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Abstract

We propose a model in which investors have to spend effort to interpret the infor-

mational content of asset prices in financial markets. Investors do not fully understand

the price function, but they still infer information from prices and choose the optimal

trading strategies given their beliefs. We show that as investors’sophistication level

increases, trading volume increases, while disagreement among investors can exhibit

a hump-shape. In the limit, investors fully understand the price function, the price

approaches to be fully revealing as in the standard rational-expectations equilibrium

model, but trading volume diverges to infinity. Sophistication harms welfare through

generating excessive speculative trading but benefits welfare through lowering the equi-

librium return volatility. We finally allow investors to study market data to endogenize

the sophistication level, and find that studying market data exhibits strategic comple-

mentarity, so that multiple equilibria can arise.
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1 Introduction

Data can be viewed as information only after it has been analyzed. Interpreting data is often

costly in terms of time, effort, and other investor resources. This is particular true for market

data given the complexity of modern financial markets. In the existing frameworks– such as

the traditional rational-expectations equilibrium (REE) model (e.g., Grossman, 1976; Rad-

ner, 1979), and the more recent REE-disagreement hybrid models (e.g., Banerjee, 2011)–

investors understand the price function and can freely invert the market price to uncover

value-relevant information. In this paper, we propose a framework to explicitly capture the

idea that it is costly for investors to interpret market data and examine how investor ability

in interpreting the price affects equilibrium outcomes.

In our model, investors do not fully understand the price function but they still actively

infer information from the price data. Each investor interprets the price as a private payoff-

relevant signal in a form of “truth plus noise.”The “truth”represents the best signal that a

fully sophisticated investor could obtain (which will be endogenously determined in equilib-

rium), while the “noise”is negatively associated with the sophistication level of the investor

in interpreting the price. After investors form their beliefs based on their personalized price

signals, they behave as rational Bayesian and make optimal investments in response to their

own beliefs. Through market clearing, investors’optimal asset investments in turn endoge-

nously determine the equilibrium price function and hence the best price signal (i.e., the

“truth”in investors’personalized signals extracted from the price data). To close the model,

we endogenize investors’sophistication level using a learning technology: investors can spend

resources to study market data, and the more resources they spend, the better can they read

the price, and so the less noise is injected in the inference process.

We then use our framework to examine the behavior of asset prices, investors’beliefs,

trading volume, and investors’welfare. Firstly, we show that investor sophistication improves

price informativeness. In our economy, the price is a linear function of the asset fundamental

and a noise term. The fundamental element comes from aggregating investors’private value-

relevant information, which is also the root reason why the price contains information that

investors care to learn. The noise term in the price arises from a common bias in investors’

1



personalized price signals, which is meant to capture the notion that in processing the price

data, investors may suffer a common cognition error (such as “sentiment”) or technical

error (such as a common bias in data processing algorithms). When investors become more

sophisticated, they understand the true price signal better, and thus their trading brings

less noise into the price, which makes the price more informative about the fundamental. As

investor sophistication approaches to infinity, the asset price approaches to be fully revealing,

corresponding to a standard rational-expectations equilibrium.

Secondly, investor sophistication can either spur or stifle disagreement across investors’

expectations about the asset fundamental. On the one hand, investors interpret the price

data differently, and so the more sophisticated they are, the higher weight they put to their

diverse information extracted from the price in forecasting the asset fundamental, and thus

the more likely they may end up with different understandings. On the other hand, investor

sophistication improves price informativeness, which makes the price contain more precise

information about the asset payoff. So, actively reading information from the price can also

cause investors’beliefs to converge. The trade-off between these two counteracting forces

determines the relation between disagreement and sophistication.

In general, when investors start with precise fundamental signals, the second negative

effect always dominates so that disagreement monotonically decreases with investor sophis-

tication. This is because when investors are endowed with precise information, the price

signal is particularly accurate after aggregation, and thus the belief-convergence effect is

particularly strong. By contrast, when investors are endowed with coarse private fundamen-

tal information, the positive effect can dominate. For instance, suppose that investors start

with extremely coarse fundamental information and extremely low sophistication level, so

that their expectations about the asset payoff are close to the prior distribution and thus al-

most homogeneous. Now if we increase investors’sophistication level, then they will start to

read different information from the price, and so their expectations will diverge. Nonetheless,

when investor sophistication level becomes suffi ciently high, disagreement will decrease with

sophistication again (i.e., the belief-convergence effect will eventually dominate), because as

sophistication approaches to infinity, the asset price approaches to be fully revealing, and

thus investor disagreement will vanish.
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Thirdly, investor sophistication monotonically increases trading volume. In our setup,

trading volume is determined by two factors. First, it is positively driven by investors’

disagreement about fundamental expectations; that is, when investors disagree more, they

trade more. Second, trading volume is negatively driven by investors’perceived risk in the

process of trading. When investors perceive little risk, they trade aggressively, so that the

aggregate trading volume is high.

As we discussed above, investor sophistication can either increase or decrease disagree-

ment. Thus, through the disagreement channel, investor sophistication can either increase

or decrease trading volume. In contrast, as investor sophistication increases, investors per-

ceive lower trading risk for two reasons. First, they can directly read more information from

the price, and so they perceive that they can predict the fundamental with less uncertainty.

Second, as we discussed before, price informativeness increases with investor sophistication,

which means that the price conveys more information to investors, which further reduces

investors’trading risk. As a result, through the risk channel, investor sophistication tends

to increase trading volume. We can show that this risk channel always dominates the dis-

agreement channel, and thus overall, trading volume increases with investor sophistication.

In particular, when investors approach to be fully sophisticated, trading volume diverges

to infinity (because investors study market data), although the price approaches to be fully

revealing, which corresponds to the standard REE price. This result contrasts with the con-

ventional wisdom that speculative trading is limited in REE settings without non-speculative

trading motives. It suggests that if we view the standard REE as a limiting economy in

which investor sophistication approaches infinity, trading volume can be very large. This

view seems to well describe the modern financial market in which more real traders, such

as high-frequency traders and hedge funds, have employed more sophisticated trading soft-

ware/devices and trade more intensively in various trading venues.

In our setting, trading volume is purely speculative and it hurts investors’welfare. This

is because the equilibrium holding of each investor is simply a linear combination of the

error terms in their signals, which is a form of “winner’s curse”(Biais, Bossaerts, and Spatt,

2010). This result is consistent with the existing empirical evidence documented in the

literature (e.g., Odean, 1999; Barber and Odean, 2000). Through this volume channel,
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investor sophistication tends to reduce welfare.

However, investor sophistication also positively affects welfare through reducing the re-

turn volatility, which is a general-equilibrium effect. Given that trading is speculative, return

volatility is negatively related to welfare: a higher return volatility means that the price de-

viates more from the fundamental, and thus the winner’s curse hurts investors more. As we

discussed before, investor sophistication improves price informativeness and hence reduces

the equilibrium return volatility by causing the price to be closer to the fundamental. As a

result, through this equilibrium return volatility channel, investor sophistication tends to im-

prove welfare. Taken together, the overall welfare implication of sophistication is ambiguous

due to the two offsetting forces.

Finally, when endogenizing investor sophistication, we find that the previous price-

informativeness result leads to strategic complementarity in sophistication acquisition and

the possibility of multiple equilibria. Specifically, when a representative investor spends more

resources to become more sophisticated in reading prices, price informativeness increases and

the price conveys more information, which increases the marginal value of attending to the

price data. This in turn further strengthens investors’ ex-ante incentives to study mar-

ket data. This strategic complementarity implies that multiple sophistication levels can be

sustained in equilibrium. Thus, when an exogenous parameter, for instance, the cost of

achieving sophistication, changes, there can be jumps in equilibrium sophistication levels.

This can correspond to waves of development of algorithmic trading in reality in response to

exogenous shocks to the economy, say, some regulation changes.

2 Related Literature

Our approach of modeling investors’understanding of market data shares similarity to the

concept of “rationalizability” (Guesnerie, 1992; Jara-Moroni, 2012) and the “level-k” or

“cognitive hierarchy”models (see Crawford, Costa-Gomes, and Iriberri (2013) for a survey).

These existing studies make an effort to study whether and how rational expectations can

be generated, starting from a more fundamental principle that investors are individually

Bayesian rational and best respond to some beliefs. Similarly, under our approach, investors
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are fully rational at the individual level– more specifically, investors are subjective expected

utility (SEU) maximizers (Savage, 1954) and they can perform perfect partial equilibrium

analysis– but they do not perfectly understand the general structure of the economy and

therefore may not necessarily have the best signal.

Our paper is also closely related to the recent literature on environment complexity

that makes agents fail to account for the informational content of other players’ actions

in game settings. Eyster and Rabin (2005) develop the concept of “cursed equilibrium,”

which assumes that each player correctly predicts the distribution of other players’actions,

but underestimates the degree to which these actions are correlated with other players’

information. Esponda (2008) extends Eyster and Rabin’s (2005) concept to “behavioral

equilibrium”by endogenizing the beliefs of cursed players. Recently, Esponda and Pouzo

(2016) propose the concept of “Berk-Nash equilibrium” to capture that people can have

possibly misspecified view of their environment. In a Berk-Nash equilibrium, each player

follows a strategy that is optimal given her belief, and her belief is restricted to be the best

fit among the set of beliefs she considers possible, where the notion of best fit is formalized

in terms of minimizing the Kullback-Leibler divergence. Although these models are cast in a

game theoretical framework, the essential spirit of our financial market model is the same. In

our model, investors’interactions are mediated by an asset price, which is sort of a summary

statistics for all the other players’actions.

Eyster, Rabin, and Vayanos (2015) have applied the cursed equilibrium concept to a

financial market setting and labeled the resulting equilibrium as the cursed-expectations

equilibrium (CEE). In a CEE, an investor is a combination of a fully rational REE investor

(who correctly reads information from the price) and a naive Walrasian investor (who totally

neglects the information in the asset price). The investor in our economy is conceptually

related to but different from a partially cursed investor; she does not understand the price

function perfectly and has to spend an endogenous cost to infer information from the price.

Eyster, Rabin, and Vayanos (2015) have also examined volume implications. Specifically,

they show that as the number of investors goes to infinity, trading volume diverges. By

contrast, we conduct a different analysis, that is, we show that as investor sophistication

goes to infinity, trading volume explodes. Our analysis thus suggests that as the economy
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approaches to be fully rational, the equilibrium does not converge to standard REE in terms

of volume behavior, which is different from Eyster, Rabin, and Vayanos (2015). In addition,

we have conducted analysis on additional variables such as disagreement and welfare.

