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Abstract

This paper studies the sources of change in the systematic risks of stocks

added to the S&P 500 index. Firstly, using vector autoregressions (VARs) and

a two-beta decomposition, I measure the di¤erent components of beta before

and after the addition. I �nd that I cannot reject the hypothesis that all of

the well-known change in beta comes from the cash-�ow news component of

a �rm�s return. Secondly, I study fundamentals of included �rms directly to

reduce any concerns that the VAR-based results are sensitive to my particular

speci�cation. This analysis con�rms that post inclusion, the pro�tability of a

company added to the index varies signi�cantly more with the pro�tability of

the S&P 500. As ownership structure cannot directly in�uence fundamentals,

these results challenge previous �ndings, as they are consistent with the change

in beta being due to a selection e¤ect.
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1 Introduction

In standard �nance models fundamentals drive asset prices. There is however a

large body of the literature documenting departures of prices from fundamentals1.

It is di¢ cult to explain under the traditional paradigm market anomalies (e.g. mo-

mentum, reversal, value e¤ect). Some of the evidence interpreted as favouring non-

fundamental-based theories concerns index e¤ects, both in �rst and second moments.

For instance, Vijh (1994) and Barberis, Shleifer and Wurgler (2005) �nd that index

additions are followed by an increase in covariation, and argue that this e¤ect is not

driven by fundamentals.

Index additions have been widely used as a quasi-natural experiment to distin-

guish between competing theories. For example, a number of papers show that there

is a signi�cant jump in price levels following index additions and deletions2. Much of

these �ndings have been interpreted as evidence of non-fundamental-based theories.

Some research, however, have challenged the interpretation of this e¤ect. Dennis

et al. (2003) for example argue that index additions are not fully information-free

events, as they are followed by increases in earnings. While the interpretation of

these e¤ects in the �rst moments has been subject to debate among academics,

changes in second moments (covariances) around index inclusions are widely accep-

ted as evidence of non-fundamental-based theories3.

In this paper I show that S&P 500 index inclusions are followed by changes in

cash-�ow covariances. I speci�cally take on the task of disentangling how much of

the change in beta after an index addition corresponds to a fundamental e¤ect and

how much to a non-fundamental e¤ect. I provide evidence of changes in cash-�ow

news�covariances after index additions using a two beta decomposition. Following

Campbell and Mei (1993), I decompose beta into discount-rate and cash-�ow shocks

of the individual �rm with the market. I �nd that I cannot reject the hypothesis

that all of the well-known change in beta comes from the cash-�ow news component

of a �rm�s return. As investors cannot directly in�uence fundamentals, these results

challenge previous �ndings, as they are consistent with the change in beta being due

1For instance, two recent papers survey the importance and implications of the limits of arbit-
rage for asset prices (Gromb and Vayanos, 2010, and Schwert, 2003).

2Starting with Harris and Gurel (1986), and Shleifer (1986), there are many studies that report
signi�cant changes in price levels. See Gromb and Vayanos (2010) for a survey on these e¤ects.

3Barberis, Shleifer, and Wurgler (2005) say regarding Denis et al.: "Denis et al. (2003) �nd
that index additions coincide with increases in earnings. [...] Perhaps more importantly, even if
inclusions signal something about the level of future cash �ows, there is no evidence that they
signal anything about cash �ow covariances".
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to a selection e¤ect.

The non-fundamental interpretation of the documented change in beta after an

index inclusion is based on the key assumption that there is no change in funda-

mentals after index inclusions, nor a change in cash-�ow covariances. S&P 500

index inclusions are considered as information-free events, because Standard and

Poors clearly states that by choosing a �rm to be added to the index they do not

signal anything about the future fundamentals of that company. Consequently, a

change in beta of stocks after the addition must re�ect a change in discount-rates

covariances, providing in this way evidence of friction- or sentiment-based comove-

ment. My approach allows me to test whether the assumption actually holds.

Using vector-autoregressions (VARs), I break the returns of stocks added to the

S&P 500 index into cash-�ow and discount-rate components. That allows me to

decompose the betas in two, one related to cash-�ows and the other related to

discount-rates of the event stocks. I �nd that, on average, the beta of the discount

rate component does not change after an index inclusion, and that the beta of the

cash-�ow component does, and moreover accounts for the overall change in beta. I

use a sample of index additions from September 1976 to December 2008.

I then study accounting-based fundamentals of included �rms directly to reduce

any concerns that the VAR-based results are sensitive to my particular speci�cation.

