressions of optimal subsidies are given

by

κi =
1

nj (1− ρ)

 (ni − 1)
(
1 + σ̂2

εi
+ ρ
)

niλjρσ̂
2
εi

+ njλi
(
1− ρ2 + σ̂2

εi

) +
ni

(
1 + σ̂2

εj
+ ρ
)

niλj

(
1− ρ2 + σ̂2

εj

)
+ njλiρσ̂

2
εj

−1

,

i = 1, 2, i 6= j. Notice also that the expressions of the optimal subsidies in the case ρ = 0 (or

full information) are much simpler: κi =
(
(ni − 1)λ−1

i + njλ
−1
j

)−1
, i = 1, 2.

Notice that the subsidies are decreasing in the number of traders due to the fact that the

competitive behavior is already approached in the market without subsidies when the number

of agents is large. Moreover, sgn{κ1 − κ2} = sgn{co1 − co2} . Thus, κ1 < κ2 if and only if co1 < co2.

Therefore, this indicates that the bidders who have to receive a higher subsidy are those whose

demands are more sensitive to the price. Taking into account Corollary 5, we can conclude

that if there is a group with more precision in private information, with lower transaction costs

or/and less numerous, then this group should receive a higher subsidy. This is so since the

"stronger" group has a more pronounced strategic behavior and has to be compensated more

to become competitive.

The result has policy implications. It implies, for example, that a central bank which aims

at distributing liquidity effi ciently among banks will relax collateral requirements (i.e., provide a

larger subsidy) to the strong group. This sounds counterintuitive because the effi ciency motive

may conflict with the central bank function as a lender of last resort which may tend to shore up

weak banks (e.g, the ECB relaxing the colateral requirements for Greek banks to avoid a melt-

down of the Greek banking system). In a wholesale electricity market characterized by a small

(oligopolistic) group and a fringe, a regulator that wants to improve productive effi ciency should

subsidize more the oligopolistic group. This could be accomplished by differential subsidies to

renewable energy technology that lower the marginal cost of production.
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5.2 Deadweight loss

The expected deadweight loss (denoted by E [DWL]) at the equilibrium is the difference between

expected total surplus at the effi cient allocation (denotedETSo) and at the equilibrium (denoted

by ETS). In the Appendix (see Lemma A4), it is shown that

E [DWL] =
1

2
λ1n1E

[
(x1 (t)− xo1 (t))2]+

1

2
λ2n2E

[
(x2 (t)− xo2 (t))2] ,

where (xo1 (t) , xo2 (t)) corresponds to the price-taking equilibrium. Using the expressions of

(x1 (t) , x2 (t)) and (xo1 (t) , xo2 (t)), it follows that

E [DWL] =
n2n1 (n2d1 + n1d2)2

2 (n2λ1 + n1λ2) (n2 (d1 + λ1) + n1 (d2 + λ2))2E (t1 − t2)2 +

+
n2n1 (n2d1 + n1d2) (λ2d1 − λ1d2)

(n2λ1 + n1λ2) (n2 (d1 + λ1) + n1 (d2 + λ2))2Q
(
θ1 − θ2

)
+

n2n1 (λ1d2 − λ2d1)2

2 (n2λ1 + n1λ2) (n2 (d1 + λ1) + n1 (d2 + λ2))2Q
2,

where E
[
(t1 − t2)2] =

(
θ1 − θ2

)2
+(1− ρ)2 σ2

θ

(
2 (1 + ρ) + σ̂2

ε1
+ σ̂2

ε2

)
/
((

1 + σ̂2
ε1

) (
1 + σ̂2

ε2

)
− ρ2

)
.

The expected deadweight loss consists of three terms. The first is purely due to uncertainty

and information, and is the product of two factors. The first one

n2n1 (n2d1 + n1d2)2

2 (n2λ1 + n1λ2) (n2 (d1 + λ1) + n1 (d2 + λ2))2

increases in d1 and d2. As d1 and d2 increase in ρ, we have that this multiplier increases in ρ.

The second factor E
[
(t1 − t2)2] decreases in ρ and in σ̂2

εi
, and vanishes when ρ approaches 1 or

in when there is no uncertainty (σ2
θ = 0) provided that θ1 = θ2. This second factor increases

with the dispersion in the values of the traders,
(
θ1 − θ2

)2
and ρ−1. Consequently, the first term

of E [DWL] may increase or decrease in ρ. The first term is the only one present in a double

auction (where Q = 0).

The third term derives from the absorption of Q by the traders and is increasing in the

quantity offered Q as well as in the discrepancy between d1/d2 and λ1/λ2. The second term

is an interaction term which is positive for Q > 0 if and only if (λ2d1 − λ1d2)
(
θ1 − θ2

)
> 0.

That is, when the relative distortion between groups d1/d2 is large when
(
θ1 − θ2

)
> 0. When

d1/d2 = λ1/λ2, E [DWL] consists of only the first term. This is due to the fact that in this case

the non-informational trading term corresponding to the equilibrium with imperfect competition

and the one corresponding to the competitive equilibrium coincide. Note that if we interpret

the traders as producers competing to supply a fixed demand Q, the condition d1/d2 = λ1/λ2
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means that the ratio of the production of the two types of firms is aligned with the slopes of

marginal costs. This condition guarantees productive effi ciency provided that θ1 = θ2 and ρ = 1

(and since there is a fixed demand this coincides with overall effi ciency).

In addition, if group 1 has higher transaction costs (λ1 > λ2), is more numerous (n1 > n2),

and less informed (σ2
ε1
> σ2

ε2
), then d1/d2 < λ1/λ2. Then, the third term of the expression of

E [DWL] is not null. In addition, if group 1 ex-ante values less the asset (θ1− θ2 < 0) then, the

second term of the expression of E [DWL] is positive.

The deadweight loss also increases with Q,
∣∣θ1 − θ2

∣∣, and |λ2d1 − λ1d2| when the "stronger"
group values no less the asset.

With full information, when σ2
ε1

= σ2
ε2

= 0, d1 and d2 are independent of ρ, and hence, we

can conclude that in this case E [DWL] decreases in ρ. Similarly, when ρ = 0, d1 and d2 are

independent of σ2
ε1
and σ2

ε2
, and E [DWL] decreases in σ2

ε1
and σ2

ε2
. The following proposition

summarizes some results.

Proposition 7. The deadweight loss may be increasing or decreasing with information pa-
rameters ( ρ, σ̂2

εi
). It increases with payoff and information asymmetry and with Q when the

"stronger" group (say i = 2) values no less the asset (i.e., λ1 > λ2, n1 > n2, σ2
ε1
> σ2

ε2
and

θ1 ≤ θ2). With symmetric groups the deadweight loss is independent of Q.

6 Concluding remarks

We analyze a divisible good uniform-price auction where two types of bidders compete. In

each group there is a finite number of identical bidders. At the unique equilibrium the relative

market power of a group increases with the precision of private information and decreases in

its transaction costs. Consistent with the empirical evidence, we find that an increase in the

transaction cost of a group of bidders induces a strategic response of the other group submitting

steeper schedules. The "stronger" group (with more precision of private information, lower

transaction costs and/or more oligopolistic) commands more market power and consequently

has to receive a higher subsidy to behave competitively. The deadweight loss increases with the

quantity auctioned and degree of payoff and informational asymmetry when the stronger group

values no less the asset.

The results have policy implications. Consider a regulator who wants to mitigate the in-

effi ciency arising out of market power in an industry with two groups of firms (e.g., a small

oligopolistic group and a competitive fringe). The regulator has to consider the strategic effects

of his intervention in one group on the behavior of the other group. We find that a regulator

who wants to mitigate the ineffi ciency arising out of market power should subsidize more the
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stronger/more oligopolistic group. Our framework is amenable to study competition policy

analyzing the effects of merger and industry capacity redistribution.

Appendix

Lemma A1. Let ρ < 1. In equilibrium, the demand functions for all the traders of type i,

i = 1, 2, are given by

Xi (si, p) =
E [θi|si, p]− p

di + λi
,

with di + λi > 0.17 The equilibrium coeffi cients satisfy the following system of equations:

bi =
(1− Ξi) θi −Ψiθj − Ψi(nibi+njbj−Q)

njaj

di + λi
, (9)

ai =
Ξi − niai

njaj
Ψi

di + λi
> 0, and (10)

ci =
1− Ψi(nici+njcj)

njaj

di + λi
, (11)

where i, j = 1, 2, j 6= i.Moreover, in equilibrium ai > 0, i = 1, 2.

Proof: Consider a trader of type i. Recall that at the beginning of Subsection 3.1 we obtain

Xi (si, p) = (E [θi|si, p]− p) / (di + λi) and E [θi|si, p] = E [θi|si, sj] . Since we are looking for
strategies of the form Xi (si, p) = bi + aisi − cip and Xj (sj, p) = bj + ajsj − cjp, we use these
expressions in the market clearing condition, and we get

p =
ni (bi + aisi) + nj (bj + ajsj)−Q

nici + njcj
,

and hence,

sj =
(nici + njcj) p+Q− ni (bi + aisi)− njbj

njaj
.

Thus, from Expression (3), it follows that

E [θi|si, sj] = (1− Ξi) θi −Ψiθj + Ψi

(
Q− nibi − njbj

njaj

)
+

(
Ξi −

niai
njaj

Ψi

)
si + Ψi

(
nici + njcj

njaj

)
p.