The recent finance literature, such as Banerjee, Kaniel, and Kremer (2009) and Banerjee

(2011), have combined REE and disagreement frameworks to allow investors underestimate

the precision of other investors’private information (and hence also labeled as “dismissive-

ness”models). A dismissive investor can be roughly viewed as a combination of fully rational

and naive investors, and thus conceptually related to the investor in our economy. However,

in the dismissiveness model, investors still perfectly understand the price function and they

only disagree about the distribution of other investors’ signals. Thus, at the conceptual

level, our investors are fundamentally different. In addition, the volume implication of the

dismissiveness model is different from our paper. Specifically, in the dismissiveness model,

as investors’bias vanishes (and hence investors become fully sophisticated), volume would

vanish as well, which is opposite of the prediction of our setting.

In the accounting literature, some researchers, Indjejikian (1991) and Kim and Verrecchia

(1994) for instance, have considered settings in which investors have different interpretations

about an exogenous public signal such as earnings announcements. In contrast, in our

setting, investors have different interpretations about an endogenous public signal, which is

the equilibrium price. In Ganguli and Yang (2009) and Manzano and Vives (2011), investors

interpret the price information differently through acquiring information about the noise

supply. Our setting differs from these supply-information models in two important ways.

First, at the conceptual level, our investors lack the knowledge about the economy structure,

while it is not the case in the supply-information models. Second, the supply-information

models have focused on uniqueness versus multiplicity of equilibrium, while our analysis has

broader implications for prices and volume.

Finally, at the broad level, our paper contributes to the behavioral finance literature

(see Shleifer (2000) and Barberis and Thaler (2003)). Our analysis highlights how investor

sophistication and sentiment affect market effi ciency and other market outcomes (such as

disagreement, volume, and welfare) through the interpretation of asset prices. Recently,

Gârleanu and Pedersen (2016) propose a model to show market effi ciency is closely connected

6



to the effi ciency of asset management. In our model, market effi ciency is determined by how

investors (institutions or retail investors) interpret the asset price.

3 The Model

Environment We consider a one-period economy similar to Hellwig (1980). Two assets

are traded in a competitive market: a risk-free asset and a risky asset. The risk-free asset has

a constant value of 1 and is in unlimited supply. The risky asset is traded at an endogenous

price p̃ and is in zero supply. It pays an uncertain cash flow at the end of the economy,

denoted ṽ. We assume that ṽ is normally distributed with a mean of 0 and a precision

(reciprocal of variance) of τ v– that is, ṽ ∼ N (0, 1/τ v), with τ v > 0.

There is a continuum [0, 1] of investors who have constant absolute risk aversion (CARA)

utility with a risk aversion coeffi cient of γ > 0. Investors have fundamental information and

trade on it. Specifically, investor i is endowed with the following private signal:

s̃i = ṽ + ε̃i, with ε̃i ∼ N (0, 1/τ ε) and τ ε > 0, (1)

where ε̃i is independent of ṽ and they are also independent of each other.

Belief specification The idea of our paper is to show that the financial market is so

complex that traders cannot fully understand its structure so that they cannot perfectly

interpret information in asset prices. In traditional REE models, traders look into the asset

price to make inference about fundamentals, which is usually modeled as a statistical signal,

s̃p, about the asset fundamental ṽ. The justification is that traders are sophisticated enough

to understand the statistical properties of the price function that links the price p̃ to the

fundamental ṽ, and thus they can extract information about ṽ from seeing p̃.

In practice, it is arguable that the asset price in modern financial markets cannot be

fully understood by market participants and a better understanding of the market structure

needs more effort. To capture this idea, we adopt a reduced-form of belief specification,

which takes the form “truth plus noise.”That is, after seeing price p̃, investor i interprets it
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as a signal as follows:

s̃p,i = s̃p︸︷︷︸
truth

+ x̃i︸︷︷︸,
noise

with x̃i ∼ N

(
0,

1

τx

)
, (2)

where s̃p is the true signal implied by the price, which is also the best signal that a fully

sophisticated investor can obtain in a standard REE setting, and where x̃i is the noise in

processing the price data, which can come from poor mental reasoning or from technology

capacity. As standard in the literature, we assume that s̃p and x̃i are mutually independent.

We do not model where equation (2) comes from and thus it is a reduced-form of belief

formation. In standard REE models, investors fully understand the price function and can

convert the price p̃ to the signal s̃p, and in this case the noise x̃i degenerates to 0 (or τx =∞)

in equation (2).

Sophistication Investors can study market data to reduce their noise x̃i in (2), thereby

bringing the price signal s̃p,i closer to the best signal s̃p. We model this noise-reduction

process as investors gleaning private information about x̃i. Specifically, investor i can study

the market and obtain the following signal:

z̃i = x̃i + η̃i with z̃i ∼ N
(
0, 1/τ ηi

)
, (3)

where η̃i is independent of all other random variables and independent of each other. Con-

ditional on z̃i, the noise in investor i’s price signal s̃p,i has a posterior distribution

x̃i|z̃i ∼ N

(
τ ηi z̃i

τx + τ ηi
,

1

τx + τ ηi

)
, (4)

which indeed has a variance 1
τx+τηi

smaller than the prior variance 1
τx
.

The precision τ ηi captures investor i’s ability or “sophistication”level in understanding

the asset market. When τ ηi =∞, investors fully understand the market, which reduces our

economy to the traditional REE setup. When τx = τ ηi = 0, investors cannot understand

the price function at all and totally neglect the information in prices, which reduces our

economy to the traditional Walrasian economy. Parameter τ ηi is endogenous in the model

and it comes from the intensity of studying market data. Specifically, being sophisticated is

costly, which is reflected by a weakly increasing and convex cost function, C
(
τ ηi
)
. The cost

can be monetary (e.g., Verrecchia, 1982) or represent costly attention (e.g., Veldkamp, 2011,
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ch 3; Myatt and Wallace, 2012; Pavan, 2014).1 Investors choose τ ηi to optimally balance the

benefit from being more sophisticated against its cost.

Sentiment The noise term x̃i in (2) admits a factor structure as follows:

x̃i = ũ+ ẽi, with ũ ∼ N (0, 1/τu) and ẽi ∼ N (0, 1/τ e) , (5)

where
(
ũ, {ẽi}i∈[0.1]

)
is mutually independent and independent of all other random variables.

Note that, by equations (2) and (5), we have 1
τx

= 1
τu

+ 1
τe
. In (5), the idiosyncratic noise

ẽi is specific to investor i. The common noise ũ in investors’price signals represents waves

of optimism and pessimism, which is labeled as “sentiment” in the behavioral economics

literature. That is, as in Angeletos and La’o (2013), the variable ũ represents extrinsic

shocks that have nothing to do with the fundamental ṽ but affect all agents’beliefs. This

common error ũ can also arise from a common bias in data-processing algorithms. As we

will show shortly, the random variable ũ will enter the price as an endogenous source of noise

trading emphasized in the noisy REE literature (e.g., Grossman and Stiglitz, 1980).

4 Equilibrium Concept

The overall equilibrium in our model is composed of an equilibrium at the trading stage and

an equilibrium at the sophistication determination stage. The financial market equilibrium

at the trading stage determines the asset price p̃ and investors’ demands for the assets,

taking investors’sophistication level τ ηi as given. The sophistication equilibrium determines

investors’sophistication levels taking the behavior of asset prices as given.

At the trading stage, all investors are SEUmaximizers and choose investments in assets to

maximize their expected utilities conditional on their information sets. They are price takers

1Our information setup follows closely Pavan (2014). In the language of Pavan (2014), parameter τx
measures the accuracy of the information source (which is the price in our context). Parameter τηi can be
thought of as the time investor i devotes to the information source and C

(
τηi
)
denotes the attention cost

incurred by the investor. Some studies in the rational inattention literature further adopt an entropy-based
cost function (e.g., Myatt and Wallace, 2012). In these studies, the amount of information transmitted is
captured by the concept of mutual information. The mutual information uses an agent’s attention capacity
and an agent can incur a cost to increase the attention capacity. In our context, the mutual information
is given by K ≡ 1

2 log
V ar(s̃p|s̃p,i)
V ar(s̃p|s̃p,i,z̃i) , which captures how much information is transmitted after the investor

processes the price data. The investor incurs a cost C (K) in order to process price information more
accurately.
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but still actively infer information from the price p̃. Specifically, investor i has information set

{p̃, s̃i, z̃i}. When she makes forecast about fundamental ṽ, she will interpret p̃ as a signal s̃p,i
according to (2). Therefore, investor i chooses investment Di in the risky asset to maximize

Ei

(
−e−γ[(ṽ−p̃)Di−C(τηi)]

∣∣∣ p̃, s̃i, z̃i) (6)

where Ei (·) indicates that investor i takes expectation with respect to her own (subjective)

belief.

The CARA-normal setting implies that investor i’s demand for the risky asset is

D (p̃; s̃i, s̃p,i, z̃i) =
E ( ṽ| s̃i, s̃p,i, z̃i)− p̃
γV ar ( ṽ| s̃i, s̃p,i, z̃i)

, (7)

where E ( ṽ| s̃i, s̃p,i, z̃i) and V ar ( ṽ| s̃i, s̃p,i, z̃i) are the conditional expectation and variance of

ṽ given information {s̃i, s̃p,i, z̃i}. In (7), we have explicitly incorporated s̃p,i in the demand

function to reflect the informational role of the price (i.e., the price helps to predict ṽ) and

used p̃ per se to capture the substitution role of the price (i.e., a higher price directly leads

to a lower demand on the right-hand-side of (7)). Thus, the conditioning on the price in (7)

is only used to gauge scarcity as with any other good but the learning on fundamentals is

via the private signal s̃p,i or “price interpretation.”

The financial market clears, i.e.,∫ 1

0

D (p̃; s̃i, s̃p,i, z̃i) di = 0 almost surely. (8)

This market-clearing condition, together with the demand function (7), will determine an

equilibrium price function

p̃ = p (ṽ, ũ) , (9)

where ṽ and ũ come from the aggregation of signals s̃i, s̃p,i, and z̃i. This equilibrium price

function in turn endogenously determines the information content in the true signal s̃p given

by equation (2).