Using the return on equity as a direct measure of cash �ows, this analysis con�rms

that post inclusion, the pro�tability of a company added to the index varies signi-

�cantly more with the pro�tability of the S&P 500, and signi�cantly less with the

pro�tability of all non-S&P 500 stocks.

These results strongly suggest that Standard and Poors choices do not trigger or

cause a change in betas after index inclusions, but rather it selects stocks that exhibit

a growth in betas. S&P 500 Index is meant to be representative of the economy.

Stocks are normally added following a deletion - which usually occurs due to mergers.

The results are consistent with a story where Standard and Poors chooses stocks

that are going to be more central to the economy, that will re�ect the state of the

economy, and thus that will have fundamentals more correlated to fundamentals of

other representative �rms in the economy. These results (where monthly frequency is

used) complement the results found in Barberis et al. (2005). At higher frequencies,

such as daily, the change in beta observed after an index addition re�ects the change

in speed at which information is incorporated into stocks. Due to market frictions,

information is updated in S&P 500 stocks quicker than in non-S&P 500 stocks. In
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other words, the systematic risk does not change, what changes is how fast market

news are embedded into stock prices. The results of the current paper, all computed

at the monthly frequency (because a return decomposition is not feasible at higher

frequencies), show that at lower frequencies there is indeed a change in the systematic

risk of the stocks added to the index, and that this change is not causal, but re�ects

the evolutions of the fundamentals of event companies.

To better understand how the selection mechanism works, I develop a matching

procedure, and measure the change in betas for companies that could have been

added but were not. I �nd that matched stocks exhibit similar patterns in betas,

and in some cases the di¤erence in di¤erences in betas is signi�cant, as in previous

literature. Using the beta decomposition, I �nd that the di¤erence in di¤erences is

driven by cash-�ow covariances, thus providing evidence of Standard and Poors sig-

naling something about future cash-�ow covariances. This �nding is consistent with

Standard and Poors�Committee being a better predictor of future cash-�ow covari-

ances and relevance in the economy than the basic and always imperfect matching

algorithm that we employ.

Finally I explore the e¤ect in di¤erent subsamples to uncover e¤ects that might

be hidden in the overall sample. First, subsampling in the time dimension, I �nd that

the e¤ect is stronger in the last part of the sample, and that the e¤ect is driven by

cash-�ow covariances. Secondly, I study whether stocks with di¤erent characteristics

di¤er in the change in beta experienced after inclusion. I divide the included �rms

into growth and value stocks, by comparing the cross-sectionally adjusted book-to-

market ratios. Growth �rms tend to be more intangible and more opaque, while

value �rms are more stable, if they are �nancially sound. Because the change in

beta also re�ects the size of the companies added, growth stocks should exhibit a

higher change in beta than value stocks. Consistent with my prior, I �nd that the

change in beta is higher for growth �rms.

The results are robust to two other speci�cations of the VAR. Allowing for a

more �exible and richer speci�cation, I �rst estimate a second-order VAR, and show

that the results are very robust to this new VAR. I also test a second alternative

speci�cation of the VAR, where �rm-level and aggregate variables are state variables

all together in a unique VAR, as opposed to the benchmark speci�cation, where I

estimate two di¤erent VARs, one for �rm-level adjusted returns, and another one for

market returns. Results are also very robust to the use of this alternative speci�c-

ation. The results are however ambiguous when I use the alternative cash-�ow risk
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measure suggested by Da and Warachka (2009), based on an analyst earnings beta.

In their paper they also show that the two ways of decomposing results (earnings

beta and VAR) lead to di¤erent results.

This paper relates to two strands of the literature. On the one hand, it is

related to the stock return comovement literature. It is well known that certain

groups of stocks tend to have common variation in prices. These studies are divided

in two groups: one supporting a fundamental view of comovement and the other

supporting a friction- or sentiment-based view of comovement. The fundamentals-

based view of comovement argues that stocks in certain groups (value or growth

stocks) have common variation because of the characteristics of their cash-�ows. For

example, Fama and French (1996) argue that value stocks tend to comove because

they are companies in �nancial distress and vulnerable to bankruptcy. Cohen, Polk,

and Vuolteenaho (2009) �nd that the pro�tability of value stocks covaries more

with market-wide pro�tability than that of growth stocks. The alternative view

of comovement is the friction- or sentiment-based view, and argues that the stock

market prices di¤erent groups of stocks di¤erently at di¤erent times. For example,

Barberis and Shleifer (2003) and Barberis, Shleifer and Wurgler (2005) argue that it

is changes in investor sentiment that creates correlated movement in prices, although

they lack common fundamentals. In this paper, I support the fundamentals-based

view of comovement.