17Notice that from the S.O.C. we have that 2di + λi > 0, i = 1, 2.These inequalities imply that di + λi > 0,

i = 1, 2.
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Therefore, the expression of the optimal demand function of a bidder of type i, given in (1),

becomes

Xi (si, p) =
(1− Ξi) θi −Ψiθj + Ψi

(
Q−nibi−njbj

njaj

)
+
(

Ξi − niai
njaj

Ψi

)
si + Ψi

(
nici+njcj
njaj

)
p− p

di + λi
.

Identifying coeffi cients, we obtain the expressions of the demand coeffi cients given in (9)-(11).

Finally, we show the positiveness of the coeffi cients ai, i = 1, 2. From (10), we have

a1 =
Ξ1

n1Ψ1

n2a2
+ d1 + λ1

and a2 =
Ξ2

n2Ψ2

n1a1
+ d2 + λ2

.

Substituting the expression of a2 in the previous expression for a1 and operating, we get

a1 =
n2 (Ξ1Ξ2 −Ψ1Ψ2)

n2Ξ2 (d1 + λ1) + n1Ψ1 (d2 + λ2)
. (12)

Using (12) in the previous expression for a2, it follows that

a2 =
n1 (Ξ1Ξ2 −Ψ1Ψ2)

n1Ξ1 (d2 + λ2) + n2Ψ2 (d1 + λ1)
. (13)

Direct computations yield Ξ1Ξ2 − Ψ1Ψ2 = (1− ρ2) /
((

1 + σ̂2
ε1

) (
1 + σ̂2

ε2

)
− ρ2

)
> 0, whenever

ρ 6= 1. Moreover, using the positiveness of di + λi, Ξi and Ψi, i = 1, 2, we can conclude that in

equilibrium the coeffi cients a1 and a2 are strictly positive.

Lemma A2. Let z = c1/c2. In equilibrium,

b1 =
Ψ1

n2

n1Ξ2
a1

a2
− n2Ψ2

n1 (Ξ1Ξ2 −Ψ1Ψ2)
Q+ a1

(
Ξ2θ1 −Ψ1θ2

Ξ1Ξ2 −Ψ1Ψ2

− θ1

)
, (14)

a1 = ∆1c1, (15)

c1 =

Ξ1

∆1
− n1

n2

(
1− Ξ1

∆1

)
z − z

(n1−1)z+n2

λ1

, (16)

b2 =
Ψ2

n1

n2Ξ1
a2

a1
− n1Ψ1

n2 (Ξ1Ξ2 −Ψ1Ψ2)
Q+ a2

(
Ξ1θ2 −Ψ2θ1

Ξ1Ξ2 −Ψ1Ψ2

− θ2

)
, (17)

a2 = ∆2c2, and (18)

c2 =

Ξ2

∆2
− n2

n1

(
1− Ξ2

∆2

)
1
z
− 1

n1z+n2−1

λ2

, (19)

where ∆i = (ΞiΞj −ΨiΨj) / (Ξj −Ψi) =
(
1 + (1 + ρ)−1 σ̂2

εi

)−1
, i, j = 1, 2, j 6= i. Moreover, z is

the unique positive solution of the following equation:

λ1

λ2

=

Ξ1

∆1
− n1

n2

(
1− Ξ1

∆1

)
z − z

(n1−1)z+n2

Ξ2

∆2
z − n2

n1

(
1− Ξ2

∆2

)
− z

n1z+n2−1

. (20)
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Proof: In relation to the expressions of b’s, notice that (10) implies

d1 + λ1 =
Ξ1 − n1a1

n2a2
Ψ1

a1

and (21)

d2 + λ2 =
Ξ2 − n2a2

n1a1
Ψ2

a2

. (22)

Substituting these expressions in (9), it follows that

b1 = a1

(1− Ξ1) θ1 −Ψ1θ2 − Ψ1(n1b1+n2b2−Q)
n2a2

Ξ1 − n1

n2

a1

a2
Ψ1

and

b2 = a2

(1− Ξ2) θ2 −Ψ2θ1 − Ψ2(n1b1+n2b2−Q)
n1a1

Ξ2 − n2

n1

a2

a1
Ψ2

.

Thus,

n1b1+n2b2 = n1a1

(1− Ξ1) θ1 −Ψ1θ2 − Ψ1(n1b1+n2b2−Q)
n2a2

Ξ1 − n1

n2

a1

a2
Ψ1

+n2a2

(1− Ξ2) θ2 −Ψ2θ1 − Ψ2(n1b1+n2b2−Q)
n1a1

Ξ2 − n2

n1

a2

a1
Ψ2

,

which implies

n1b1 + n2b2 =
n1a1

n2a2
Ξ2Ψ1 − 2Ψ1Ψ2 + n2a2

n1a1
Ξ1Ψ2

Ξ1Ξ2 −Ψ1Ψ2

Q− a1n1θ1 − a2n2θ2 +

+
n1a1

(
Ξ2θ1 −Ψ1θ2

)
+ n2a2

(
Ξ1θ2 −Ψ2θ1

)
Ξ1Ξ2 −Ψ1Ψ2

.

Hence,

b1 =
Ψ1

n2

n1Ξ2
a1

a2
− n2Ψ2

n1 (Ξ1Ξ2 −Ψ1Ψ2)
Q+ a1

(
Ξ2θ1 −Ψ1θ2

Ξ1Ξ2 −Ψ1Ψ2

− θ1

)
and

b2 =
Ψ2

n1

n2Ξ1
a2

a1
− n1Ψ1

n2 (Ξ1Ξ2 −Ψ1Ψ2)
Q+ a2

(
Ξ1θ2 −Ψ2θ1

Ξ1Ξ2 −Ψ1Ψ2

− θ2

)
.

Concerning the expressions of a’s, substituting (21) and (22) in (11), it follows that

c1 = a1

1− Ψ1(n1c1+n2c2)
n2a2

Ξ1 − n1

n2

a1

a2
Ψ1

and (23)

c2 = a2

1− Ψ2(n1c1+n2c2)
n1a1

Ξ2 − n2

n1

a2

a1
Ψ2

. (24)

Hence,

n1c1 + n2c2 = n1a1
n2a2 −Ψ1 (n1c1 + n2c2)

n2a2Ξ1 − n1a1Ψ1

+ n2a2
n1a1 −Ψ2 (n1c1 + n2c2)

n1a1Ξ2 − n2a2Ψ2

,
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which implies that

n1c1 + n2c2 =
n1a1 (Ξ2 −Ψ1) + n2a2 (Ξ1 −Ψ2)

Ξ1Ξ2 −Ψ1Ψ2

.

Then, substituting the previous expression in (23) and (24), we obtain (15) and (18).

In relation to the expressions of c’s, using the expressions of d1 and d2, (15) and (18), (21)

and (22) can be rewritten as

λ1 =
Ξ1

∆1
− n1

n2

Ψ1

∆2

c1
c2

c1

− 1

(n1 − 1) c1 + n2c2

and

λ2 =
Ξ2

∆2
− n2

n1

Ψ2

∆1

c2
c1

c2

− 1

n1c1 + (n2 − 1) c2

,

or, since
Ψ1

∆2

= 1− Ξ1

∆1

and
Ψ2

∆1

= 1− Ξ2

∆2

, (25)

λ1 =

Ξ1

∆1
− n1

n2

(
1− Ξ1

∆1

)
c1
c2

c1

− 1

(n1 − 1) c1 + n2c2

and

λ2 =

Ξ2

∆2
− n2

n1

(
1− Ξ2

∆2

)
c2
c1

c2

− 1

n1c1 + (n2 − 1) c2

,

which imply (16) and (19) since z = c1/c2. Moreover, dividing the previous two equalities, (20)

is obtained.

Finally, we show that (20) has a unique positive solution. After some algebra, (20) is equiv-

alent to p(z) = 0, where

p(z) = p3z
3 + p2z

2 + p1z + p0,

with

p3 = n2
1 (n1 − 1)

(
n2

Ξ2

∆2

λ1 + n1

(
1− Ξ1

∆1

)
λ2

)
,

p2 = n1

(
(3n2n1 − n1 − 2n2 + 1)

(
n2

Ξ2

∆2

λ1 − n1
Ξ1

∆1

λ2

)
+

+λ2n1 (2n2n1 − n1 + 1)− (n1 − 1) (n2 + 1)n2λ1) ,

p1 = n2

(
(3n2n1 − 2n1 − n2 + 1)

(
n2

Ξ2

∆2

λ1 − n1
Ξ1

∆1

λ2

)
+

+λ2n1 (n2 − 1) (n1 + 1)− (2n2n1 − n2 + 1)n2λ1) , and

p0 = −n2
2 (n2 − 1)

(
n2

(
1− Ξ2

∆2

)
λ1 + n1

Ξ1

∆1

λ2

)
.

Notice that p(0) < 0 and lim
z→∞

p(z) = ∞. Consequently, there exists z ∈ (0,∞) such that

p(z) = 0. Moreover, we have that p2 > p1. This property tells us that there exists only one
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change of sign in the coeffi cients of p(z). Applying the Descartes’rule, it follows that there

exists a unique positive root of p(z).

Proof of Proposition 1: This proof directly follows from Lemma A1 and Lemma A2.