Now let us formulate how investor sophistication is determined. Inserting the expression

of D (p̃; s̃i, s̃p,i, z̃i) in (7) into the objective function Ei
(
−e−γ[(ṽ−p̃)Di−C(τηi)]

∣∣∣ p̃, s̃i, z̃i) in (6),
we can compute the indirect utility function of investor i, Ei

(
−e−γ[(ṽ−p̃)D(p̃;s̃i,s̃p,i,z̃i)−C(τηi)]

∣∣∣ p̃, s̃i, z̃i).
In anticipation of this indirect utility, investor i determines the level of τ ηi to maximize her

expected utility before seeing the signal z̃i. When computing this conditional expected util-
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ity, we assume that investors can condition on private fundamental information s̃i and the

possible realizations of the price p̃, that is, the sophistication level τ ηi is determined by

max
τηi

Ei

[
Ei

(
−e−γ[(ṽ−p̃)D(p̃;s̃i,s̃p,i,z̃i)−C(τηi)]

∣∣∣ p̃, s̃i, z̃i)∣∣∣ p̃, s̃i] , (10)

where Ei (·) again indicates expectation under investor i’s belief that interprets p̃ as a signal

of s̃p,i in predicting ṽ.

The assumption of conditioning on p̃ in (10) can be justified in two ways. First, REE

makes sense only if implemented in demand functions, so we should consider strategies

that are in the form of demand functions that condition on prices (see, for example, Vives,

2014). That is, when submitting her strategies, an investor should think through the effect

of conditioning on different prices even without actually seeing them. Second, accessing to

the prevailing price p̃ is a parsimonious way of capturing the notion of studying market data

in reality: seeing the signal z̃i refers economically to studying the price data, and in our

one-period model, the only price available is the prevailing price p̃.

The timeline of our economy is as follows:

1. Investors receive their private fundamental information s̃i.

2. Investors choose simultaneously a sophistication level τ ηi and a demand functionD (p̃; s̃i, s̃p,i, z̃i).

When choosing τ ηi , investor i conditions on private information s̃i and the possible re-

alizations of the price p̃.

3. The signal z̃i is realized according to the chosen sophistication level τ ηi , the market

clears according to the chosen demand function D (p̃; s̃i, s̃p,i, z̃i), and the price p̃ is

realized.

4. Asset payoff ṽ is realized, and investors get paid and consume.

Definition 1 An overall equilibrium is defined by the following two subequilibria:

(a) Financial market equilibrium, which is characterized by a price function p (ṽ, ũ) and

demand functions D (p̃; s̃i, s̃p,i, z̃i), such that: (a1) D (p̃; s̃i, s̃p,i, z̃i) is given by (7), which

maximizes investors’conditional expected utilities given their beliefs; (a2) the market clears

almost surely, i.e., equation (8) holds; and (a3) investors’beliefs are given by (2), (3), and
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(5), where s̃p in (2) is implied by the price function p (ṽ, ũ) and where the sophistication

levels
(
τ ηi
)
i∈[0,1] are determined by the sophistication level equilibrium.

(b) Sophistication level equilibrium, which is characterized by sophistication levels
(
τ ηi
)
i∈[0,1],

such that τ ηi solves (10), where investors’beliefs are given by (2), (3), and (5), with s̃p in

(2) being determined by the price function p (ṽ, ũ) in the financial market equilibrium.

5 Financial Market Equilibrium

5.1 Equilibrium Construction

We consider a linear financial market equilibrium in which the price function takes the

following form:

p̃ = avṽ + auũ, (11)

where the coeffi cients a’s are endogenous.

By equation (11), the price p̃ is equivalent to the following signal in predicting the asset

fundamental ṽ:

s̃p = ṽ + αũ with α ≡ au
av
, (12)

which would be the best signal that a fully sophisticated investor can achieve. However, as

we mentioned in Section 3, investor i cannot fully understand the price and she can only

extract limited information from the price to the extent that she reads a coarser signal as

follows:

s̃p,i = s̃p + x̃i = (ṽ + αũ) + (ũ+ ẽi) = ṽ + (α + 1) ũ+ ẽi, (13)

where the second equality follows from equations (2) and (5). In other words, our investors

add noise to the best signal that a fully sophisticated trader could obtain; that is, it adds

noise in the inference process.

Using Bayes’rule, we can compute

E (ṽ|s̃i, s̃p,i, z̃i) =
τ εs̃i +

τeτu+τeτηi+τuτηi
τu+τe(α+1)

2+α2τηi
s̃p,i − τηi (τu+τe+ατe)

τu+τe(α+1)
2+α2τηi

z̃i

τ v + τ ε +
τeτu+τeτηi+τuτηi
τu+τe(α+1)

2+α2τηi

, (14)
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V ar (ṽ|s̃i, s̃p,i, z̃i) =
1

τ v + τ ε +
τeτu+τeτηi+τuτηi
τu+τe(α+1)

2+α2τηi

. (15)

Inserting these two expressions into (7), we can compute the expression of D (p̃; s̃i, s̃p,i, z̃i),

which is in turn inserted into (8), yielding the following equilibrium price:

p̃ =
τ ε +

∫ 1
0

τeτu+τeτηi+τuτηi
τu+τe(α+1)

2+α2τηi
di

τ v + τ ε +
∫ 1
0

τeτu+τeτηi+τuτηi
τu+τe(α+1)

2+α2τηi
di
ṽ+

(1 + α)
∫ 1
0

τeτu+τeτηi+τuτηi
τu+τe(α+1)

2+α2τηi
di−

∫ 1
0

τηi (τu+τe+ατe)

τu+τe(α+1)
2+α2τηi

di

τ v + τ ε +
∫ 1
0

τeτu+τeτηi+τuτηi
τu+τe(α+1)

2+α2τηi
di

ũ.

(16)

Comparing with (11), we thus have

α =
(1 + α)

∫ 1
0

τeτu+τeτηi+τuτηi
τu+τe(α+1)

2+α2τηi
di−

∫ 1
0

τηi (τu+τe+ατe)

τu+τe(α+1)
2+α2τηi

di

τ ε +
∫ 1
0

τeτu+τeτηi+τuτηi
τu+τe(α+1)

2+α2τηi
di

, (17)

which determines the single unknown α.

Analyzing equation (17), we have the following theorem that characterizes the financial

market equilibrium.

Theorem 1 There exists a linear equilibrium price function

p̃ = avṽ + auũ,

where

av =
τ ε +

∫ 1
0

τeτu+τeτηi+τuτηi
τu+τe(α+1)

2+α2τηi
di

τ v + τ ε +
∫ 1
0

τeτu+τeτηi+τuτηi
τu+τe(α+1)

2+α2τηi
di
and au = αav,

with α > 0 being determined by

ατ ε =

∫ 1

0

τ e
(
τu − ατ ηi

)
τu + τ e (α + 1)2 + α2τ ηi

di. (18)

Proof. See the appendix.

In Section 8, we will show that, in the overall equilibrium, all investors will endogenously

choose the same sophistication level (i.e., τ ηi = τ η, ∀i ∈ [0, 1]), for any smooth, increasing,

and weakly convex cost function C
(
τ ηi
)
of achieving sophistication. Under this condition,

the financial market equilibrium can be further characterized as follows.

Theorem 2 When investors have the same sophistication level (i.e., τ ηi = τ η, ∀i ∈ [0, 1]),

there exists a unique linear equilibrium price function,

p̃ = avṽ + auũ,

13



where

av =
τ ε + τeτu+τeτη+τuτη

τu+τe(α+1)
2+α2τη

τ v + τ ε + τeτu+τeτη+τuτη

τu+τe(α+1)
2+α2τη

and au = αav,

and where α ∈
(

0, τeτu
τeτε+τeτη+τuτε

)
is uniquely determined by the positive real root of the

following cubic equation:

(τ eτ ε + τ ετ η)α
3 + 2τ eτ εα

2 + (τ eτ ε + τ eτ η + τuτ ε)α− τ eτu = 0. (19)

Proof. See the appendix.

As discussed by Guesnerie (1992, p. 1254), there are broadly two ways to justify the

standard REE: the “eductive” justification that relies on the understanding of the logic

of the situation faced by economic agents and that is associated with mental activity of

agents aiming at “forecasting the forecasts of others;”and the “evolutive”justification that

emphasizes the learning possibilities offered by the repetition of the situation and that is

associated with the convergence of several versions of learning processes. In our equilibrium

investors could be as sophisticated as the usual REE agents (and get the value of α by one

of the two methods) but each investor makes a “processing error”in interpreting price data

and understands that she makes a mistake and that the other investors also make mistakes.

Alternatively, and equivalently, investors have a “sentiment shock”when interpreting prices,

and this shock has a common and an idiosyncratic component, and understand that other

investors also have sentiment shocks. The following subsection links our equilibrium to the

traditional REE more explicitly in a polar case of our economy.

5.2 Polar Cases: REE and Walrasian Economies

When τ η =∞, investors are fully sophisticated and extract the best signal from the price, so

that the economy degenerates to a full REE setup. When τx = τ η = 0, investors completely

ignore the price information, and the economy becomes a traditional Walrasian economy.

In both settings, we have α = 0, although the price functions are different. This result

also connects our model to the cursed-expectations equilibrium (CEE) in Eyster, Rabin,

and Vayanos (2015). Specifically, the case of τ η =∞ in our model corresponds to the fully

rational case in CEE, while the case of τx = τ η = 0 corresponds to the fully cursed case
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in CEE. That is, parameter τ η in our economy conceptually “corresponds”(in the sense of

having a parallel) to the degree of cursedness in CEE.

Proposition 1 When τ e ∈ (0,∞) , τu ∈ (0,∞), and τ η =∞, the price function is

p̃REE = ṽ.

When τu ∈ (0,∞) and τ e = τ η = 0, or when τ e ∈ (0,∞) and τu = τ η = 0, the price function

is

p̃Walrasian =
τ ε

τ v + τ ε
ṽ.

Proof. See the appendix.

5.3 Investor Sophistication and Price Informativeness

In the end of this section, we establish a complementarity result. When investors become

more sophisticated (i.e., τ η is higher), the true price signal becomes more precise as well

(i.e., α becomes lower so that s̃p is a more precise signal in predicting ṽ in (12)). Intuitively,

when τ η is large, investors know well the true price signal s̃p, and thus their trading brings

less noise ũ into the price. This complementarity result has important implications for the

determination of sophistication level in Section 8.

Proposition 2 When investors become more sophisticated, the price p̃ conveys more precise

information about the asset fundamental ṽ. That is, ∂α
∂τη

< 0.

Proof. See the appendix.