On the other hand, this paper is also related to the stream of the literature

that studies the e¤ects of index inclusions. A large body of literature explores the

price e¤ects of index inclusions. Some studies assume that S&P 500 inclusions are

information-free events. Shleifer (1986) and Harris and Gurel (1986) �nd that there

is an increase in price after an addition, but the e¤ect dissipates after two weeks.

They argue these �ndings are consistent with a perfectly elastic demand for stocks.

Some authors claim that the index e¤ect has a long-term impact on price. Wurgler

and Zhuravskaya (2002) do not �nd a full reversal in prices, which suggests that

the long-term demand curve is donward sloping. Other studies claim that S&P 500

inclusions are not information-free events. Dennis et al. (2003) �nd that a bet-

ter monitoring improves the e¢ ciency of managers of added companies, resulting

in higher earnings after inclusions. Dhillon and Johnson (1991) �nd that the cor-

porate bonds of companies added also respond to the listing announcement, and

thus conclude that the announcement conveys new information about fundament-

als. In this paper, I �nd supporting evidence of S&P 500 inclusions not being fully

information-free events.
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The remainder of the paper is organized as follows. In Section 2 I describe the

decomposition of returns and betas. Section 3 shows the VAR framework and VAR

estimations. In Section 4 I show the empirical results, and the robustness checks.

Section 5 concludes.

2 Decomposing Stock Returns and Betas

The main purpose of this paper is to understand the sources of change in betas

around S&P 500 inclusions, and the novelty of this paper is precisely to break return

betas into discount-rate and cash-�ow betas in the context of S&P 500 additions to

distinguish between fundamentals and sentiment theories. In this Section I describe

carefully how we can break betas into discount rate and cash-�ow betas. Drawing

from previous literature, I will �rst explain how returns are decomposed, and then

I turn to apply this decomposition to betas.

2.1 Decomposing Returns

Following the Gordon growth formula, the price of a �nancial asset is expressed as

the sum of its expected future cash �ows, discounted to the present with a set of

discount rates. The source of change in the price of the asset comes from either

a change in the expected stream of cash �ows, or from a change in the expected

discount rates.

Decomposing returns in the context of index additions is useful because it allows

me to distinguish between fundamentals and sentiment stories for two reasons. The

�rst one is that investors cannot directly a¤ect the fundamentals of a �rm. As a

consequence, any impact of investor sentiment in prices is made through the channel

of discount rates. Changes in investor sentiment, thus, means that investors change

the discount rates they apply to otherwise unchanged set of cash-�ows. Secondly,

the origin of a change in price matters for long-term investors, such as pension

funds. If returns drop caused by an increase in discount rates, these investors are

not too concerned, because this is partially compensated by better future investment

opportunities. However, if the drop in current returns re�ect a fall in the expected

cash-�ows, this loss is not compensated. A good example of this e¤ect is the recent

study by Campbell, Giglio, and Polk (2010), where they show how similar drops in

aggregate returns can a¤ect long-term investors very di¤erently depending on the
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sources of these downturns.

To decompose returns, I follow the framework set up by Campbell and Shiller

(1988a, 1988b). They loglinearize the log-return:

rt+1 = log(Pt+1 +Dt+1)� log(Pt) (2.1)

where r denotes log-return, P the price, and D the dividend. They approximate this

expression with a �rst order Taylor expansion around the mean log dividend-price

ratio, (dt � pt), where lowercase letter denote log transforms. This approximation
yields

rt+1 � k + �pt+1 + (1� �)dt+1 � pt (2.2)

where � � 1=(1 + exp(dt � pt))
k � � log(�)� (1� �) log(1=�� 1)

In this approximation, the log sum of price and dividend is replaced by a weighted

average of log price and log dividend.

We now solve iteratively equation 2.2, by taking expectations and assuming that

limj!1 �
j(dt+j � pt+j) = 0, and get

pt � dt =
k

1� � + Et
1X
k=1

�j[�dt+1+j � rt+1+j] (2.3)

This accounting identity states that the price dividend ratio is high when the ex-

pected stream of future dividend growth (�d) is high or when expected returns are

low.