Proof of Proposition 2: (Necessity). From Proposition 1 we know that ai > 0, i = 1, 2. Com-

bining this property with Expressions (15) and (18), we have that in equilibrium the coeffi cients

c1 and c2 are strictly positive. Moreover, (16) and (19) can be rewritten as

c1 =
qN (z)

((n1 − 1) z + n2)n2λ1

and c2 =
qD (z)

(n1z + n2 − 1)n1zλ2

,

where

qN (z) = n2
2

Ξ1

∆1

+ n2

(
Ξ1

∆1

(2n1 − 1)− (n1 + 1)

)
z − (n1 − 1)

(
1− Ξ1

∆1

)
n1z

2

and

qD (z) = −n2 (n2 − 1)

(
1− Ξ2

∆2

)
+ n1

(
Ξ2

∆2

(2n2 − 1)− (n2 + 1)

)
z + n2

1

Ξ2

∆2

z2.

Let zN and zD denote the highest root of qN (z) and qD (z), respectively. Notice that the

positiveness of c1 and c2 is equivalent to zN > z > zD. Therefore, zN > zD.

(Suffi ciency). Suppose that zN > zD. Recall that Lemma A2 shows that there exists a

unique positive value of z that solves (20), which can be rewritten as λ1

λ2
= n1(n2−1+n1z)qN (z)

(n2+(n1−1)z)n2qD(z)
.

This implies that zN > z > zD. Notice that these inequalities guarantee the positiveness

of c1 and c2. Therefore, d1 and d2 are strictly positive, and consequently, the S.O.C. of the

optimization problems are satisfied. Thus, we can conclude that whenever zN > zD there exists

a unique equilibrium.

Corollary 1. If n2 = 1, the equilibrium exists if 1 − ρ2 > (2ρ− 1) σ̂2
ε1
and n1 >

n̄1

(
ρ, σ̂2

ε1
, σ̂2

ε2

)
where n̄1 increases in ρ, σ̂2

ε1
and σ̂2

ε2
. If, furthermore, λ2 = 0 and σ2

ε2
= 0,

then

n̄1

(
ρ, σ̂2

ε1
, σ̂2

ε2

)
=

(
1 + ρ+ σ̂2

ε1

)
(1− ρ)

1− ρ2 − (2ρ− 1) σ̂2
ε1

, x1 = b1 + a1s1 − c1p and x2 = c2 (θ2 − p) ,

where b1 = ρσ̂2
ε1

(
n1 (1− ρ)

(
1 + ρ+ σ̂2

ε1

))−1
Q + a1σ̂

2
ε1

(1− ρ2)
−1 (

θ1 − ρθ2

)
, a1 = ∆1c1, c1 =

2
(
n1 − n̄1

(
ρ, σ̂2

ε1
, σ̂2

ε2

)) (
1− ρ2 − (2ρ− 1) σ̂2

ε1

)
/
(
λ1

(
1− ρ2 + σ̂2

ε1

)
(2n1 − 1)

)
, and c2 = n1c1.

Proof of Corollary 1: Notice that if n2 = 1, then zD =
(
2∆2Ξ−1

2 − 1
)
/n1. Thus, the condition

that guarantees the existence of an equilibrium is equivalent to qN
((

2∆2Ξ−1
2 − 1

)
/n1

)
> 0.

Direct computations yield that the last inequality holds if and only if(
2− Ξ2∆−1

2

) (
1− Ξ1∆−1

1 − Ξ2∆−1
2

)
+
(
Ξ2∆−1

2 − 2
(
1− Ξ1∆−1

1

))
n1 > 0.
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As 1 < Ξ1∆−1
1 + Ξ2∆−1

2 , we can conclude that an equilibrium will exist if and only if Ξ2∆−1
2 >

2
(
1− Ξ1∆−1

1

)
and n1 >

(
2− Ξ2∆−1

2

) (
Ξ1∆−1

1 + Ξ2∆−1
2 − 1

)
/
(
Ξ2∆−1

2 − 2
(
1− Ξ1∆−1

1

))
. Using

the expressions of Ξi and ∆i, the previous two inequalities are equivalent to 1−ρ2 > (2ρ− 1) σ̂2
ε1

and n1 > n̄1

(
ρ, σ̂2

ε1
, σ̂2

ε2

)
, where

n̄1

(
ρ, σ̂2

ε1
, σ̂2

ε2

)
= 1 +

ρ
(
1− ρ2 + σ̂2

ε1

) (
(1 + ρ)

(
σ̂2
ε1

+ σ̂2
ε2

)
+ 2σ̂2

ε1
σ̂2
ε2

)
(1 + ρ)

(
(1 + σ̂2

ε1
)
(
1 + σ̂2

ε2

)
− ρ2

) (
1− ρ2 − (2ρ− 1) σ̂2

ε1

) . (26)

It can be shown that n̄1 increases in ρ, σ̂
2
ε1
and σ̂2

ε2
. In particular, when σ2

ε2
= 0, then (26) can

be rewritten n̄1

(
ρ, σ̂2

ε1
, 0
)

= 1 + ρσ̂2
ε1
/
(
1− ρ2 − (2ρ− 1) σ̂2

ε1

)
.

Further, in the case that one group is formed by a unique trader perfectly informed and

with no transaction cost (n2 = 1, λ2 = 0 and σ2
ε2

= 0). Then, z = zD = 1/n1, Ξ1 =

(1− ρ2) /
(
1− ρ2 + σ̂2

ε1

)
, Ψ1 = ρσ̂2

ε1
/
(
1− ρ2 + σ̂2

ε1

)
, Ξ2 = 1 and Ψ2 = 0. Then, from Lemma

A2, the coeffi cients of the demand functions are given by:

b1 =
ρσ̂2

ε1

n1 (1− ρ)
(
1 + ρ+ σ̂2

ε1

)Q+ a1

σ̂2
ε1

1− ρ2

(
θ1 − ρθ2

)
,

a1 = ∆1c1,

c1 =
2
(
n1 − n̄1

(
ρ, σ̂2

ε1
, σ̂2

ε2

)) (
1− ρ2 − σ̂2

ε1
(2ρ− 1)

)
λ1

(
1− ρ2 + σ̂2

ε1

)
(2n1 − 1)

b2 = 0, and

a2 = c2 =
c1

z
= n1c1.

Proof of Corollary 2: a) Suppose that σ2
ε1
≥ σ2

ε2
, λ1 ≥ λ2, and n1 ≥ n2. Using the expressions

of Ξi and ∆i, i = 1, 2, it is easy to see that in this case Ξ2∆−1
2 > Ξ1∆−1

1 . Next, we distinguish

two cases:

Case 1: (n1 + n2 − 2)n1/ ((n1 + n2) (n1 + n2 − 1)) ≥ 1 − Ξ2∆−1
2 . Evaluating the polynomial

p(z), stated in the proof of Lemma A2, at z = 1, we have that

p(1) = (n1 + n2) (n1 + n2 − 1)2×(
n2

(
(n1 + n2 − 2)n1

(n1 + n2) (n1 + n2 − 1)
−
(

1− Ξ2

∆2

))
λ1 − n1

(
(n1 + n2 − 2)n2

(n1 + n2) (n1 + n2 − 1)
−
(

1− Ξ1

∆1

))
λ2

)
.

As (n1 + n2 − 2)n1/ ((n1 + n2) (n1 + n2 − 1)) ≥ 1− Ξ2∆−1
2 and λ1 ≥ λ2,

p(1) ≥ (n1 + n2) (n1 + n2 − 1)2×(
n2

(
(n1 + n2 − 2)n1

(n1 + n2) (n1 + n2 − 1)
−
(

1− Ξ2

∆2

))
λ2 − n1

(
(n1 + n2 − 2)n2

(n1 + n2) (n1 + n2 − 1)
−
(

1− Ξ1

∆1

))
λ2

)
=
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= (n1 + n2) (n1 + n2 − 1)2

((
1− Ξ1

∆1

)
n1 − n2

(
1− Ξ2

∆2

))
λ2,

and since n1 ≥ n2,

p(1) ≥ (n1 + n2) (n1 + n2 − 1)2 λ2n2

(
Ξ2

∆2

− Ξ1

∆1

)
≥ 0.

This implies that z ≤ 1, and therefore, c1 ≤ c2. In addition, using the expressions of d1 and

d2, we get sgn{d1 − d2} =sgn{c1 − c2} , which implies d1 ≤ d2. Finally, notice that ∆1 ≤ ∆2

whenever σ2
ε1
≥ σ2

ε2
. Hence, a1/a2 = z∆1/∆2 ≤ 1.

Case 2: (n1 + n2 − 2)n1/ ((n1 + n2) (n1 + n2 − 1)) < 1− Ξ2∆−1
2 . Notice that

(n1 + n2 − 2)n2

(n1 + n2) (n1 + n2 − 1)
−
(

1− Ξ1

∆1

)
≤ (n1 + n2 − 2)n1

(n1 + n2) (n1 + n2 − 1)
−
(

1− Ξ2

∆2

)
,

since Ξ2∆−1
2 > Ξ1∆−1

1 and n1 ≥ n2. Thus, in this case we have that

qN (1) = (n1 + n2 − 1) (n1 + n2)

(
(n1 + n2 − 2)n2

(n1 + n2) (n1 + n2 − 1)
−
(

1− Ξ1

∆1

))
< 0 and

qD (1) = (n1 + n2 − 1) (n1 + n2)

(
(n1 + n2 − 2)n1

(n1 + n2) (n1 + n2 − 1)
−
(

1− Ξ2

∆2

))
< 0.