6 Trading Volume and Investor Disagreement

We now examine how investor sophistication affects trading volume and disagreement by

conducting comparative static analysis for these variables with respect to parameter τ η. In a

full equilibrium setting, an increase in τ η corresponds to a decrease in some parameter that

governs the cost function C
(
τ ηi
)
, which will be explored later in Section 8.
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6.1 Characterizations of Volume and Disagreement

Suppose that investors have the same sophistication level, i.e., τ ηi = τ η, ∀i ∈ [0, 1]. By

equation (15), all investors face the same risk level when trading the risky asset, i.e.,

Risk ≡ V ar (ṽ|s̃i, s̃p,i, z̃i) =
1

τ v + τ ε + τeτu+τeτη+τuτη

τu+τe(α+1)
2+α2τη

. (20)

Then, by the demand function (7) and the market clearing condition (8), the equilibrium

price is equal to the average expectation of investors,

p̃ =

∫ 1

0

E ( ṽ| s̃i, s̃p,i, z̃i) di ≡ Ē (ṽ) , (21)

where Ē indicates the average expectation operator.

To focus on the volume generated solely by different costly price interpretations, we

assume that investors start with a zero initial position of risky assets. Therefore, the trading

volume of investor i is

|D (p̃; s̃i, s̃p,i, z̃i)| =
∣∣∣∣E ( ṽ| s̃i, s̃p,i, z̃i)− p̃
γV ar ( ṽ| s̃i, s̃p,i, z̃i)

∣∣∣∣ =

∣∣E ( ṽ| s̃i, s̃p,i, z̃i)− Ē (ṽ)
∣∣

γV ar ( ṽ| s̃i, s̃p,i, z̃i)
. (22)

The total trading volume is

V olume ≡
∫ 1

0

|D (p̃; s̃i, s̃p,i, z̃i)| di =

∫ 1
0

∣∣E ( ṽ| s̃i, s̃p,i, z̃i)− Ē (ṽ)
∣∣ di

γV ar ( ṽ| s̃i, s̃p,i, z̃i)
, (23)

where the last equality uses the fact that V ar ( ṽ| s̃i, s̃p,i, z̃i) is independent of i given τ ηi = τ η,

∀i ∈ [0, 1].

By (14), E ( ṽ| s̃i, s̃p,i, z̃i)− Ē (ṽ) is normally distributed with mean zero, and thus,∫ 1

0

∣∣E ( ṽ| s̃i, s̃p,i, z̃i)− Ē (ṽ)
∣∣ di =

√
2

π
×Disagreement, (24)

where we define

Disagreement ≡
√
V ar

(
E ( ṽ| s̃i, s̃p,i, z̃i)− Ē (ṽ)

)
, (25)

which is the disagreement across investors’expectations about the fundamental ṽ.

Using equations (20), (23), and (24), we have

V olume =

√
2

π

Disagreement

γ ×Risk . (26)

The total trading volume is therefore jointly determined by three factors: investors’different

expectations about the asset fundamental ṽ, investors’risk aversion coeffi cient γ, and the

risk faced by investors in trading the assets. When investors disagree more about the future
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fundamental ṽ, they trade more and so the total trading volume is higher. When investors

are less risk averse and when they perceive less risk in trading the assets, they also trade

more aggressively, leading to a higher total trading volume.

Now we compute the expressions of Disagreement and V olume. By equation (14), we

can compute

E (ṽ|s̃i, s̃p,i, z̃i)− Ē (ṽ) =
τ εε̃i + τe(τu−ατη)

τu+τe(α+1)
2+α2τη

ẽi − τη(τu+τe+ατe)

τu+τe(α+1)
2+α2τη

η̃i,

τ v + τ ε + τeτu+τeτη+τuτη
τu+τe(α+1)

2+α2τη

, (27)

and thus by (25),

Disagreement =

√
τ ε +

(
τu−ατη

τu+τe(α+1)
2+α2τη

)2
τ e +

(
τu+τe+ατe

τu+τe(α+1)
2+α2τη

)2
τ η

τ v + τ ε + τeτu+τeτη+τuτη

τu+τe(α+1)
2+α2τη

. (28)

Thus, investors’disagreement comes from three sources: heterogeneous errors ε̃i in their

private fundamental information s̃i, heterogeneous errors ẽi in their prior price interpretation

s̃p,i, and heterogeneous errors η̃i generated from the process of studying market data.

Using equations (20), (26), and (28), we have

V olume =
1

γ

√
2

π

√√√√τ ε +

(
τu − ατ η

τu + τ e (α + 1)2 + α2τ η

)2
τ e +

(
τu + τ e + ατ e

τu + τ e (α + 1)2 + α2τ η

)2
τ η.

(29)

Remark 1 The assumption that investors start with no risky assets does not affect our

result. Suppose instead that investor i is initially endowed with ỹi shares of risky asset, where

ỹi ∼ N
(
0, σ2y

)
is independently and identically distributed across investors. Our baseline

model corresponds to a degenerate case of σy = 0. In the extended setting, we can compute

that the total trading volume is given by

V olume =

∫ 1

0

|D (p̃; s̃i, s̃p,i, z̃i)− ỹi| di =

√
2

π

Disagreement

γ ×Risk +

√
2

π
σy.

This expression differs from equation (26) only by a constant
√

2
π
σy that captures the volume

generated by the endowment heterogeneity.

6.2 Investor Sophistication, Volume, and Disagreement

We deliver two sets of results. The first set concerns the behavior of V olume, Disagreement,

and Risk as τ η → ∞. These results are particularly interesting, because as τ η → ∞, the
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economy converges to the fully REE setting (see Proposition 1). The second set of results is

about how V olume, Disagreement, and Risk change with τ η in general.

6.2.1 The Limiting Economy with τ η →∞

Suppose τ η →∞. Both Disagreement and Risk converge to 0. This is because by Proposi-

tion 1, the price approaches to be fully revealing, and thus investors face almost no trading

risk and agree on the valuation. However, trading volume diverges to ∞, because the per-

ceived risk shrinks at a higher order than the perceived risk (i.e., τ η versus
√
τ η).

In addition, the divergence of V olume comes from investors’price data analysis, that

is, the term
(

τu+τe+ατe
τu+τe(α+1)

2+α2τη

)2
τ η in (29). Formally, by equation (29), the trading volume

comes from three sources as follows:

V olume2 ∝ τ ε︸︷︷︸
diverse fundamental information

+

(
τu − ατ η

τu + τ e (α + 1)2 + α2τ η

)2
τ e︸ ︷︷ ︸

diverse prior of price information

+

(
τu + τ e + ατ e

τu + τ e (α + 1)2 + α2τ η

)2
τ η︸ ︷︷ ︸

diverse noise in studying market data

. (30)

As τ η → ∞, only the third term in the above expression diverges to ∞, while the first two

terms are bounded.

These results seem to describe well the recent high frequency trading in financial markets.

As more traders have more sophisticated trading algorithms (i.e., τ η → ∞), they tend to

analyze data more heavily and trade more heavily (i.e., V olume→∞), although their beliefs

may not differ that much (i.e., Disagreement→ 0).

Proposition 3 When investors approach to be fully rational,

(a) asset prices approach to be fully revealing;

(b) disagreement and perceived risk vanish toward zero; and

(c) trading volume diverges to infinity, which is driven by investors studying market data.

That is, limτη→∞ p̃ = ṽ almost surely, limτη→∞Disagreement = limτη→∞Risk = 0, and

limτη→∞ V olume =∞ (with only the third term in (30) being divergent).

Proof. See the appendix.
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6.2.2 Comparative Statics with Respect to τ η

Now suppose that τ η gradually increases from 0 to∞. As τ η becomes higher, investors face

lower risk in trading assets– i.e., ∂V ar(ṽ|s̃i,s̃p,i,z̃i)
∂τη

< 0– because they glean more information

from the price data for two reasons. First, a higher sophistication level means that they

study market data more intensively and can directly get more information from the price.

Second, by Proposition 2, when all investors study data more intensively, the price itself

becomes a more informative signal (i.e., α decreases), and thus each investor can infer more

information from the price data.

Investor sophistication affects disagreement in two opposite ways. First, in our setting,

investors interpret the price differently, and a higher τ η means that investors’expectations

rely more on their diverse information extracted from the price, thereby leading to a larger

belief heterogeneity. Second, a higher τ η implies that the price conveys more precise in-

formation about the asset fundamental (see Proposition 2), which tends to make investors’

belief converge. By Proposition 3, it must be the case that the second effect dominates for

suffi ciently large τ η so that Disagreement decreases with τ η when τ η is large. Nonetheless,

when τ η is small, the first positive effect on disagreement can dominate too. This possi-

bility will arise when investors’private fundamental information is very coarse (i.e., τ ε is

small). Intuitively, starting from a small τ ε, before accessing to market data, investors’be-

liefs are close to the prior and thus do not differ much from each other; after they see the

price and interpret it differently, their opinions start to diverge. Taken together, when τ ε is

small, Disagreement is hump-shaped in τ η. When τ ε is large, Disagreement monotonically

decreases with τ η.

The total trading volume increases with investor sophistication. That is, ∂V olume
∂τη

>

0. Note that by (26), V olume increases with Disagreement and decreases with Risk.

Given that Risk decreases with τ η, V olume tends to increase with τ η through the risk

channel. When Disagreement increases with τ η– which is true when both τ ε and τ η are

small– sophistication τ η increases V olume further through the disagreement channel. When

Disagreement decreases with τ η, it turns out that the risk channel dominates so that the

overall effect of increasing τ η is to increase V olume.
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Proposition 4 When investor sophistication level τ η increases,

(a) trading volume increases and perceived risk decreases (i.e., ∂V olume
∂τη

> 0 and ∂Risk
∂τη

< 0);

(b) investor disagreement is hump-shaped when investors have coarse private fundamental

information, and it monotonically decreases when investors have precise private fundamental

information (i.e., for small values of τ ε,
∂Disagreement

∂τη
< 0 if and only if τ η is suffi ciently large;

for large values of τ ε,
∂Disagreement

∂τη
< 0 for all values of τ η).

Proof. See the appendix.

We use Figure 1 to graphically illustrate Proposition 4. In the top three panels, we have

set τ ε = 0.05, while in the bottom three panels, we have set τ ε = 1. All the other parameters

are set at 1, i.e., τ v = τ e = τu = γ = 1. Consistent with Part (a) of Proposition 4, V olume

increases with τ η and Risk decreases with τ η, independent of the value of τ ε. Also consistent

with Part (b) of Proposition 4, Disagreement first increases and then decreases with τ η in

the top-middle panel where τ ε is small, and Disagreement monotonically decreases with τ η

in the bottom-middle panel where τ ε is relatively large.