Drawing from this result, Campbell (1991) develops a return decomposition

based on the loglinearization. The results obtained in equation 2.3 are plugged

into equation 2.2. Then, substracting the expectation of log return, we get

rt+1 � Et rt+1 = (Et+1 � Et)
1X
j=0

�j�dt+1+j � (Et+1 � Et)
1X
j=1

�jrt+1+j

= NCF;t+1 �NDR;t+1; (2.4)

where NCF and NDR denote news about future cash �ows (future dividends), and
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news about future discount rates (i.e., expected returns) respectively. Unexpected

stock returns are thus a combination of changes in expected future cash �ows and

expected future discount rates.

2.2 Decomposing Betas

If a stock�s beta is de�ned as the correlation of the stock return with the market

return, then we can break betas into di¤erent components using the return de-

composition described above. Previous research has used the return decomposition

shown in equation 2.4 to break systematic risk in di¤erent ways. Campbell and Mei

(1993) decompose the returns on stock portfolios (sorted on size or industry) and

compute the cash-�ow and discount-rate news of each portfolio. They de�ne two

beta components, one measuring the sensitivity of cash-�ow news of the portfolio

with the market and the other measuring the sensitivity of discount-rate news of

the portfolio with the market. The two beta components are the following:

�CFi;M � Covt(Ni;CF;t+1; rM;t+1)

V art(rM;t+1)
(2.5)

and

�DRi;M � Covt(Ni;DR;t+1; rM;t+1)

V art(rM;t+1)
(2.6)

These two beta components add up to the traditional market beta of the CAPM:

�i;M = �CFi;M + �DRi;M (2.7)

Unlike Campbell and Mei (1993), I will break the betas on individual stocks

(those added to the S&P 500 index), rather than on stock portfolios.
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3 A VAR framework

3.1 Measuring the components of returns

I use vector autoregressions (VARs) to measure the shocks to cash �ows and to

discount rates, following Campbell (1991) approach. The VAR methodology �rst

estimates the terms Et rt+1 and (Et+1 � Et)
P1

j=1 �
jrt+1+j and then uses realization

of rt+1 and equation 2.4 to back out cash-�ow news. Because of the approximate

identity linking returns, dividends, and stock prices, this approach yields results that

are almost identical to those that are obtained by forecasting cash �ows explicitly

using the same information set. Thus the choice of variables to enter the VAR is

the important decision in implementing this methodology.

When extracting the news terms in our empirical tests, I assume that the data

are generated by a �rst-order VAR model

zt+1 = a+ �zt + ut+1, (3.1)

where zt+1 is a m-by-1 state vector with rt+1 as its �rst element, a and � are m-by-1

vector and m-by-m matrix of constant parameters, and ut+1 an i.i.d. m-by-1 vector

of shocks.

Assuming that the process in equation (3.1) generates the data, t + 1 cash-�ow

and discount-rate news are linear functions of the t+ 1 shock vector:

NDR;t+1 = e10�ut+1; (3.2)

NCF;t+1 = (e10 + e10�)ut+1:

where e1 is a vector with �rst element equal to unity and the remaining elements

equal to zero. The VAR shocks are mapped to news by �, de�ned as � � ��(I���)�1

so that e10� measures the long-run signi�cance of each individual VAR shock to

discount-rate expectations.

3.2 Aggregate VAR Speci�cations

For my analysis I need to break individual stock returns into cash-�ow and discount-

rate news. However, as pointed out by Vuolteenaho (2002), it is useful and accurate
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to carry out the decomposition in two steps. Because aggregate returns behave

di¤erently than �rm-level returns, it is reasonable to estimate a VAR for market

returns, using aggregate variables, and a VAR for �rm-level market-adjusted returns,

using �rm-level variables. Consistent with Vuolteenaho (2002), I show in the last

section that estimating a unique VAR for �rm-level stock returns delivers similar

results.

I �rst estimate an aggregate VAR, to predict market returns. In specifying the

aggregate VAR, I include four variables, following Campbell and Vuolteenaho (2004).

The data are all monthly, from December 1928 to May 2009.