Taking into account the shape of these polynomials, the previous two inequalities imply that

zD > 1 > zN . However, Proposition 2 indicates that in this case there is no equilibrium.

b) By virtue of (21) and (22), the inequality d1 + λ1 > d2 + λ2 is equivalent to

Ξ1 − n1

n2

a1

a2
Ψ1

a1

>
Ξ2 − n2

n1

a2

a1
Ψ2

a2

.

Using (15) and (18), and after some algebra, the previous inequality is equivalent to

z <
Ξ1

∆1
+ n2

n1

Ψ2

∆1

Ξ2

∆2
+ n1

n2

Ψ1

∆2

,

or, from (25),

z <

Ξ1

∆1
+ n2

n1

(
1− Ξ2

∆2

)
Ξ2

∆2
+ n1

n2

(
1− Ξ1

∆1

) . (27)

We distinguish two cases:

Case 1:
Ξ2
∆2

+
Ξ1
∆1
−1(

1− Ξ1
∆1

)
n1
n2

+
Ξ2
∆2

≤
Ξ1
∆1

+
n2
n1

(
1− Ξ2

∆2

)
n1

(
Ξ1
∆1

+
n2
n1

(
1− Ξ2

∆2

))
+(n2−1)

((
1− Ξ1

∆1

)
n1
n2

+
Ξ2
∆2

) .
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Using the expressions of Ξi and ∆i, we get that the previous inequality is equivalent to

(1− ρ)n1n2

(
1 + ρ+ σ̂2

ε1

)
n2

(
1− ρ2 + σ̂2

ε1

)
+ n1ρσ̂

2
ε1

+
(1− ρ)n1 (n2 − 1)

(
1 + ρ+ σ̂2

ε2

)
n1

(
1− ρ2 + σ̂2

ε2

)
+ n2ρσ̂

2
ε2

≤ 1.

Moreover, after some algebra, we have that

qD

 Ξ1

∆1
+ n2

n1

(
1− Ξ2

∆2

)
Ξ2

∆2
+ n1

n2

(
1− Ξ1

∆1

)
 ≤ 0.

Consequently,
Ξ1
∆1

+
n2
n1

(
1− Ξ2

∆2

)
Ξ2
∆2

+
n1
n2

(
1− Ξ1

∆1

) < zD < z, which implies that in this case d1 + λ1 < d2 + λ2 holds.

Case 2:
Ξ2
∆2

+
Ξ1
∆1
−1(

1− Ξ1
∆1

)
n1
n2

+
Ξ2
∆2

>
Ξ1
∆1

+
n2
n1

(
1− Ξ2

∆2

)
n1

(
Ξ1
∆1

+
n2
n1

(
1− Ξ2

∆2

))
+(n2−1)

((
1− Ξ1

∆1

)
n1
n2

+
Ξ2
∆2

) .
In this case, taking into account that z is the unique positive solution of (20), the inequality

given in (27) is equivalent to

λ1

λ2

>

Ξ2
∆2

+
Ξ1
∆1
−1(

1− Ξ1
∆1

)
n1
n2

+
Ξ2
∆2

−
(

Ξ1
∆1

+
n2
n1

(
1− Ξ2

∆2

))
(n1−1)

(
Ξ1
∆1

+
n2
n1

(
1− Ξ2

∆2

))
+n2

((
1− Ξ1

∆1

)
n1
n2

+
Ξ2
∆2

)
Ξ2
∆2

+
Ξ1
∆1
−1(

1− Ξ1
∆1

)
n1
n2

+
Ξ2
∆2

−
(

Ξ1
∆1

+
n2
n1

(
1− Ξ2

∆2

))
n1

(
Ξ1
∆1

+
n2
n1

(
1− Ξ2

∆2

))
+(n2−1)

((
1− Ξ1

∆1

)
n1
n2

+
Ξ2
∆2

) .

Taking into account that σ2
ε1
≥ σ2

ε2
, λ1 ≥ λ2, and n1 ≥ n2, and after some algebra, we get

that both sides of the inequality are higher than (or equal to) 1. Therefore, if the value of λ1

λ2
is

high enough, we obtain d1 + λ1 > d2 + λ2. Otherwise, the opposite inequality holds.

Proof of Corollary 3: In what follows we prove the following comparative statics results:

a) ∂bi
∂θi

> 0, ∂ai
∂θi

= 0 and ∂ci
∂θi

= 0,

b) ∂bi
∂θj

< 0, ∂ai
∂θj

= 0 and ∂ci
∂θj

= 0,

c) ∂bi
∂Q

> 0, ∂ai
∂Q

= 0 and ∂ci
∂Q

= 0,

d) ∂ai
∂λi

< 0 and ∂ci
∂λi

< 0,

e) ∂ai
∂λj

< 0 and ∂ci
∂λj

< 0,

f) ∂ai
∂ρ

< 0 and ∂ci
∂ρ
< 0,

g) ∂
∂σ2

εi

(
di
dj

)
< 0, ∂

∂σ2
εj

(
di
dj

)
> 0, ∂

∂λi

(
di
dj

)
< 0, and ∂

∂λj

(
di
dj

)
> 0,

h) ∂ai
∂σ2

εi

< 0 and ∂ci
∂σ2

εi

< 0,

i) ∂ai
∂σ2

εj

< 0 and ∂ci
∂σ2

εj

< 0, and

k) ∂di
∂ni

< 0 and ∂dj
∂ni

< 0, i, j = 1, 2, i 6= j.
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From Lemma A1, we know that the equilibrium coeffi cients that depend on θi, θj and Q are

b’s. Using Lemma A2 and after some algebra, the results given in a), b) and c) are obtained.

In what follows, without any loss of generality, let i = 1. First, we prove that ∂z
∂λ1

< 0. Recall

that from Lemma A2, we know that z is the unique positive solution of the following equation:

λ1

λ2

− N(z)

D(z)
= 0, (28)

where

N(z) =
Ξ1

∆1

− n1

n2

(
1− Ξ1

∆1

)
z − z

(n1 − 1) z + n2

and

D(z) =
Ξ2

∆2

z − n2

n1

(
1− Ξ2

∆2

)
− z

n1z + (n2 − 1)
,

with

Ξ1

∆1

=

(
1− ρ2 + σ̂2

ε2

) (
1 + ρ+ σ̂2

ε1

)((
1 + σ̂2

ε1

) (
1 + σ̂2

ε2

)
− ρ2

)
(1 + ρ)

and
Ξ2

∆2

=

(
1− ρ2 + σ̂2

ε1

) (
1 + ρ+ σ̂2

ε2

)((
1 + σ̂2

ε1

) (
1 + σ̂2

ε2

)
− ρ2

)
(1 + ρ)

.

Applying the Implicit Function Theorem,

∂z

∂λ1

= −
∂
∂λ1

(
λ1

λ2
− N(z)

D(z)

)
∂
∂z

(
λ1

λ2
− N(z)

D(z)

) .
As

∂

∂λ1

(
λ1

λ2

− N(z)

D(z)

)
=

1

λ2

> 0 and
∂

∂z

(
λ1

λ2

− N(z)

D(z)

)
> 0

because of z ∈ (zD, zN) , we can conclude that ∂z
∂λ1

< 0.

Next, we study the relationship between c′s and λ1. Differentiating (19), we have

∂c2

∂λ1

=
∂c2

∂z

∂z

∂λ1

=
1

λ2

(
n2

n1

(
1− Ξ2

∆2

)
1

z2
+

n1

(n2 + n1z − 1)2

)
∂z

∂λ1

< 0,

since ∂z
∂λ1

< 0. Moreover, as c1 = zc2, it follows that

∂c1

∂λ1

=
∂z

∂λ1

c2 + z
∂c2

∂λ1

< 0

because of the positiveness of c2 and z, and the negativeness of ∂z
∂λ1

and ∂c2
∂λ1
. In relation to a’s,

from (15) and (18), direct computations yield ∂a1

∂λ1
< 0 and ∂a2

∂λ1
< 0, since ∂c1

∂λ1
< 0 and ∂c2

∂λ1
< 0.
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Now, we study how the correlation coeffi cient ρ affects a1. Let y = a1

a2
. As a1 = ∆1c1 and

a2 = ∆2c2, then z = ∆2

∆1
y. Substituting this expression in (20), and after some algebra,we have

that
λ1

λ2

y =
Ñ(y, ρ)

D̃(y, ρ)
, (29)

where

Ñ(y, ρ) =
1− ρ2 + σ̂2

ε2
− n1

n2
σ̂2
ε1
ρy(

1 + σ̂2
ε1

) (
1 + σ̂2

ε2

)
− ρ2

− 1

(n1 − 1)
1+ρ+σ̂2

ε1

1+ρ
+ n2

1+ρ+σ̂2
ε2

1+ρ
1
y

and

D̃(y, ρ) =
1− ρ2 + σ̂2

ε1
− n2

n1
σ̂2
ε2
ρ 1
y(

1 + σ̂2
ε1

) (
1 + σ̂2

ε2

)
− ρ2

− 1

n1
1+ρ+σ̂2

ε1

1+ρ
y + (n2 − 1)

1+ρ+σ̂2
ε2

1+ρ

.

Moreover, a1 = Ñ(y, ρ)/λ1 and a2 = D̃(y, ρ)/λ2. Hence,

∂a1

∂ρ
=

∂
∂y
Ñ(y, ρ)∂y

∂ρ
+ ∂

∂ρ
Ñ(y, ρ)

λ1

.