[INSERT FIGURE 1 HERE]

7 Investor Sophistication and Welfare

7.1 Welfare Characterization

In this section, we flesh out the normative implications of investor sophistication. We define

investors’welfare as follows:

Welfare ≡ −1

γ
log
[
E
(
e−γ[(ṽ−p̃)D(p̃;s̃i,s̃p,i,z̃i)−C(τη)]

)]
.

That is, welfare is measured as the ex-ante equilibrium expected utility (certainty equivalent)

of investors, where the expectation is taken with respect to the objective distribution of

all underlying random variables. This treatment is standard in the behavioral economics

literature (e.g., Sandroni and Squintani, 2007; Gennaioli, Shleifer, and Vishny, 2012; Simsek,

2013; and Spinnewijn, 2015). The idea is that in the presence of belief disagreements,

investors’ perceived welfare is illusory because subjective beliefs misspecify the economy,
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and thus when conducting normative analysis, one should instead consider actual welfare

that is evaluated under the objective distribution.

After some computation, we can express Welfare as follows:

Welfare =
1

2γ
log
(
1− γ2σ2Dσ2ṽ−p̃

)
− C (τ η) , (31)

where

σD ≡
√
V ar (D (p̃; s̃i, s̃p,i, z̃i)) and σṽ−p̃ ≡

√
V ar (ṽ − p̃) (32)

are the volatility of investors’ trading positions and the volatility of asset returns ṽ − p̃,

respectively. Thus, Welfare decreases with trading volatility σD, return volatility σṽ−p̃,

and the cost C
(
τ ∗η
)
of studying market data. It is straightforward that an increase in the

exogenous sophistication cost C (τ η) directly lowersWelfare in (31). So, our discussion will

focus on the welfare effect of sophistication through the two endogenous variables, σD and

σṽ−p̃.

Using equations (7), (21), and (27), we can express D (p̃; s̃i, s̃p,i, z̃i) as follows:

D (p̃; s̃i, s̃p,i, z̃i) =
1

γ

[
τ εε̃i +

τ e (τu − ατ η)
τu + τ e (α + 1)2 + α2τ η

ẽi −
τ η (τu + τ e + ατ e)

τu + τ e (α + 1)2 + α2τ η
η̃i

]
.

Thus, the equilibrium holding of each investor is simply a linear combination of the error

terms (ε̃i, ẽi, and η̃i) in their signals (s̃i, s̃p,i, and z̃i), which is a form of “winner’s curse”of

trading in financial markets, as explained by Biais, Bossaerts, and Spatt (2010). Intuitively,

in our setup, investors do not hedge their background risk and they trade for speculation

purposes. Their speculative positions are proportional to the difference between their fore-

cast of the fundamental and the asset price. After aggregation, the price averages out the

idiosyncratic errors in investors’private information and as a result, investors end up holding

positions related only to the noises in their information.

This winner’s curse implies that speculative trading hurts investors’welfare. This obser-

vation is intuitively reflected by the expression γ2σ2Dσ
2
ṽ−p̃ in equation (31), which negatively

affects Welfare. First, variable σD measures the size of speculative trading; the more in-

vestors speculate, the more they lose. This result is consistent with the empirical evidence

documented in the finance literature (e.g., Odean, 1999; Barber and Odean, 2000). Second,

variable σṽ−p̃ is a measure for the wealth loss per unit trading. That is, a higher return
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volatility σṽ−p̃ means that it is more likely for the fundamental ṽ to deviate from the pre-

vailing price p̃, and thus the winner’s curse harms investors more. Finally, risk aversion γ

translates the wealth loss into welfare loss, since a more risk averse investor is more con-

cerned about wealth fluctuations. Taken together, γ2σ2Dσ
2
ṽ−p̃ captures the negative welfare

implications of the winner’s curse.

The welfare loss γ2σ2Dσ
2
ṽ−p̃ is also related to the idea of “speculative variance”studied by

Simsek (2013). In Simsek’s (2013) setting, investors trade for two purposes, risk-sharing and

speculation. Speculative variance refers to the part of portfolio risk that is driven by specu-

lation based on heterogeneous beliefs. Speculative variance tends to harm welfare and it is

greater when the assets feature greater belief disagreement, both features consistent with our

model. Specifically, our investors have no background risks and trade only for speculation.

As a result, trading in our setting has no risk-sharing benefits, which is therefore always “ex-

cessive” from a welfare perspective. In addition, similar to Simsek (2013), the welfare loss

γ2σ2Dσ
2
ṽ−p̃ in our setting is also greater when investors exhibit greater disagreement about

the asset fundamental (see equation (A13) in the appendix).

Remark 2 As in Remark 1, we can consider an extension in which investors are initially

endowed with ỹi shares of risky asset, where ỹi ∼ N
(
0, σ2y

)
is independently and identically

distributed across investors. In this extended setting, investors trade both for speculation and

for hedging. We can compute

Welfare =
1

2γ
log

1− γ2σ2Dσ
2
ṽ−p̃︸ ︷︷ ︸

winner’s curse

+ γ4σ2yσ
2
D

(
σ2pσ

2
ṽ−p̃ − σ2ṽ−p̃,p̃

)︸ ︷︷ ︸
risk-sharing benefit

− γ2σ2yσ
2
p︸ ︷︷ ︸

wealth fluctuation

− C (τ η) ,

where σṽ−p̃,p̃ ≡ Cov (ṽ − p̃, p̃) , σ2p = V ar (p̃) , σ2ṽ−p̃ ≡ V ar (ṽ − p̃) and σ2D ≡ V ar (D (p̃; ỹi, s̃i, s̃p,i, z̃i)).

Comparing the above equation with equation (31), we find that the welfare in the extended

economy has two additional terms in addition to the “winner’s curse” caused by excessive

speculation: (1) γ4σ2yσ
2
D

(
σ2pσ

2
ṽ−p̃ − σ2ṽ−p̃,p̃

)
, which captures the welfare gain from risk shar-

ing; and (2) γ2σ2yσ
2
p, which captures the welfare loss from wealth fluctuations (i.e., with an

endowment of ỹi shares of risky asset, investor i’s initial wealth is p̃ỹi, which has a variance

of σ2yσ
2
p that hurts the risk-averse investor). We can show that our welfare results continue

to hold when γ or σy are small.
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7.2 Welfare Implications of Investor Sophistication

Suppose that investor sophistication τ η increases and we now examine how trading volatility

σD, return volatility σṽ−p̃, and Welfare respond. For Welfare, we will assume C (τ η) =

0 in equation (31), since this term is exogenous and we want to focus on how investor

sophistication affects welfare through its effect on the endogenous terms σD and σṽ−p̃.

Note that by the definitions of V olume and σD in (23) and (32), we have

V olume =

√
2

π
σD. (33)

Thus, trading volatility σD increases with τ η, because V olume increases with τ η by Propo-

sition 4. We can also show that return volatility σṽ−p̃ tends to decrease with τ η. Intuitively,

by Proposition 2, price informativeness increases with τ η, which implies that sophistication

makes the price p̃ closer to the fundamental ṽ, driving down the equilibrium return volatility.

Given that σD and σṽ−p̃ respond differently to τ η, the overall welfare effect of τ η can be

ambiguous. Note that the return-volatility channel is rooted in the informativeness effect

of sophistication. When investors have very precise private fundamental information (i.e.,

when τ ε is high), we expect that the price is very informative and thus the positive return-

volatility channel is particularly strong. Indeed, we can show that when τ ε is high, this is

the case and so Welfare monotonically increases with τ η. In contrast, when τ ε is low, the

negative excessive-trading channel can dominate, so that Welfare exhibits a U-shape with

respect to τ η.

Proposition 5 Suppose C (τ η) = 0. When investor sophistication level τ η increases,

(a) trading volatility increases (i.e., ∂σD
∂τη

> 0);

(b) return volatility decreases if investors’fundamental information is suffi ciently coarse or

suffi ciently precise (i.e., ∂σṽ−p̃
∂τη

< 0 if τ ε is suffi ciently small or suffi ciently large);

(c) welfare is U-shaped when investors have coarse private fundamental information, and it

monotonically increases when investors have precise private fundamental information (i.e.,

for small values of τ ε,
∂Welfare

∂τη
> 0 if and only if τ η is suffi ciently large; for large values of

τ ε,
∂Welfare

∂τη
> 0 for all values of τ η).

Proof. See the appendix.
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Figure 2 graphically illustrates Proposition 5. As in Figure 1, in the top three panels,

we have set τ ε = 0.05, while in the bottom three panels, we have set τ ε = 1. All the other

parameters are set at 1– i.e., τ v = τ e = τu = γ = 1. We have also assumed C (τ η) = 0.

Consistent with Proposition 5, σD increases with τ η and σṽ−p̃ decreases with τ η, independent

of the value of τ ε. Also consistent with Part (c) of Proposition 5,Welfare first decreases and

then increases with τ η in the top-left panel where τ ε is small, while Welfare monotonically

increases with τ η in the bottom-left panel where τ ε is relatively large.

[INSERT FIGURE 2 HERE]

Similar to Proposition 3, we can also establish a proposition for the limiting economy of

large τ η as follows.

Proposition 6 Suppose C (τ η) = 0. When investors approach to be fully rational, trad-

ing volatility goes to infinity, and return volatility and welfare converge to zero. That is,

limτη→∞ σD =∞ and limτη→∞ σṽ−p̃ = limτη→∞Welfare = 0.

Proof. See the appendix.

8 Sophistication Level Equilibrium

8.1 Equilibrium Characterization

We now discuss how investors determine their sophistication levels τ ηi in reading the price

data. By studying market data, investor i obtains a private signal z̃i with precision τ ηi about

the noise x̃i in her personalized price signal s̃p,i (see equation (3)). As we discussed in Section

4, investor i chooses τ ηi to maximize her expected utility before observing z̃i but conditional

on the possible realizations of the price p̃ and the private fundamental information s̃i.