The �rst element the VAR is the excess return on the market (rem), calculated

as the di¤erence between the monthly log return on the CRSP value-weighted stock

index (rm) and the monthly log risk-free rate (rf). I take the excess return series from

Kenneth French�s website4. The second element in the VAR is the term yield spread

(TY ), provided by Global Financial Data and computed as the yield di¤erence

between ten-year constant-maturity taxable bonds and short-term taxable notes,

in percentage points5. The third variable is the log smoothed price-earnings ratio

(PE), the log of the price of the S&P 500 index divided by a ten-year trailing moving

average of aggregate earnings of companies in the index. I take the price-earnings

ratio series from Robert Shiller�s website6. As in Campbell and Vuolteenaho (2004),

I carefully remove the interpolation inherent in Shiller�s construction of the variable

to ensure the variable does not su¤er from look-ahead bias. The �nal variable is the

small-stock value spread (V S), which I construct using the data made available by

Professor Kenneth French on his web site. The portfolios, which are constructed at

the end of each June, are the intersections of two portfolios formed on size (market

equity,ME) and three portfolios formed on the ratio of book equity to market equity

(BE=ME). I generate intermediate values of V S by accumulating total returns on

the portfolios in question.

The motivation for the use of these variables is the following. Term yield spread

tracks the business cycle, as pointed out by Fama and French (1989), and there

are several reasons why we should expect aggregate returns to be correlated to

the business cycle. Second, if price-earnings ratio is high and expected earnings

growth is constant, then long-run expected returns must be low, so we expect a

4http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
5This last variable is only available until 2002, from that year until the end of the series I

compute the TY series as the di¤erence between the yield on the 10-Year US Constant Maturity
Bond (IGUSA10D) and the yield on the 1-Year US Constant Maturity Bond (IGUSA1D).

6http://www.econ.yale.edu/~shiller/data.htm
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negative coe¢ cient of this variable in the VAR. Finally, the small-stock value spread

is included given the evidence in Brennan, Wang, and Xia (2001) and others that

relatively high returns for small growth stocks predict low aggregate returns in the

market.

Table 1 reports the VAR model parameters for the aggregate VAR, estimated us-

ing OLS. Every row of the table corresponds to a di¤erent equation of the VAR. The

�rst �ve columns report coe¢ cients on the �ve explanatory variables: a constant,

and lags of the excess market return, term yield spread, price-earnings ratio, and

small-stock value spread. OLS standard errors are reported in parentheses below

the coe¢ cients.

The �rst row in Table 1 shows that all four of my VAR state variables have some

ability to predict monthly excess returns on the market excess returns. Monthly

market returns display momentum; the coe¢ cient on the lagged market excess return

is a statistically signi�cant 0.1118 with a t-statistic of 3.52.

The regression coe¢ cient on past values of the term yield spread is positive,

consistent with the �ndings of Keim and Stambaugh (1986), Campbell (1987), and

Fama and French (1989), but with a t-statistic of 1.6. As expected, the smoothed

price-earnings ratio negatively predicts market excess returns, with t-statistics of

3.41, consistent with the �nding that various scaled-price variables forecast aggreg-

ate returns (Campbell and Shiller, 1988ab, 2003; Roze¤ 1984; Fama and French

1988, 1989). Finally, the small-stock value spread negatively predicts market excess

returns with t-statistics of 2.16, consistent with Brennan, Wang, and Xia (2001),

Eleswarapu and Reinganum (2004), and Campbell and Vuolteenaho (2004). The

estimated coe¢ cients, both in terms of signs and t-statistics, are consistent with

previous research.

The remaining rows in Table 1 summarize the dynamics of the explanatory vari-

ables. The term spread can be predicted with its own lagged value and the lagged

small-stock value spread. The price-earnings ratio is highly persistent, with past re-

turns adding some forecasting power. Finally, the small-stock value spread is highly

persistent and approximately an AR(1) process.
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3.3 Firm-level VAR Speci�cation

After the estimation of an aggregate VAR, I now turn to estimate a �rm-level VAR

for market-adjusted returns. I implement the main speci�cation of my monthly

�rm-level VAR with the following three state variables. First, the log �rm-level

return (ri) is the monthly log value-weight return on a �rm�s common stock equity.

Following Vuolteenaho (2002), to avoid possible complications with the use of the

log transformation, I unlever the stock by 10 percent; that is, I de�ne the stock

return as a portfolio consisting of 90 percent of the �rm�s common stock and a 10

percent investment in Treasury Bills. My second state variable is the momentum

of the stock (MOM), which I measure following Carhart (1997) as the cumulative

return over the months t� 11 to t� 1. My �nal �rm-level state variable is the log
book-to-market equity ratio (I denote the transformed quantity by BM in contrast

to simple book-to-market that is denoted by BE=ME) as of the end of each month

t.