Thus, in order to show ∂a1

∂ρ
< 0, it suffi ces to prove that

∂

∂y
Ñ(y, ρ)

∂y

∂ρ
+

∂

∂ρ
Ñ(y, ρ) < 0. (30)

Direct computations yield ∂
∂y
Ñ(y, ρ) < 0. Then, (30) is equivalent to

∂y

∂ρ
> −

∂
∂ρ
Ñ(y, ρ)

∂
∂y
Ñ(y, ρ)

. (31)

Moreover, recall that y in equilibrium is the unique positive value that satisfies (29). Thus,

applying the implicit function theorem, it follows that

∂y

∂ρ
= −

∂
∂ρ

(
λ1

λ2
y − Ñ(y,ρ)

D̃(y,ρ)

)
∂
∂y

(
λ1

λ2
y − Ñ(y,ρ)

D̃(y,ρ)

)
Then, (31) can be rewritten as

−
∂
∂ρ

(
λ1

λ2
y − Ñ(y,ρ)

D̃(y,ρ)

)
∂
∂y

(
λ1

λ2
y − Ñ(y,ρ)

D̃(y,ρ)

) > − ∂
∂ρ
Ñ(y, ρ)

∂
∂y
Ñ(y, ρ)

,

or using the fact that in equilibrium ∂
∂y

(
λ1

λ2
y − Ñ(y,ρ)

D̃(y,ρ)

)
> 0, (31) is satisfied if and only if

− ∂

∂ρ

(
λ1

λ2

y − Ñ(y, ρ)

D̃(y, ρ)

)
> −

∂
∂ρ
Ñ(y, ρ)

∂
∂y
Ñ(y, ρ)

∂

∂y

(
λ1

λ2

y − Ñ(y, ρ)

D̃(y, ρ)

)
. (32)
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Notice that

∂

∂ρ

(
λ1

λ2

y − Ñ(y, ρ)

D̃(y, ρ)

)
= −

(
∂
∂ρ
Ñ(y, ρ)

)
D̃(y, ρ)− Ñ(y, ρ)

(
∂
∂ρ
D̃(y, ρ)

)
D̃2(y, ρ)

,

or using (28),

∂

∂ρ

(
λ1

λ2

y − Ñ(y, ρ)

D̃(y, ρ)

)
= −

∂
∂ρ
Ñ(y, ρ)− λ1

λ2
y ∂
∂ρ
D̃(y, ρ)

D̃(y, ρ)
.

Analogously,

∂

∂y

(
λ1

λ2

y − Ñ(y, ρ)

D̃(y, ρ)

)
=
λ1

λ2

−

(
∂
∂y
Ñ(y, ρ)

)
− λ1

λ2
y
(
∂
∂y
D̃(y, ρ)

)
D̃(y, ρ)

.

Therefore, (32) is equivalent to

∂
∂ρ
Ñ(y, ρ)− λ1

λ2
y ∂
∂ρ
D̃(y, ρ)

D̃(y, ρ)
> −

∂
∂ρ
Ñ(y, ρ)

∂
∂y
Ñ(y, ρ)

λ1

λ2

−

(
∂
∂y
Ñ(y, ρ)

)
− λ1

λ2
y
(
∂
∂y
D̃(y, ρ)

)
D̃(y, ρ)

 ,

or,

−
y ∂
∂ρ
D̃(y, ρ)

D̃(y, ρ)
> −

∂
∂ρ
Ñ(y, ρ)

∂
∂y
Ñ(y, ρ)

(
1 +

y ∂
∂y
D̃(y, ρ)

D̃(y, ρ)

)
. (33)

Moreover, recall that a2 = D̃(y, ρ)/λ2. The positiveness of a2 tells us that D̃(y, ρ) > 0. After

some algebra, we have that ∂
∂ρ
D̃(y, ρ) < 0, ∂

∂ρ
Ñ(y, ρ) < 0 and ∂

∂y
D̃(y, ρ) > 0. Hence, we

conclude that the LHS of (33) is positive, whereas RHS of (33) is negative since ∂
∂y
Ñ(y, ρ) < 0.

Consequently, the fact that (33) is satisfied allows us to conclude that ∂a1

∂ρ
< 0.

Concerning the effect of ρ on c1, recall that

c1 =
a1

∆1

=
1 + ρ+ σ̂2

ε1

1 + ρ
a1.

This expression tells us that c1 is the product of two decreasing positive functions in ρ. Therefore,
∂c1
∂ρ

< 0.

Next, we prove that ∂
∂σ2

ε1

(
d1

d2

)
< 0 and ∂

∂σ2
ε2

(
d1

d2

)
< 0. From the expressions of the slopes

and z, it follows that d1

d2
= n1z+(n2−1)

(n1−1)z+n2
. Applying the chain rule, we get ∂

∂σ2
εi

(
d1

d2

)
= ∂

∂z

(
d1

d2

)
∂z
∂σ2

εi

.

As ∂
∂z

(
d1

d2

)
> 0, we know that the sign of ∂

∂σ2
εi

(
d1

d2

)
is the same as the sign of ∂z

∂σ2
εi

. Applying

the Implicit Function Theorem,

∂z

∂σ2
εi

= −
∂

∂σ2
εi

(
λ1

λ2
− N(z)

D(z)

)
∂
∂z

(
λ1

λ2
− N(z)

D(z)

) .
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Direct computations yield that

∂

∂σ2
ε1

(
λ1

λ2

− N(z)

D(z)

)
> 0 and

∂

∂σ2
ε2

(
λ1

λ2

− N(z)

D(z)

)
< 0.

In addition, since
∂

∂z

(
λ1

λ2

− N(z)

D(z)

)
> 0,

we obtain ∂z
∂σ2

ε1

< 0 and ∂z
∂σ2

ε2

> 0, and hence, we conclude that ∂
∂σ2

ε1

(
d1

d2

)
< 0 and ∂

∂σ2
ε2

(
d1

d2

)
>

0. Moreover, the negativeness of ∂z
∂λ1

and the positiveness of ∂z
∂λ2

allows us to conclude that
∂
∂λ1

(
d1

d2

)
< 0 and ∂

∂λ2

(
d1

d2

)
> 0.

Now, we study how a1 and c1 vary with a change in σ2
ε1
and σ2

ε2
. In order to do that

first we analyze the effect of σ2
ε1
and σ2

ε2
on d1 and d2. From Proposition 1, we know that

di = ((ni − 1) ci + njcj)
−1 and ai = ∆ici > 0, i = 1, 2. Therefore,

di =

(
(ni − 1)

ai
∆i

+ nj
aj
∆j

)−1

, i, j = 1, 2, j 6= i.

Substituting the expressions of (12) and (13) and the expression of ∆i given in Lemma A2, it

follows that

di =

(
(ni − 1)nj

njΥi (di + λi) + ni (Υi − 1) (dj + λj)
+

njni
niΥj (dj + λj) + nj (Υj − 1) (di + λi)

)−1

,

where Υi =
Ξj

Ξj−Ψi
=

1−ρ2+σ̂2
εi

(1−ρ)(1+ρ+σ̂2
εi)

> 1, i, j = 1, 2, j 6= i, . From the previous expressions for d1

and d2, we derive the following equations that are satisfied in equilibrium:

Fi
(
σ2
ε1
, σ2

ε2
, d1, d2

)
= 0, i = 1, 2,

where

Fi
(
σ2
ε1
, σ2

ε2
, d1, d2

)
=

(ni − 1)njdi
njΥi (di + λi) + ni (Υi − 1) (dj + λj)

+
ninjdi

niΥj (dj + λj) + nj (Υj − 1) (di + λi)
−1,

i, j = 1, 2, j 6= i. Let DFd1,d2

(
σ2
ε1
, σ2

ε2
, d1, d2

)
denote the following matrix:(

∂F1

∂d1

(
σ2
ε1
, σ2

ε2
, d1, d2

)
∂F1

∂d2

(
σ2
ε1
, σ2

ε2
, d1, d2

)
∂F2

∂d1

(
σ2
ε1
, σ2

ε2
, d1, d2

)
∂F2

∂d2

(
σ2
ε1
, σ2

ε2
, d1, d2

) ) .
Direct computations yield

∂Fi
∂di

(
σ2
ε1
, σ2

ε2
, d1, d2

)
=
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nj (ni − 1) (ni (λj + dj) (Υi − 1) + Υiλinj)

(njΥi (di + λi) + ni(Υi − 1) (dj + λj))
2 +

ninj (λinj (Υj − 1) + Υjni (λj + dj))

(niΥj (dj + λj) + nj (Υj − 1) (di + λi))
2

and

∂Fi
∂dj

(
σ2
ε1
, σ2

ε2
, d1, d2

)
=

−
(

dininj (ni − 1) (Υi − 1)

(njΥi (di + λi) + ni(Υi − 1) (dj + λj))
2 +

din
2
injΥj

(niΥj (dj + λj) + nj (Υj − 1) (di + λi))
2

)
,

i, j = 1, 2, j 6= i. After some tedious algebra, the determinant of DFd1,d2

(
σ2
ε1
, σ2

ε2
, d1, d2

)
is given

by

n1n
2
2 (n1 − 1)

λ1Υ1n2 + λ2n1 (Υ1 − 1)

(n2Υ1 (d1 + λ1) + n1(Υ1 − 1) (d2 + λ2))3 +

n2
1n2 (n2 − 1)

λ1n2 (Υ2 − 1) + λ2Υ2n1

(n1Υ2 (d2 + λ2) + n2 (Υ2 − 1) (d1 + λ1))3 +

n1n2

(n2Υ1 (d1 + λ1) + n1(Υ1 − 1) (d2 + λ2))2 (n1Υ2 (d2 + λ2) + n2 (Υ2 − 1) (d1 + λ1))2×

((n1n2 + (n1 − 1) (n2 − 1)) (λ1n2 (Υ2 − 1) + λ2Υ2n1) (λ1Υ1n2 + λ2n1 (Υ1 − 1)) +

n2 (d2n1 (Υ1 − 1) + Υ1d1n2) (λ1 (Υ2 − 1) (n1 − 1) (n2 − 1) + λ2Υ2n
2
1) +

n1 (d1n2 (Υ2 − 1) + Υ2d2n1) (λ1Υ1n
2
2 + λ2 (Υ1 − 1) (n1 − 1) (n2 − 1))) .