Specifically, we need to average out z̃i and compute Ei [V (p̃; s̃i, s̃p,i, z̃i) |p̃, s̃i], where

V (p̃; s̃i, s̃p,i, z̃i) ≡ Ei

(
−e−γ[(ṽ−p̃)D(p̃;s̃i,s̃p,i,z̃i)−C(τηi)]

∣∣∣ p̃, s̃i, z̃i)
is investor i’s indirect value function. We can insert the demand function (7) into the
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investor’s objective function (6) and compute

V (p̃; s̃i, s̃p,i, z̃i) = − exp

(
− [E ( ṽ| s̃i, s̃p,i, z̃i)− p̃]2

2V ar ( ṽ| s̃i, s̃p,i, z̃i)
+ γC

(
τ ηi
))

. (34)

Using the above expression of V (p̃; s̃i, s̃p,i, z̃i), we have

Ei [V (p̃; s̃i, s̃p,i, z̃i) |p̃, s̃i] = Ei

[
− exp

(
− [E ( ṽ| s̃i, s̃p,i, z̃i)− p̃]2

2V ar ( ṽ| s̃i, s̃p,i, z̃i)
+ γC

(
τ ηi
))∣∣∣∣∣ p̃, s̃i

]
. (35)

In computing the right-hand-side of (35), investor i will treat p̃ as a constant since her

computation is conditional on p̃. In her mind, E ( ṽ| s̃i, s̃p,i, z̃i) − p̃ is normally distributed

with mean and variance given respectively by

Ei [E ( ṽ| s̃i, s̃p,i, z̃i)− p̃|p̃, s̃i] = E ( ṽ| s̃p,i, s̃i)− p̃, (36)

V ari [E ( ṽ| s̃i, s̃p,i, z̃i)− p̃|p̃, s̃i] = V ar (ṽ|s̃p,i, s̃i)− V ar ( ṽ| s̃i, s̃p,i, z̃i) , (37)

where the equalities follow from the fact that investor i’s beliefs satisfy the Bayes’law given

that she is a SEU maximizer. In other words, p̃ in the above moment computations only

serves its substitution role (i.e., as in any other commodity demand, a higher price means

a higher cost and so the agent will buy fewer commodities), while when we think about the

investor inferring information from the price, we always “translate” p̃ into the signal s̃p,i in

terms of predicting ṽ to model this inference process. Taken together, in investor i’s mind,

she believes that [E ( ṽ| s̃i, s̃p,i, z̃i)− p̃]2 follows a noncentral chi-square distribution in (35).

Using equations (36)—(37) and applying the moment generating function for a noncentral

chi-square distribution, we can compute

Ei [V (p̃; s̃i, s̃p,i, z̃i) |p̃, s̃i] = −

√
V ar ( ṽ| s̃i, s̃p,i, z̃i)
V ar (ṽ|s̃p,i, s̃i)

exp

{
− [E ( ṽ| s̃p,i, s̃i)− p̃]2

2V ar (ṽ|s̃p,i, s̃i)
+ γC

(
τ ηi
)}

.

We use B to denote the certainty equivalent of the above conditional expected utility, which

refers to the net benefit of studying market data. That is,

B ≡ −1

γ
log (−Ei [V (p̃; s̃i, s̃p,i, z̃i) |p̃, s̃i])

=
1

2γ
log

1

V ar (ṽ|s̃i, s̃p,i, z̃i)
− C

(
τ ηi
)

+
log V ar (ṽ|s̃p,i, s̃i) +

[E(ṽ|s̃p,i,s̃i)−p̃]2
V ar(ṽ|s̃p,i,s̃i)

2γ
. (38)

In (38), the third term
log V ar(ṽ|s̃p,i,s̃i)+

[E(ṽ|s̃p,i,s̃i)−p̃]
2

V ar(ṽ|s̃p,i,s̃i)
2γ

is independent of the choice variable

τ ηi , and so we ignore it and only retain the first two terms to represent B. Using equation
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(15) to express out V ar (ṽ|s̃i, s̃p,i, z̃i) in (38) yields the following expression for the benefit B

of studying the price data:

B
(
τ ηi ;α

)
∝ 1

2γ
log

[
τ v + τ ε +

τ eτu + τ eτ ηi + τuτ ηi
τu + τ e (α + 1)2 + α2τ ηi

]
− C

(
τ ηi
)
, (39)

where we have explicitly expressed B as a function of τ ηi and α, the two unknowns in the

full equilibrium. Thus, each investor i’s sophistication level τ ηi is determined by

max
τηi

B
(
τ ηi ;α

)
(40)

where α is determined by equation (18) in Theorem 1. The overall equilibrium is jointly

characterized by (40) (for i ∈ [0, 1]) and (18), in terms of variables
(
τ ηi
)
i∈[0,1] and α.

Since limτηi→∞B
(
τ ηi ;α

)
= −∞ for an increasing and weakly convex C

(
τ ηi
)
, we know

that B
(
τ ηi ;α

)
has a maximum over the range of τ ηi ≥ 0. It is also easy to check that

B
(
τ ηi ;α

)
is concave in τ ηi , and thus the maximum is characterized by the first-order con-

dition (FOC) as follows: 
∂B(τηi ;α)

∂τηi

∣∣∣∣
τηi=0

≤ 0, if τ ηi = 0,

∂B(τηi ;α)
∂τηi

= 0, if τ ηi > 0.

(41)

Note that each investor i faces the same problem in determining τ ηi , and thus as we

mentioned in Section 5, investors end up with the same choice of τ ηi . That is, in equilibrium,

we have τ ηi = τ η for any i ∈ [0, 1]. As a result, the overall equilibrium is characterized by

the following two conditions in terms of two unknowns τ η and α: (a) condition (41), the

FOC in investors’sophistication decision problem which determines τ η for a given α, and

(b) equation (19) in Theorem 2, the financial market equilibrium condition which uniquely

determines α for a given τ η. Formally, we have the following theorem characterizing the

overall equilibrium.

Theorem 3 Suppose that C (τ η) is smooth, increasing, and weakly convex. Then, there

exists an overall equilibrium. Let

φ (τ η) ≡
∂B (τ η;α (τ η))

∂τ η
, (42)

where the function α (τ η) is implicitly determined by equation (19). The equilibrium sophis-

tication level τ η is determined by the following conditions:

(a) If φ (0) ≤ 0, then τ ∗η = 0 is an equilibrium sophistication level;
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(b) If φ
(
τ ∗η
)

= 0 for some τ ∗η > 0, then this value of τ ∗η is an equilibrium sophistication level.

The financial market equilibrium is given by Theorem 2 accordingly at the equilibrium so-

phistication level τ ∗η.

Proof. See the appendix.

8.2 Complementarity and Multiplicity

Theorem 3 establishes the existence of an overall equilibrium. Whether the equilibrium is

unique is determined by the shape of φ (τ η). Specifically, if φ (τ η) is downward sloping, then

the equilibrium must be unique. In contrast, when φ (τ η) is upward sloping, multiplicity can

arise. The complementarity result in Proposition 2 has implications for this possibility of

multiplicity, because it determines the shape of φ (τ η).

Formally, by the Chain rule, we have

φ′ (τ η) =
∂2B (τ η, α (τ η))

∂α∂τ η︸ ︷︷ ︸
(−)

× ∂α

∂τ η︸︷︷︸
complementarity (−)

+
∂2B (τ η;α (τ η))

∂τ 2η︸ ︷︷ ︸
SOC of (40) (−)

. (43)

The second term in equation (43) is simply the second-order condition (SOC) of investors’

sophistication determination problem (40), which is always negative given that the objective

function B (τ η;α) is globally concave in τ η. We can also show
∂2B(τη ,α(τη))

∂α∂τη
< 0, i.e., when α

increases, the price signal is not very useful and so its marginal value of being more attentive

to the price data is low. Then, combining with the complementarity result in Proposition

2 (i.e., ∂α
∂τη

< 0), we have ∂2B(τη ,α(τη))

∂α∂τη
∂α
∂τη

> 0, which counter balances the second negative

term in (43). This complementarity result can be so strong that it dominates so that φ′ (τ η)

can be upward sloping at some region, which admits multiple equilibria.

Proposition 7 The complementarity effect can dominate so that there can be multiple over-

all equilibria.

We prove Proposition 7 using a constructive example. In Figure 3, we choose a linear

cost function, C (τ η) = kτ η with k > 0. We then plot the function φ (τ η). Similar to Figure

1, in the top panel, we set τ ε = 0.05, while in the bottom panel, we set τ ε = 1. All the other

parameters in both panels are as follows: τ v = τ e = τu = γ = 1 and k = 0.08. We find
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that in the top panel, there exist three equilibrium levels of τ ∗η: {0, 0.29, 3.61}. Among these

three equilibria, the middle one is unstable (i.e., φ (τ η) crosses zero from below), while the

other two equilibria are stable. In the bottom panel, there exists a unique equilibrium level

of τ ∗η = 2.96, which is stable.

[INSERT FIGURE 3 HERE]

8.3 Implications of the Cost of Studying Market Data

In this section, we examine the implications of changing the cost of becoming more sophisti-

cated in interpreting market data. Specifically, we continue to use the parametric example in

Figure 3 with a linear cost function C (τ η) = kτ η, but now we allow the cost parameter k to

continuously change and plot the equilibrium values of τ ∗η and α
∗ in Figure 4. For instance,

a decrease in k can be interpreted as an advance in computation technology that allows for

easier implementation of complex algorithms.

[INSERT FIGURE 4 HERE]

As we explained in Figure 3, for the chosen parameter values, there can be multiple

equilibria. When multiplicity happens, we use dashed segments to indicate the unstable

equilibrium in Figure 4. We see that as k decreases, τ ∗η increases and α
∗ decreases as long

as investors coordinate on a particular stable equilibrium (say, the one with a larger value

of τ ∗η).

It is intuitive that as the cost k of studying market data becomes lower, investors will

devote more effort to study the price and become more sophisticated. The multiplicity also

suggests that a slight change in k can lead to jumps in τ ∗η. For instance, suppose that

investors coordinate on a stable equilibrium with a higher value of τ ∗η. Then, when k is

close to 0.1, and when it drops slightly, the equilibrium value of τ ∗η can jump from 0 to 2.

This outcome can correspond to a wave of development of algorithmic trading in financial

markets, which is caused by technology progress. A natural experiment in this context is the

introduction of automated quote dissemination on the New York Stock Exchange in 2003,

which is studied by Hendershott, Jones, and Menkveld (2011). This change corresponds to

an exogenous decrease in the cost k of processing market data.
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Variable α∗ negatively measures price informativeness. By Proposition 2, α∗ decreases

with τ ∗η. Thus, as k decreases, α
∗ decreases, since τ ∗η increases. Economically, when the

cost of studying market data is lower, investors study market data more intensively and

glean more precise information from the price, which makes the price more responsive to the

fundamental. Again, there can be jumps in the equilibrium value of α∗ in response to small

changes in the cost k of studying market data.