I measure BE for the �scal year ending in calendar year t� 1, and ME (market
value of equity) at the end of May of year t7. I update BE=ME over the subsequent

eleven months by dividing by the cumulative gross return from the end of May to

the month in question. I require each �rm-year observation to have a valid past

BE=ME ratio that must be positive in value. Moreover, in order to eliminate likely

data errors, I censor the BE=ME variables of these �rms to the range (.01,100)

by adjusting the book value. To avoid in�uential observations created by the log

transform, I �rst shrink the BE=ME towards one by de�ning BM � log[(:9BE +
:1ME)=ME].

The �rm-level VAR generates market-adjusted cash-�ow and discount-rate news

for each �rm and month. I remove month-speci�c means from the state variables

by subtracting rM;t from ri;t and cross-sectional means fromMOMi;t and BMi;t. As

in Campbell, Polk, and Vuolteenaho (2010), instead of subtracting the equal-weight

7Following Fama and French, we de�ne BE as stockholders�equity, plus balance sheet deferred
taxes (COMPUSTAT data item 74) and investment tax credit (data item 208) (if available), plus
post-retirement bene�t liabilities (data item 330) (if available), minus the book value of preferred
stock. Depending on availability, we use redemption (data item 56), liquidation (data item 10),
or par value (data item 130) (in that order) for the book value of preferred stock. We calculate
stockholders�equity used in the above formula as follows. We prefer the stockholders�equity number
reported by Moody�s, or COMPUSTAT (data item 216). If neither one is available, we measure
stockholders�equity as the book value of common equity (data item 60), plus the book value of
preferred stock. (Note that the preferred stock is added at this stage, because it is later subtracted
in the book equity formula). If common equity is not available, we compute stockholders�equity as
the book value of assets (data item 6) minus total liabilities (data item 181), all from COMPUSTAT.
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cross-sectional mean from ri;t, I subtract the log value-weight CRSP index return,

because this will allow us to undo the market adjustment simply by adding back the

cash-�ow and discount-rate news extracted from the aggregate VAR.

After cross-sectionally demeaning the data, I estimate the coe¢ cients of the

�rm-level VAR using WLS. Speci�cally, I multiply each observation by the inverse

of the number of cross-sectional observation that year, thus weighting each cross-

section equally. This ensures that my estimates are not dominated by the large

cross sections near the end of the sample period. I impose zero intercepts on all

state variables, even though the market-adjusted returns do not necessarily have a

zero mean in each sample. Allowing for a free intercept does not alter any of my

results in a measurable way.

Parameter estimates, presented in Table 2, imply that expected returns are high

when past one-month return is low and when the book-to-market ratio and mo-

mentum are high. Book-to-market is the statistically most signi�cant predictor,

while the �rm�s own stock return is the statistically least signi�cant predictor. Mo-

mentum is high when past stock return and past momentum are high and the book-

to-market ratio is low. The book-to-market ratio is quite persistent. Controlling for

past book-to-market, expected future book-to-market ratio is high when the past

monthly return is high and past momentum is low.

4 Empirical Results

4.1 Data

I use S&P 500 index inclusions between September, 1976 and December 31, 2008.

There are 745 inclusion events in the sample period. Following prior studies, I

exclude the events where the included �rm is a spin-o¤ or a restructured version of

a �rm already in the index, if the �rm is engaged in a merger or takeover around

the inclusion event, or if the event occurs so close to the end of the sample that the

data required for estimating post-event betas are not available.

I do not consider deletion events in this study for two main reasons. Firs, most

of the deletions from the S&P 500 (over 80%) are derived from a spin-o¤, mergers

or restructuring. The second reason is that the evidence of beta shifts followed

by deletions reported in the literature is smaller and less signi�cant than that of
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additions.

I use monthly and quarterly data, from CRSP and Compustat. The analysis is

done at the monthly frequency, because the return decomposition is done monthly.

Higher frequency return decomposition is not considered, because the state variables

used in the VAR are based on accounting variables, available at low frequencies.

Data for inclusion events comes from two sources: CRSP Index �le, provided by

Standard and Poors, and Je¤rey Wurgler�s website. From 1976 to 2000 I use Je¤rey

Wurgler�s sample (590 additions), that includes information on whether the addition

is related to mergers or spin o¤s. From 2001 to 2008 I obtain the data from CRSP

Index �le (155 additions), and manually investigate confounding events, using Nexis,

Wall Street Journal, the companys�websites, Google.com, and Wikipedia. I exclude

33 additions that are related to mergers or spin-o¤s. I also require the additions to

have enough data on the return decomposition.