Notice that all the summands in the previous expression are positive. In particular, the de-

terminant of DFd1,d2

(
σ2
ε1
, σ2

ε2
, d1, d2

)
is not null and, therefore, this matrix is invertible. Hence,

we can apply the Implicit Function Theorem, we have ∂d1

∂σ2
ε1

∂d1

∂σ2
ε2

∂d2

∂σ2
ε1

∂d2

∂σ2
ε1

 =

−
(
DFd1,d2

(
σ2
ε1
, σ2

ε2
, d1, d2

))−1

 ∂F1

∂σ2
ε1

(
σ2
ε1
, σ2

ε2
, d1, d2

)
∂F1

∂σ2
ε2

(
σ2
ε1
, σ2

ε2
, d1, d2

)
∂F2

∂σ2
ε1

(
σ2
ε1
, σ2

ε2
, d1, d2

)
∂F2

∂σ2
ε2

(
σ2
ε1
, σ2

ε2
, d1, d2

)
 . (34)

Notice that

(
DFd1,d2

(
σ2
ε1
, σ2

ε2
, d1, d2

))−1
=


∂F2
∂d2

(σ2
ε1
,σ2
ε2
,d1,d2)

det(DFd1,d2(σ2
ε1
,σ2
ε2
,d1,d2))

−
∂F1
∂d2

(σ2
ε1
,σ2
ε2
,d1,d2)

det(DFd1,d2(σ2
ε1
,σ2
ε2
,d1,d2))

−
∂F2
∂d1

(σ2
ε1
,σ2
ε2
,d1,d2)

det(DFd1,d2(σ2
ε1
,σ2
ε2
,d1,d2))

∂F1
∂d1

(σ2
ε1
,σ2
ε2
,d1,d2)

det(DFd1,d2(σ2
ε1
,σ2
ε2
,d1,d2))

 .
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Hence, we know that all the elements of
(
DFd1,d2

(
σ2
ε1
, σ2

ε2
, d1, d2

))−1
are positive. Moreover,

∂Fi
∂σ2

εi

(
σ2
ε1
, σ2

ε2
, d1, d2

)
= −dinj (ni − 1) (nj (di + λi) + ni (dj + λj))

(njΥi (di + λi) + ni (Υi − 1) (dj + λj))
2

ρ (1 + ρ)

(1− ρ)σ2
θ

(
1 + ρ+ σ̂2

εi

)2 , and

∂Fi
∂σ2

εj

(
σ2
ε1
, σ2

ε2
, d1, d2

)
= − dininj (nj (di + λi) + ni (dj + λj))

(niΥj (dj + λj) + nj (Υj − 1) (di + λi))
2

ρ (1 + ρ)

(1− ρ)σ2
θ

(
1 + ρ+ σ̂2

εj

)2 ,

i, j = 1, 2, j 6= i. Using all these expressions, (34) implies that ∂di
∂σ2

εi

> 0 and ∂di
∂σ2

εj

> 0, i, j = 1, 2,

i 6= j.

Next, we study the comparative statics of c1 and c2 with respect to σ2
ε1
. Recall that

c1 =
a1

∆1

=
n2

n2Υ1 (d1 + λ1) + n1 (Υ1 − 1) (d2 + λ2)
and

c2 =
a2

∆2

=
n1

n1Υ2 (d2 + λ2) + n2 (Υ2 − 1) (d1 + λ1)
.

Using the fact that Υ1, d1 and d2 are increasing in σ2
ε1
and that Υ2 is independent of σ2

ε1
,

we have the denominators of the previous expressions are increasing in σ2
ε1
, which allows us to

conclude that c1 and c2 are decreasing in σ2
ε1
. Combining these results with the fact that ∆1 is

decreasing in σ2
ε1
and ∆2 is independent of σ2

ε1
, it follows that a1 and a2 are decreasing in σ2

ε1
,

since a1 = ∆1c1 and a2 = ∆2c2.

Finally, concerning to h), notice that doing a similar reasoning as before we derive the

following equations that are satisfied in equilibrium:

Fi (n1, n2, d1, d2) = 0, i = 1, 2,

where

Fi (n1, n2, d1, d2) =
(ni − 1)njdi

njΥi (di + λi) + ni (Υi − 1) (dj + λj)
+

ninjdi
niΥj (dj + λj) + nj (Υj − 1) (di + λi)

−1,

i, j = 1, 2, j 6= i. Hence,(
∂d1

∂n1

∂d1

∂n2

∂d2

∂n1

∂d2

∂n2

)
= − (DFd1,d2 (n1, n2, d1, d2))−1

(
∂F1

∂n1
(n1, n2, d1, d2) ∂F1

∂n2
(n1, n2, d1, d2)

∂F2

∂n1
(n1, n2, d1, d2) ∂F2

∂n2
(n1, n2, d1, d2)

)
.

In addition,

∂Fi
∂ni

(n1, n2, d1, d2) =

dinj
(Υi − 1) (dj + λj) + Υinj (di + λi)

(njΥi (di + λi) + ni (Υi − 1) (dj + λj))
2 +

din
2
j (Υj − 1) (di + λi)

(niΥj (dj + λj) + nj (Υj − 1) (di + λi))
2 , and

35



∂Fi
∂nj

(n1, n2, d1, d2) =

dini (Υi − 1) (ni − 1) (dj + λj)

(njΥi (di + λi) + ni (Υi − 1) (dj + λj))
2 +

Υjdin
2
i (dj + λj)

(niΥj (dj + λj) + nj (Υj − 1) (di + λi))
2 ,

i, j = 1, 2, j 6= i. Therefore, all these partial derivatives are positive. Combining this result with

the positiveness of all the elements of (DFd1,d2 (n1, n2, d1, d2))−1,18 we can conclude that ∂di
∂ni

< 0

and ∂di
∂nj

< 0, i, j = 1, 2, j 6= i.

Proof of Corollary 4: The expression of the expected price can be rewritten as follows:

E [p] =
1

1 + Λ
θ1 +

1

1 + 1
Λ

θ2 −
Q

n1

d1+λ1
+ n2

d2+λ2

, (35)

where Λ =
n2

d2+λ2
n1

d1+λ1

. First, suposse that θ1 = θ2. Then the expected price satisfies

E [p] = θ1 −
Q

n1

d1+λ1
+ n2

d2+λ2

.

From Corollary 3 we know that ci and cj are decreasing in λi, σ2
εi
or ρ. Hence, di and dj are

decreasing in λi, σ2
εi
, or ρ. Using this property in the expression of E [p], it follows that E [p] is

decreasing in these variables. If Q is high enough, then the third term in (35) dominates and

we obtain the same results.

Now, we show that if θ1 6= θ2 and Q is not very high, then the previous results may not hold.

To simplify let Q = 0. If Λ were increasing in λ1, then E [p] would be decreasing (increasing) in

λ1 whenever θ1 is much higher (lower) than θ2.

Proof of Corollary 4: a) First, suppose that θ1 = θ2. In this case

E [p] = θ1 −
Q

n1

d1+λ1
+ n2

d2+λ2

.

From Corollary 3 we know that di and dj decrease in ni, and increase in σ2
εi
, λi and ρ. Using

these results in the previous expression, we conclude that the expected price is increasing in ni
and decreasing in λi, σ2

εi
, and ρ.

Now, suppose that θ1 6= θ2. The results we have just derived may not hold if
∣∣θ1 − θ2

∣∣ is
large enough. For example, let us focus on the relationship between the expected price and n1.

To study this relationship, we first show that n2(d1+λ1)
n1(d2+λ2)

decreases in n1. Recall that

d2 =

(
n1n2

n2Υ1 (d1 + λ1) + n1 (Υ1 − 1) (d2 + λ2)
+

(n2 − 1)n1

n1Υ2 (d2 + λ2) + n2 (Υ2 − 1) (d1 + λ1)

)−1

.

18Notice that (DFd1,d2 (n1, n2, d1, d2))
−1
=
(
DFd1,d2

(
σ2ε1 , σ

2
ε2 , d1, d2

))−1
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Hence,

1 =
1

n2

Υ1
n2(d1+λ1)
n1(d2+λ2)

+Υ1−1
+ n2−1

Υ2+(Υ2−1)
n2(d1+λ1)
n1(d2+λ2)

+
λ2

d2 + λ2

.

The fact that d2 decreases in n1 implies that λ2

d2+λ2
increases in n1. Then, the previous inequality

tells us that
n2

Υ1
n2(d1+λ1)
n1(d2+λ2)

+ Υ1 − 1
+

n2 − 1

Υ2 + (Υ2 − 1) n2(d1+λ1)
n1(d2+λ2)

increases in n1. For this to be possible,
n2(d1+λ1)
n1(d2+λ2)

needs to be decreasing in n1.