9 Conclusion

We construct a model to capture the notion that investors have to spend effort to interpret

the price data in financial markets. In our model, investors actively infer information from

the price but they do not fully understand the price function. Investors can understand bet-

ter the price function by spending more resources to study market data and become more

sophisticated. We still maintain the assumption that investors are individually Bayesian

rational– i.e., after reading the price data and form their beliefs, investors hold optimal

trading positions according to their own beliefs. In equilibrium, as investors’sophistication

level increases, aggregate trading volume increases, and disagreement across investors’ex-

pectations about the fundamental can exhibit a hump-shape. When investors approach to

be fully sophisticated, the equilibrium approaches to a standard rational-expectations equi-

librium, while trading volume diverges to infinity. This divergence is driven by investors

actively studying market data. Investor sophistication affects welfare through two offset-

ting channels: it harms welfare through a winner’s curse but improves welfare by reducing

equilibrium return volatility. Finally, we endogenize investors’sophistication level using a

learning technology and find that studying market data exhibits strategic complementarity

that can lead to multiple equilibria.
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Appendix: Proofs

Proof of Theorem 1

The expressions of a’s follow directly from equation (16). Rearranging equation (17) yields

equation (18) in the theorem. When α = 0, the left-hand-side (LHS) of (18) is 0, while its

right-hand-side (RHS) is positive. When α → ∞, the LHS of (18) approaches ∞, while its

RHS is negative. By the intermediate value theorem, there exists a solution of α > 0 to

equation (18). QED.

Proof of Theorem 2

The expressions of av and au follow from Theorem 1 and the fact τ ηi = τ η for i ∈ [0, 1].

Using τ ηi = τ η and equation (18), we can obtain equation (19) in Theorem 2.

Denote the LHS of (19) by f (α). That is,

f (α) ≡ (τ eτ ε + τ ετ η)α
3 + 2τ eτ εα

2 + (τ eτ ε + τ eτ η + τuτ ε)α− τ eτu.

We can compute f (0) = −τ eτu < 0 and f
(

τeτu
τeτε+τeτη+τuτε

)
> 0, and thus by the intermediate

value theorem, there exists a solution α ∈
(

0, τeτu
τeτε+τeτη+τuτε

)
such that f (α) = 0. This result

establishes the existence of a financial market equilibrium.

We can compute the discriminant of the cubic f (α) as follows:

∆ = −τ ε



4τ 3eτ
4
η + 4τ 4eτ

3
η + 4τ eτ

3
uτ
3
ε + 4τ 3eτuτ

3
ε + 4τ 4eτuτ

2
ε + 27τ 4eτ

2
uτ ε

+12τ 3eτ ετ
3
η + 4τ 3eτ

3
ετ η + 8τ 4eτ ετ

2
η + 4τ 4eτ

2
ετ η + 4τ 3uτ

3
ετ η + 8τ 2eτ

2
uτ
3
ε

+36τ 3eτ
2
uτ
2
ε + 12τ 3eτ

2
ετ
2
η + 12τ eτ

2
uτ
2
ετ
2
η + 24τ 2eτuτ

2
ετ
2
η + 27τ 2eτ

2
uτ ετ

2
η

+48τ 2eτ
2
uτ
2
ετ η + 36τ 4eτuτ ετ η + 12τ eτ

2
uτ
3
ετ η + 12τ 2eτuτ ετ

3
η + 12τ 2eτuτ

3
ετ η

+48τ 3eτuτ ετ
2
η + 52τ 3eτuτ

2
ετ η + 54τ 3eτ

2
uτ ετ η


,

which is negative. Thus, there exists a unique real root, which establishes the uniqueness of

a financial market equilibrium. QED.

Proof of Proposition 1

Suppose τ e, τu ∈ (0,∞) and τ η →∞. The upper bound τeτu
τeτε+τeτη+τuτε

of α in Theorem 2 goes

to 0. So, we have α→ 0. In addition, α < τeτu
τeτε+τeτη+τuτε

⇒ α2τ η <
(

τeτu
τeτε+τeτη+τuτε

)2
τ η → 0
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as τ η →∞, and thus α2τ η → 0 as τ η →∞. Thus, by the expressions of av and au in Theorem

2, we have

av =
τ ε + τeτu+τeτη+τuτη

τu+τe(α+1)
2+α2τη

τ v + τ ε + τeτu+τeτη+τuτη

τu+τe(α+1)
2+α2τη

→ 1 and au = avα→ 0.

Suppose τu ∈ (0,∞), τ e → 0, and τ η → 0. Again, α < τeτu
τeτε+τeτη+τuτε

→ 0. By the

expressions of av and au in Theorem 2, we have

av =
τ ε + τeτu+τeτη+τuτη

τu+τe(α+1)
2+α2τη

τ v + τ ε + τeτu+τeτη+τuτη

τu+τe(α+1)
2+α2τη

→ τ ε
τ v + τ ε

and au = avα→ 0.

Similarly, if τ e ∈ (0,∞), τu → 0, and τ η → 0, we have the same result. QED.

Proof of Proposition 2

From the proof for Theorem 2, we know that α is determined by f (α) = 0, where f (α)

crosses 0 from below. Using the implicit function theorem, we can compute:
∂α

∂τ η
= − τ εα

3 + τ eα

3 (τ eτ ε + τ ετ η)α2 + 4τ eτ εα + (τ eτ ε + τ eτ η + τuτ ε)
< 0. (A1)

QED.

Proof of Proposition 3

Suppose that τ η →∞.

Part (a): By Proposition 1, we have limτη→∞ p̃ = ṽ almost surely.

Part (b): In the proof of Proposition 1, we have shown limτη→∞ α = 0 and limτη→∞ α
2τ η =

0. Thus,

τ v + τ ε +
τ eτu + τ eτ η + τuτ η

τu + τ e (α + 1)2 + α2τ η
= O (τ η) . (A2)

Therefore,

Risk =
1

τ v + τ ε + τeτu+τeτη+τuτη

τu+τe(α+1)
2+α2τη

= O

(
1

τ η

)
→ 0.

In addition, α < τeτu
τeτε+τeτη+τuτε

⇒ ατ η <
τeτu

τeτε+τeτη+τuτε
τ η = τu−τuτ ε τe+τu

τeτε+τeτη+τuτε
< τu,

and thus, ατ η = O (1). Thus,
τu − ατ η

τu + τ e (α + 1)2 + α2τ η
= O (1) . (A3)

Also, by limτη→∞ α = 0 and limτη→∞ α
2τ η = 0, we have

lim
τη→∞

τu + τ e + ατ e

τu + τ e (α + 1)2 + α2τ η
= 1. (A4)
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As a result, the numerator in (28) isO
(√

τ η
)
. Combined with (A2), we haveDisagreement =

O
(

1√
τη

)
→ 0.

Part (c): Since Risk = O
(
1
τη

)
and Disagreement = O

(
1√
τη

)
, we have V olume =

O
(√

τ η
)
→∞ by equation (26). The proof of Part (b) also shows that

τ ε +

(
τu − ατ η

τu + τ e (α + 1)2 + α2τ η

)2
τ e = O (1) .

Thus, the divergence of volume is driven by
(

τu+τe+ατe
τu+τe(α+1)

2+α2τη

)2
τ η in equation (30). QED.

Proof of Proposition 4

Part (a): Using the expression of ∂α
∂τη

in (A1), we can directly compute the expression of

∂

∂τ η

( τu − ατ η
τu + τ e (α + 1)2 + α2τ η

)2
τ e +

(
τu + τ e + ατ e

τu + τ e (α + 1)2 + α2τ η

)2
τ η

 ,
which is positive. Thus, by (29), we have ∂V olume

∂τη
> 0.

Direct computation shows
∂

∂τ η

τ eτu + τ eτ η + τuτ η

τu + τ e (α + 1)2 + α2τ η

=
(τ e + τu + ατ e)

2 − 2 (τ eτu + τ eτ η + τuτ η) (τ e (α + 1) + ατ η)
∂α
∂τη(

τu + τ e (α + 1)2 + α2τ η
)2 > 0,

since ∂α
∂τη

< 0. Thus, by equation (15), we have

∂

∂τ η

τ eτu + τ eτ η + τuτ η

τu + τ e (α + 1)2 + α2τ η
> 0⇒ ∂V ar (ṽ|s̃i, s̃p,i, z̃i)

∂τ η
< 0.

Part (b): We consider two cases: τ ε = 0 and τ ε =∞.

Case 1: τ ε = 0

For any given τ η ∈ (0,∞), using (19), we can compute α = τu
τη
. Inserting τ ε = 0 and

α = τu
τη
into the expression of Disagreement in (28) delivers

Disagreement2 =
τ 3η(

τ 2η + τuτ v + τ vτ η
)2 . (A5)

Direct computation shows
∂Disagreement2

∂τ η
=
τ 2η
(
−τ 2η + τ vτ η + 3τuτ v

)(
τ 2η + τuτ v + τ vτ η

)3 ⇒

∂Disagreement2

∂τ η
< 0⇐⇒ τ η >

τ v +
√
τ 2v + 12τuτ v

2
.
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Case 2: τ ε =∞

Note that for a given τ η > 0, we have α ∈
(

0, τeτu
τeτε+τeτη+τuτε

)
. Thus,

lim
τε→∞

τ eτu
τ eτ ε + τ eτ η + τuτ ε

= 0⇒ lim
τε→∞

α = 0, (A6)

lim
τε→∞

(
τ eτu

τ eτ ε + τ eτ η + τuτ ε

)3
τ ε = 0⇒ lim

τε→∞
α3τ ε = 0. (A7)

So, by the expression of ∂α
∂τη

in (A1), we have

lim
τε→∞

∂α

∂τ η
= 0. (A8)

By (28), we can show
∂ logDisagreement2

∂τ η

=

∂
∂τη

[(
τu−ατη

τu+τe(α+1)
2+α2τη

)2
τ e +

(
τu+τe+ατe

τu+τe(α+1)
2+α2τη

)2
τ η

]
τ ε +

(
τu−ατη

τu+τe(α+1)
2+α2τη

)2
τ e +

(
τu+τe+ατe

τu+τe(α+1)
2+α2τη

)2
τ η

− 2

∂
∂τη

τeτu+τeτη+τuτη

τu+τe(α+1)
2+α2τη(

τ v + τ ε + τeτu+τeτη+τuτη
τu+τe(α+1)

2+α2τη

) .
By (A6)—(A8), direct computation shows

lim
τε→∞

∂ τeτu+τeτη+τuτη
τu+τe(α+1)

2+α2τη

∂τ η
= 1,

lim
τε→∞

∂

[(
τu−ατη

τu+τe(α+1)
2+α2τη

)2
τ e +

(
τu+τe+ατe

τu+τe(α+1)
2+α2τη

)2
τ η

]
∂τ η

= 1.

Thus, using the above expressions and (A6), we have
∂ logDisagreement2

∂τ η
= − 1

τ ε
+ o

(
1

τ ε

)
. (A9)

As a result, when τ ε is large,
∂ logDisagreement2

∂τη
< 0. QED.