4.2 Changes in Betas in a VAR Framework

4.2.1 Benchmark case

I �rst conduct a basic bivariate regression where I measure the change in beta of the

event stocks with respect to the S&P 500 return, controlling for the non S&P 500

return. I do this following the empirical approach of Barberis, Shleifer, and Wurgler

(2005). They conjecture that controlling for the return of the "exiting" group (all

non S&P 500 stocks) gives more power to distinguish between fundamentals and

friction- or sentiment-based views.

I build a panel of all the event stocks, using a window of 36 months before and 36

months after the addition. I include the interaction of reSP;t and r
e
nSP;t with a dummy

variable Iit that takes value 1 if the stock is included in the index. The subscript t

re�ects event time (months around the inclusion), not calendar time. The equation

I estimate is therefore the following:

rei;t = �i + �
b
SP r

e
SP;t + �

b
nSP r

e
nSP;t +��SP Iitr

e
SP;t +��nSP Iitr

e
nSP;t + "i;t (4.1)

The coe¢ cients of the interactions Iit � reSP;t and Iit � renSP;t (��SP and ��nSP
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respectively) re�ect the average changes in betas after the addition to the S&P 500

index has taken place. The excess return on the S&P 500 index, reSP , is computed as

the di¤erence between the monthly return on the S&P 500 index, obtained from the

CRSP Index File, and the monthly riskfree rate, obtained from Professor Kenneth

French�s website. The return renSP are excess returns on a capitalization-weighted

index of the non-S&P 500 stocks in the NYSE, AMEX, and Nasdaq, and are inferred

from the following identity:

rM;t =

�
CAPM;t�1 � CAPSP;t�1

CAPM;t�1

�
rnSP;t +

�
CAPSP;t�1
CAPM;t�1

�
rSP;t (4.2)

where total capitalization of the S&P 500 (CAPSP ) is from the CRSP Index on

the S&P 500 Universe �le. Returns on the value-weighted CRSP NYSE, AMEX,

and Nasdaq index (rM) and total capitalization (CAPM) are from the CRSP Stock

Index �le.

The constant in this regression has the i subscript, which means that I include

�rm dummies. It is reasonable to assume that the alphas for each event stock are

di¤erent. Moreover, if two additions are close together in time, there can be overlap

in the time periods covered by the regressions associated with each event. To account

for this cross-sectional autocorrelation, I cluster standard errors by time (month).

Table 3 shows the results for this regression. Consistent with previous literature

(Barberis, Shleifer, and Wurgler, 2005), I �nd that beta with respect to S&P 500

returns jumps and beta with respect to non S&P 500 returns falls, both signi�c-

antly. The second row displays the average change in S&P 500 beta, ��SP , 0.425,

accurately estimated with a t-stat of 6.25. The fourth row shows the average change

in non S&P 500 beta, ��nSP , with the coe¢ cient -0.291, estimated with a a t-stat

of 4.59.

4.2.2 Cash-�ow and discount-rate betas

The results reported in Table 3, in line with those found by Barberis et. al, have been

interpreted as evidence of friction- or sentiment-based comovement. The argument

is the following. Standard and Poors state clearly that in choosing a company to be

included in the index, they do not signal anything about the future performance of

the company. As a consequence, any change in the betas of companies added to the

index should be attributed to sentiment, because fundamentals have not changed.
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Sentiment- or friction-based theories predict that the increase in beta is due to

an induced common factor in the discount rates. Investors cannot a¤ect directly the

fundamentals (cash-�ows) of a �rm. However, they can apply similar discount rates

to stocks in the same group, thus inducing an excess comovement.

Examining the components of the change in beta follows naturally from this ar-

gument. If the excess comovement is driven by sentiment- or friction-based reasons,

then the observed change in beta should be coming from a change in discount rate

betas, and we should not observe a change in cash �ow covariances. If, however, the

change is driven by cash-�ow covariances, then this is support for a fundamentals-

based view of comovement.