Given that the expected price satisfies

E [p] =
1

1 + n2(d1+λ1)
n1(d2+λ2)

θ1 +

(
1− 1

1 + n2(d1+λ1)
n1(d2+λ2)

)
θ2 −

Q
n1

d1+λ1
+ n2

d2+λ2

,

we have that the relationship between the expected price and n1 is ambiguous. For instance, if

θ2 is low enough, the fact that d1, d2 and
n2(d1+λ1)
n1(d2+λ2)

are decreasing in n1 allows us to conclude

that the expected price increases in n1. However, if θ2 is large and θ1 and Q are low enough,

then the expected price decreases in n1.

b) From the expression of the expected revenue it follows that it increases in θi, i = 1, 2,

and in Q, whenever Q < n1

d1+λ1
θ1 + n2

d2+λ2
θ2, or equivalently, E [p] > 0.

In addition, using the expression of the expected revenue, it follows that

Q

(
min

{
θ1, θ2

}
− Q

n1

d1+λ1
+ n2

d2+λ2

)
≤ QE [p] ≤ Q

(
max

{
θ1, θ2

}
− Q

n1

d1+λ1
+ n2

d2+λ2

)
.

Notice that left-hand side (LHS) and the right-hand side (RHS) of this expression corresponds

to the expected revenue in an auction where all participants have an expected valuation of

min
{
θ1, θ2

}
and max

{
θ1, θ2

}
, respectively. Using Corollary 4a, we know that both LHS and

RHS increase in ni and decreasing in λi and σ2
εi
. Hence, we obtain that QE [p] is lower than

the expected revenue of the symmetric auction in which both groups are ex-ante identical being

large (each group with max {n1, n2} bidders), with high expected valuation (max
{
θ1, θ2

}
), low

transaction costs (min{λ1,λ2}) and precise signals (min{σ2
ε1
,σ2
ε2
}), and larger than the expected

revenue of the symmetric auction in which both groups are ex-ante identical but with the

opposite characteristics (i.e., min {n1, n2}, min
{
θ1, θ2

}
), max{λ1,λ2} and max{σ2

ε1
,σ2
ε2
}).

Proof of Proposition 3: Direct computations yield

zN =

n2

(
(n1 − 1)

(
2 Ξ1

∆1
− 1
)
−
(

2− Ξ1

∆1

)
+

√(
2− Ξ1

∆1

)2

+ (n1 − 1)
(
n1 + 3− 6 Ξ1

∆1

))
2n1 (n1 − 1)

(
1− Ξ1

∆1

)
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and

zD =
n2 + 1− Ξ2

∆2
(2n2 − 1) +

√(
2− Ξ2

∆2

)2

+ (n2 − 1)
(
n2 + 3− 6 Ξ2

∆2

)
2 Ξ2

∆2
n1

.

Thus, for the case that n1 tends to infinity, notice that lim
n1→∞

zN = lim
n1→∞

zD = 0. Furthermore,

using the previous expressions and after some tedious algebra, the necessary and suffi cient condi-

tion for the existence of an equilibrium (i.e., lim
n1→∞

zN
zD

> 1) is equivalent to n2 > n̄2

(
ρ, σ̂2

ε1
, σ̂2

ε2

)
,

where

n̄2

(
ρ, σ̂2

ε1
, σ̂2

ε2

)
=

(
(2− ρ) σ̂2

ε2
+ 2 (1− ρ2)

)
σ̂2
ε1
ρ

(1− ρ2)
((

1 + σ̂2
ε1

) (
1 + σ̂2

ε2

)
− ρ2

) .
Moreover, taking the limit in (20), it follows that lim

n1→∞
z = 0 and

lim
n1→∞

n1z = n2

Ξ1

∆1

1− Ξ1

∆1

. (36)

Using the expressions included in the statement of Lemma A2, and after some tedious algebra,

we get

lim
n1→∞

b1 = q, lim
n1→∞

a1 = 0, lim
n1→∞

c1 = 0,

lim
n1→∞

b2 =

σ̂2
ε2

(
(n2−1)(1−ρ2)
(1−ρ2+σ̂2

ε2)
+

(1−ρ2+σ̂2
ε1

(1−2ρ))
(1+σ̂2

ε1)(1+σ̂2
ε2)−ρ2

)
(1− ρ)λ2

(
n2 (1 + ρ)− σ̂2

ε1
ρ(1+ρ+σ̂2

ε2)
(1+σ̂2

ε1)(1+σ̂2
ε2)−ρ2

) (qρλ1 + θ2 − ρθ1

)
+

+q
ρ2σ̂2

ε2
σ̂2
ε1

n2 (1− ρ2)
((

1 + σ̂2
ε1

) (
1 + σ̂2

ε2

)
− ρ2

) ,
lim
n1→∞

a2 = ∆2 lim
n1→∞

c2, and

lim
n1→∞

c2 =
n2 − n̄2

(
ρ, σ̂2

ε1
, σ̂2

ε2

)
λ2

1−ρ2+σ̂2
ε2

1−ρ

(
n2

(1+ρ+σ̂2
ε2)
− ρ σ̂2

ε1

(1+ρ)((1+σ̂2
ε1)(1+σ̂2

ε2)−ρ2)

) . (37)

Next, in relation to the expressions of d1 and d2, we have that

lim
n1→∞

d1 = lim
n1→∞

1

(n1 − 1) c1 + n2c2

= lim
n1→∞

1(
(n1−1)
n1

n1z + n2

)
c2

=
1(

lim
n1→∞

n1z + n2

)
lim
n1→∞

c2

> 0.
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The fact that n1z and c2 converge to a positive finite number (see (36) and (37)) implies that

d1 does not converge to zero. A similar result is obtained with the limit of d2. In particular,

notice that

lim
n1→∞

d2 = lim
n1→∞

1

n1c1 + (n2 − 1) c2

= lim
n1→∞

1

(n1z + n2 − 1) c2

=
1(

lim
n1→∞

n1z + n2 − 1

)
lim
n1→∞

c2

>

lim
n1→∞

d1 > 0.

Finally, notice that if we consider that the small group is fully informed and the large group

fully uninformed, then the equilibrium coeffi cients for the group 2 become:

lim
n1→∞

b2 = 0, and

lim
n1→∞

a2 = lim
n1→∞

c2 =
n2 − 2ρ

(n2 − ρ)λ2

.

Proof of Proposition 4: Suppose that n1 and n2 go to infinity and that n1

n1+n2
converges to

µ1. Taking limits in the equation that characterizes z (i.e., (20)), it follows that

λ1

λ2

=

Ξ1

∆1
− µ1

µ2

(
1− Ξ1

∆1

)
z

Ξ2

∆2
z − µ2

µ1

(
1− Ξ2

∆2

) .
Therefore,

z =

Ξ1

∆1
+ µ2

µ1

(
1− Ξ2

∆2

)
λ1

λ2

µ1

µ2

(
1− Ξ1

∆1

)
+ Ξ2

∆2

λ1

λ2

.

Moreover, taking the limit in the expressions of the equilibrium coeffi cients given in Proposition

3, it follows that

bi =
Ψi

µj

µiΞj
ai
aj
− µjΨj

µi (ΞiΞj −ΨiΨj)
q + ai

(
Ξjθi −Ψiθj
ΞiΞj −ΨiΨj

− θi
)
,

ai = ∆ici, i, j = 1, 2, j 6= i,

c1 =

Ξ1

∆1
− µ1

µ2

(
1− Ξ1

∆1

)
z

λ1

, and

c2 =

Ξ2

∆2
− µ2

µ1

(
1− Ξ2

∆2

)
1
z

λ2

.

Substituting

z =

Ξ1

∆1
+ µ2

µ1

(
1− Ξ2

∆2

)
λ1

λ2

µ1

µ2

(
1− Ξ1

∆1

)
+ Ξ2

∆2

λ1

λ2
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in the previous expressions and after some algebra, we get

bi =
λjΨi

µjλiΞj + µiλjΨi

q + ai

(
Ξjθi −Ψiθj
ΞiΞj −ΨiΨj

− θi
)
,

ai =
µj (ΞiΞj −ΨiΨj)

µjλiΞj + µiλjΨi

, and

ci =
µj (Ξj −Ψi)

µjλiΞj + µiλjΨi

, i, j = 1, 2, j 6= i.

Next, we derive the equilibrium in the following continuous setup: Consider now that there

is a continuum of bidders [0, 1]. Let q denote the aggregate quantity supplied in the market.

Suppose that a fraction µ1 of these bidders are traders of type 1 and the remainder fraction,

µ2, are bidders of type 2.

Consider a trader of type i. This bidder chooses to maximize

E [πi|si, p] = (E [θi|si, p]− p)xi −
λ1

2
x2
i .

The F.O.C. is given by

E [θi|si, p]− p− λixi = 0

or, equivalently,

Xi (si, p) =
E [θi|si, p]− p

λi
. (38)

Moreover, positing linear strategies, the market clearing condition implies that

p =
µi (bi + aisi) + µj (bj + ajsj)− q

µici + µjcj
, (39)

provided that µici +µjcj. Using the expression of p and provided that ai 6= 0, i = 1, 2, it follows

that

E [θi|si, p] = E [θi|si, sj] .