Proof of Proposition 5

Part (a): This part follows from equation (33) and Proposition 4.

Part (b): Using Theorem 2, we can compute

σ2ṽ−p̃ =
τ v +

[
(1+α)τe+ατη

τu+(1+α)2τe+α2τη

]2
τu(

τ v + τ ε + τeτu+τeτη+τuτη
τu+(1+α)2τe+α2τη

)2 . (A10)

We again consider two cases: τ ε = 0 and τ ε =∞.

Case 1: τ ε = 0

For any given τ η ∈ (0,∞), using (19), we can compute limτε→0 α = τu
τη
. Inserting α = τu

τη
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and τ ε = 0 into (A10), we can compute

lim
τε→0

σ2ṽ−p̃ =
τ 2uτ v + τuτ

2
η + τ vτ

2
η + 2τuτ vτ η(

τ 2η + τuτ v + τ vτ η
)2 .

Direct computation shows

lim
τε→0

∂σ2ṽ−p̃
∂τ η

= −
2τ η((τ v + τu)τ

2
η + 3τuτ vτ η + τ 2uτ v)

(τ 2η + (τu + τ η)τ v)3
< 0.

Thus, σṽ−p̃ decreases with τ η for suffi ciently small τ ε.

Case 2: τ ε =∞

Using equations (A6) and (A8), we can directly compute the derivative of σ2ṽ−p̃ in equation

(A10), yielding
∂σ2ṽ−p̃
∂τ η

= −2 (τ 2eτu + τ 2eτ v + τ 2uτ v + 2τ eτuτ v)

(τ e + τu)
2

1

τ 3ε
+ o

(
1

τ 3ε

)
.

Thus, for suffi ciently large τ ε, we also have
∂σ2ṽ−p̃
∂τη

< 0.

Part (c): When C (τ η) = 0 in equation (31), we have
∂Welfare

∂τ η
> 0⇐⇒

∂γ2σ2Dσ
2
ṽ−p̃

∂τ η
< 0. (A11)

Direct computation shows

σ2D =
1

γ2

[
τ ε +

(
τu − ατ η

τu + (1 + α)2τ e + α2τ η

)2
τ e +

(
τu + (1 + α)τ e

τu + (1 + α)2τ e + α2τ η

)2
τ η

]
. (A12)

Using (28), (A10), and (A12), we have

γ2σ2Dσ
2
ṽ−p̃ = Disagreement2 ×

[
τ v +

(
(1 + α)τ e + ατ η

τu + (1 + α)2τ e + α2τ η

)2
τu

]
. (A13)

Case 1: τ ε = 0

Using limτε→0 α = τu
τη
and equation (A5), we can compute,

lim
τε→0

γ2σ2Dσ
2
ṽ−p̃ =

τ 3η
(
τ 2uτ v + τuτ

2
η + τ vτ

2
η + 2τuτ vτ η

)
(τu + τ η)

2 (τ 2η + τuτ v + τ vτ η
)2 .

Then, direct computation shows that as τ ε → 0,
∂γ2σ2Dσ

2
ṽ−p̃

∂τ η
=
τ 2η
(
3τ 2uτ v + τuτ

2
η + τ vτ

2
η + 4τuτ vτ η

)
(τu + τ η)

3 (τ 2η + τuτ v + τ vτ η
)3 Q (τ η) ,

where

Q (τ η) = −τ 3η + (τu + τ v) τ
2
η + 2τuτ vτ η + τ 2uτ v.

Note that Q (τ η) = 0 has a unique positive root, and thus there exists τ̄ η ∈ (0,∞) such

that

Q (τ η) < 0⇐⇒ τ η > τ̄ η.
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As a result, by condition (A11), we have
∂Welfare

∂τ η
> 0⇐⇒

∂γ2σ2Dσ
2
ṽ−p̃

∂τ η
< 0⇐⇒ Q (τ η) < 0⇐⇒ τ η > τ̄ η,

that is, Welfare is U-shaped in τ η when τ ε is suffi ciently small.

Case 2: τ ε =∞

Using equations (A6) and (A8), we can show

lim
τε→∞

∂

∂τ η
log

[
τ v +

(
(1 + α)τ e + ατ η

τu + (1 + α)2τ e + α2τ η

)2
τu

]
= 0.

Then, by equations (A9) and (A13),

lim
τε→∞

∂ log γ2σ2Dσ
2
ṽ−p̃

∂τ η
= lim

τε→∞

∂ logDisagreement2

∂τ η
< 0.

So, when τ ε is suffi ciently large, Welfare monotonically increases in τ η, by condition (A11).

QED.

Proof of Proposition 6

Note that in the proof of Proposition 3, we have shown

lim
τη→∞

V olume = O(
√
τ η).

Hence, by (33),

lim
τη→∞

σ2D = O(τ η)→∞.

Given limτη→∞ α = 0, limτη→∞ α
2τ η = 0, and ατ η = O (1) (see the proof of Proposition

3), by equation (A10), we have

lim
τη→∞

σ2ṽ−p̃ =
O(1)

O(τ 2η)
= O(τ−2η )→ 0.

Thus, by (31), when C (τ η) = 0, we have

γ2σ2Dσ
2
ṽ−p̃ = O

(
1

τ η

)
→ 0⇒ Welfare =

1

2γ
log(1− γ2σ2Dσ2ṽ−p̃)→ 0.

QED.

Proof of Theorem 3

Function φ (τ η) in equation (42) is defined by plugging α (τ η) into
∂B(τηi ;α)

∂τηi
. Then, combin-

ing with the fact τ ηi = τ η and condition (41), we can get the two conditions (a) and (b)

characterizing the equilibrium value of τ η. The only remaining task is to show that φ (τ η)

must satisfy either (a) or (b) for τ η ≥ 0, so that there exists an overall equilibrium.
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Apparently, if φ (0) ≤ 0, then condition (a) is trivially satisfied, so that τ η = 0 constitutes

an equilibrium.

Now suppose φ (0) > 0. We will show limτη→∞ φ (τ η) < 0, so that by the intermediate

value theorem, condition (b) must be satisfied. Direct computation shows

∂B (τ η, α (τ η))

∂τ η
=

1

2γ

(τe+τu+ατe)
2

(τe+τu+2ατe+α2τe+α2τη)
2

τ v + τ ε + τeτu+τeτη+τuτη

τu+τe(α+1)
2+α2τη

− C ′ (τ η) .

In the proof of Proposition 1, we have shown that α→ 0 and α2τ η → 0, as τ η →∞. Thus,

the term 1
2γ

(τe+τu+ατe)
2

(τe+τu+2ατe+α2τe+α2τη)
2

τv+τε+
τeτu+τeτη+τuτη

τu+τe(α+1)
2+α2τη

∝ 1
2γ

1
τv+τε+τη

→ 0, as τ η → ∞. When C (τ η) is weakly

convex, we know limτη→∞C
′ (τ η) is bounded below. Thus, we have limτη→∞ φ (τ η) < 0.

QED.
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Figure 1 The Effect of Sophistication on Volume, Disagreement, and Trading Risk 

 

All investors have the same sophistication level, i.e., 𝜏𝜏𝜂𝜂𝑖𝑖 = 𝜏𝜏𝜂𝜂. This figure plots the implications of sophistication level 𝜏𝜏𝜂𝜂 for trading 
volume, disagreement, and the perceived trading risk. In the top three panels, we have set 𝜏𝜏𝜀𝜀 = 0.05, while in the bottom panel, we set 
𝜏𝜏𝜀𝜀 = 1. The other parameters are set as follows: 𝜏𝜏𝑣𝑣 = 𝜏𝜏𝑒𝑒 = 𝜏𝜏𝑢𝑢 = 𝛾𝛾 = 1. 
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Figure 2 Welfare Implications of Investor Sophistication  

 

All investors have the same sophistication level, i.e., 𝜏𝜏𝜂𝜂𝑖𝑖 = 𝜏𝜏𝜂𝜂. This figure plots the implications of sophistication level 𝜏𝜏𝜂𝜂 for investor 
welfare, trading volatility 𝜎𝜎𝐷𝐷, and return volatility 𝜎𝜎𝑣𝑣−𝑝𝑝. In the top three panels, we have set 𝜏𝜏𝜀𝜀 = 0.05, while in the bottom panel, we 
set 𝜏𝜏𝜀𝜀 = 1. The other parameters are set as follows: 𝜏𝜏𝑣𝑣 = 𝜏𝜏𝑒𝑒 = 𝜏𝜏𝑢𝑢 = 𝛾𝛾 = 1. We also assume 𝐶𝐶�𝜏𝜏𝜂𝜂𝑖𝑖� = 0. 
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Figure 3 Multiplicity vs. Uniqueness of Equilibrium 

 

This figure plots the function of 𝜙𝜙�𝜏𝜏𝜂𝜂� = 𝜕𝜕𝜕𝜕�𝜏𝜏𝜂𝜂;𝛼𝛼(𝜏𝜏𝜂𝜂)�
𝜕𝜕𝜏𝜏𝜂𝜂

, which determines the equilibrium level of 

investor sophistication. Investors’ cost function of acquiring sophistication is 𝐶𝐶�𝜏𝜏𝜂𝜂𝑖𝑖� = 𝑘𝑘𝜏𝜏𝜂𝜂𝑖𝑖. In 
the top panel, we set 𝜏𝜏𝜀𝜀 = 0.05, while in the bottom panel, we set 𝜏𝜏𝜀𝜀 = 1. In both panels, the other 
parameters are set as follows: 𝜏𝜏𝑣𝑣 = 𝜏𝜏𝑒𝑒 = 𝜏𝜏𝑢𝑢 = 𝛾𝛾 = 1 and 𝑘𝑘 = 0.08.  
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Figure 4 The Effect of the Cost 𝒌𝒌 of Studying Market Data 

This figure plots the effect of the cost of becoming more sophisticated in interpreting market data 
on the equilibrium values of 𝜏𝜏𝜂𝜂∗   and 𝛼𝛼∗, when the cost function takes the form 𝐶𝐶�𝜏𝜏𝜂𝜂𝑖𝑖� = 𝑘𝑘𝜏𝜏𝜂𝜂𝑖𝑖. The 
other parameter values are: 𝜏𝜏𝑣𝑣 = 𝜏𝜏𝑒𝑒 = 𝜏𝜏𝑢𝑢 = 𝛾𝛾 = 1 and 𝜏𝜏𝜀𝜀 = 0.05. The dashed segments indicate 
unstable equilibria. 
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