Hence,

E [θi|si, p] = θi + Ξi

(
si − θi

)
+ Ψi

(
sj − θj

)
.

Using (39), sj =
q−µibi−µjbj−µiaisi+p(µici+µjcj)

µjaj
. Therefore,

E [θi|si, p] = θi + Ξi

(
si − θi

)
+ Ψi

(
q − µibi − µjbj − µiaisi + p

(
µici + µjcj

)
µjaj

− θj

)
.
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Substituting this expression in (38), and identifying coeffi cients, it follows that

bi =
1

λi

(
(1− Ξi) θi −Ψiθj +

Ψi

(
q −

(
µibi + µjbj

))
ajµj

)
, (40)

ai =
1

λi

(
Ξi −Ψi

µiai
µjaj

)
, and (41)

ci =
1

λi

(
1− Ψi

µjaj

(
µici + cjµj

))
, i, j = 1, 2, j 6= i. (42)

Using (41), it follows that

ai
aj

=
λj

(
Ξi −Ψi

µiai
µjaj

)
λi

(
Ξj −Ψj

µjaj
µiai

) .
Hence,

ai
aj

=
µj
(
Ψjλiµj + Ξiλjµi

)
µi
(
Ψiλjµi + λiΞjµj

) .
Then, plugging the previous expression into (41), we get

ai = µj
ΞiΞj −ΨiΨj

µiΨiλj + µjλiΞj

. (43)

Using (40), and after some algebra, we get

µibi + µjbj =

µi
λi

(
θi (1− Ξi)−Ψiθj + q Ψi

µjaj

)
+

µj
λj

(
θj (1− Ξj)−Ψjθi + q

Ψj
µiai

)
Ψi
λi

µi
µjaj

+
Ψj
λjµi

µj
ai

+ 1
.

Substituting (43) and the last expression in (40),

bi =
λjΨi

µiλjΨi + µjλiΞj

q +
µj (ΞjΞi −ΨjΨi)

µiλjΨi + µjλiΞj

(
Ξjθi −Ψiθj
ΞjΞi −ΨjΨi

− θi
)
.

Moreover, from (42), and after some algebra, we get

µici + cjµj =

µi
λi

+
µj
λj

µi
µjaj

Ψi
λi

+
µj
µiai

Ψj
λj

+ 1
.

Using (43) and the last expression in (42), it follows that

ci =
µj (Ξj −Ψi)

µjλiΞj + µiλjΨi

.

Comparing the equilibrium coeffi cients of the limiting case with the ones of the continuous case,

we can conclude that the equilibrium coeffi cients converge to the equilibrium coeffi cients of the
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equilibrium of the continuous setup Finally, taking into account the expressions of Ξi, Ξj, Ψi

and Ψj, we obtained the desired expressions stated in the statement of this result.

Lemma A3. The equilibrium maximizes the following distorted benefit maximization pro-

gram:

Max
x1,x2

E
[
n1

(
θ1x1 − (d1 + λ1)

x2
1

2

)
+ n2

(
θ2x2 − (d2 + λ2)

x2
2

2

)∣∣∣∣ t]
s.t. n1x1 + n2x2 = Q,

where d1 and d2 are the equilibrium parameters.

Proof of Lemma A3: Notice that the Lagrangian function of is given by

L (x1, x2, µ) = n1

(
t1x1 − (d1 + λ1)

x2
1

2

)
+ n2

(
t2x2 − (d2 + λ2)

x2
2

2

)
− µ (n1x1 + n2x2 −Q) ,

where µ denotes the Lagrange multiplier. Differentiating we obtain the F.O.C.:

n1 (t1 − (d1 + λ1)x1)− µn1 = 0, (44)

n2 (t2 − (d2 + λ2)x2)− µn2 = 0, and (45)

n1x1 + n2x2 = Q. (46)

From (44) and (45), it follows that

x1 =
t1 − µ
d1 + λ1

and x2 =
t2 − µ
d2 + λ2

.

Substituting these expressions in (46) and operating we have

µ =
n1

t1
d1+λ1

+ n2
t2

d2+λ2
−Q

n1

d1+λ1
+ n2

d2+λ2

.

Then,

xi =

ti −
ni

ti
di+λi

+nj
tj

dj+λj
ni

di+λi
+

nj
dj+λj

di + λi
+

Q
ni

di+λi
+

nj
dj+λj

di + λi
, i = 1, 2,

i.e., the equilibrium quantities. Moreover, since the objective function is concave and the con-

straint is a linear equation, we conclude that the critical point is a global maximum. Hence, we

have that the equilibrium maximizes the previous optimization program.

Proof of Proposition 5: Recall that in the competitive setup, the F.O.C. of the two opti-

mization problems will yield

E [θi|si, p]− p− λixi = 0, i = 1, 2.
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Doing similar computations as in the proof of Lemma A1, we derive the following system of

equations:19

bi =
(1− Ξi) θi −Ψiθj + Ψi

(
Q−nibi−njbj

njaj

)
λi

,

ai =
Ξi − ni

nj

ai
aj

Ψi

λi
, and

ci =
1−Ψi

(
nici+njcj
njaj

)
λi

, i, j = 1, 2, j 6= i.

Taking into account that Q = (ni + nj)q and µi = ni
ni+nj

, we have that the previous system is

identical to the system of equations given in (40)-(42). Consequently, we can conclude that the

equilibrium coeffi cients given in the statement of Proposition 4 are the equilibrium coeffi cients

in the competitive setup.

Proof of Proposition 6: Doing similar computations as in the proof of Lemma A1, we obtain

that the equilibrium coeffi cients satisfy the following system of equations:

bi =
(1− Ξi) θi −Ψiθj − Ψi(nibi+njbj−Q)

njaj

di + λi − di(coi , coj)
,

ai =
Ξi − niai

njaj
Ψi

di + λi − di(coi , coj)
> 0, and

ci =
1− Ψi(nici+njcj)

njaj

di + λi − di(coi , coj)
, i, j = 1, 2, j 6= i.

Comparing this system of equation and the one derived in the proof of Proposition 5, we obtain

that the equilibrium coeffi cients of the price-taking equilibrium solves this system. Therefore,

we can conclude that the quadratic subsidies κi
2
x2
i , i = 1, 2, induce an effi cient allocation.

Lemma A4. In equilibrium, the expected deadweight satisfies

E [DWL] =
1

2
λ1n1E

[
(x1 (t)− xo1 (t))2]+

1

2
λ2n2E

[
(x2 (t)− xo2 (t))2] .

Proof of Lemma A4: Notice that ETS = E [E [TS|t]] , where

E [TS|t] = E

[
n1

(
θ1x1 (t)− λ1

(x1 (t))2

2

)
+ n2

(
θ2x2 (t)− λ2

(x2 (t))2

2

)∣∣∣∣∣ t
]

=

n1

(
t1x1 (t)− λ1

(x1 (t))2

2

)
+ n2

(
t2x2 (t)− λ2

(x2 (t))2

2

)
.

19To ease the notation the superscript o is omitted in this proof.
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A Taylor series expansion of E [TS|t] around the price-taking equilibrium (xo1 (t) , xo2 (t)),

stopping at the second term due to the fact that E [TS|t] is quadratic, yields

E [TS|t] (x (t)) = E [TS|t] (xo (t)) +∇E [TS|t] (xo (t))(x (t)− xo (t)) +

+
1

2
(x (t)− xo (t))

′
D2E [TS|t] (xo (t))(x (t)− xo (t)),

where ∇E [TS|t] (xo (t)) and D2E [TS|t] (xo (t)) are, respectively, the gradient and the Hessian

matrix of E [TS|t] evaluated at xo (t). Notice that we know

∇E [TS|t] (xo (t)) = (n1 (t1 − λ1x
o
1 (t)) , n2 (t2 − λ2x

o
2 (t))).

Using the expressions of xo1 (t) and xo2 (t) ,

∇E [TS|t] (xo (t))(x (t)− xo (t)) =

= (n1 (t1 − λ1x
o
1 (t)) , n2 (t2 − λ2x

o
2 (t)))

(
x1 (t)− xo1 (t)

x2 (t)− xo2 (t)

)
=

n1

(
n1

t1
λ1

+n2
t2
λ2

n1
λ1

+
n2
λ2

− Q
n1
λ1

+
n2
λ2

)
(x1 − xo1) + n2

(
n1

t1
λ1

+n2
t2
λ2

n1
λ1

+
n2
λ2

− Q
n1
λ1

+
n2
λ2

)
(x2 − xo2) =

(
n1

t1
λ1

+n2
t2
λ2

n1
λ1

+
n2
λ2

− Q
n1
λ1

+
n2
λ2

)
(n1 (x1 − xo1) + n2 (x2 − xo2))=

(
n1

t1
λ1

+n2
t2
λ2

n1
λ1

+
n2
λ2

− Q
n1
λ1

+
n2
λ2

)
(Q−Q) = 0.

In addition, D2E [TS|t] (xo (t)) =

(
−λ1n1 0

0 −λ2n2

)
. Hence,

E [TS|t] (x (t))− E [TS|t] (xo (t)) = −1

2
λ1n1 (x1 (t)− xo1 (t))2 − 1

2
λ2n2 (x2 (t)− xo2 (t))2 ,

and consequently,

E [DWL] =
1

2
λ1n1E

[
(x1 (t)− xo1 (t))2]+

1

2
λ2n2E

[
(x2 (t)− xo2 (t))2] .
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