To implement this test, I simply substitute the excess returns of event stocks,

rei;t, for their cash-�ow news (NiCF;t) and (negative of) discount-rate news (�NiDR;t)
in the left-hand side of equation 4.1:

�NiDR;t = �i + �DRbSP r
e
SP;t + �

DRb
nSP r

e
nSP;t +��

DR
SP Iitr

e
SP;t +��

DR
nSP Iitr

e
nSP;t + "i;t (4.3)

and

NiCF;t = �i + �
CFb
SP r

e
SP;t + �

CFb
nSP r

e
nSP;t +��

CF
SP Iitr

e
SP;t +��

CF
nSP Iitr

e
nSP;t + "i;t (4.4)

so that I can identify the changes in beta due to discount rates, and those due to

cash-�ows. This decomposition implies that the overall change in beta with respect

to S&P 500 (and similarly with non S&P 500 stocks), is approximately equal to the

sum of changes in cash-�ow betas and discount rate betas:

��SP � ��DRSP +��
CF
SP

��nSP � ��DRnSP +��
CF
nSP (4.5)

Table 4 shows the changes in cash-�ow and discount rate betas. The �rst column

replicates the benchmark column of table 3. The second and third columns show

the results for the change in the di¤erent beta components. The change in discount

rate beta with respect to the S&P 500 is an insigni�cant -0.008 (second row, second
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column), and 0.049 with respect to the non S&P 500 stocks, whereas the changes in

cash-�ow betas are 0.391 and -0.286 (for S&P 500 and non S&P 500 respectively),

accurately estimated with t-stats of 6.15 and 4.62. This result strongly supports

the idea that, at the monthly frequency, sentiment- or friction-based comovement is

negligible if not inexistent.

Figure 1 shows the evolution of average betas around the inclusion event. Rolling

regressions are estimated with windows of 36 months frommonth�36 to month+72.
In the top panel we observe the evolution of the overall average betas. S&P 500

betas increase signi�cantly after inclusion, and non S&P 500 decrease after inclusion.

Below, in the central panel, rolling average discount rate betas are plotted, showing

a very mild pattern of variation. Finally, in the bottom panel, we see how all the

action in the change in beta is originated in the cash-�ow betas.

4.3 Results from a direct approach

In this subsection I avoid the need for a VAR estimation, and thus show that my

results do not depend on the VAR speci�cation nor on the state variables used in

the VAR. The main result arising from the previous section is that the changes in

overall betas with S&P 500 and non S&P 500 returns come from cash-�ow betas.

In other words, I have found evidence that the fundamentals of stocks added to

the S&P 500 index tend to comove more with fundamentals of the S&P500 after

inclusion than before.

I use the return on equity (roeit) to proxy for �rm-level cash �ow fundamentals,

as done previously in the literature (Cohen, Polk, and Vuolteenaho, 2003, 2009).

The speci�cation is very simple: I regress the individual roeit on the aggregate

return on equity for the S&P 500 (roeSP;t), on the aggregate return on equity for

the rest of the market (roenSP;t), and on the interaction of these two variables with

a dummy variable Iit that is equal to 1 if the stock is in the index and equal to 0 if

it is not. The hypothesis is that if there is a change in the cash-�ow covariances of

the event stocks with the S&P 500 index, then I should observe a positive coe¢ cient

for the �rst interaction term (IitroeSP;t) and a negative coe¢ cient for the second

interaction term (IitroenSP;t). The speci�cation is then

roei;t = �i + �
b
SP roeSP;t + �

b
nSP roenSP;t +��SP IitroeSP;t +��nSP IitroenSP;t + "i;t
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where roei;t is the return on equity, de�ned as roei;t = log(1+NIt=BEt�1) where

NI is net income and BE book equity, in t and t�1 respectively. To avoid extreme
observations, roei;t is winsorized between �1 and 2 (on a given quarter, the return
on equity cannot be lower than �100% or higher than 200%). roeSP;t and roenSP;t
are calculated as the log of 1 plus the sum of NIt over the sum of BEt�1, for all

December �scal year end stocks in each group of S&P 500 and non S&P 500 stocks.

As in the previous analyses, I include �rm dummies, and the standard errors are

clustered by time to account for cross-sectional autocorrelation.

I run a pooled-OLS quarterly regression. Results are presented in table 5. The

results con�rm my �ndings in the VAR approach. When a stock is not in the index,

its beta with S&P 500 return on equity is 0.227 and its beta with the rest of the

market return on equity is 0.716, with both coe¢ cients estimated precisely with

t-statistic above 3. However, once the stock has been added to the index, the betas

turn to 0.488 and 0.211 for S&P 500 and rest of the market return on equities.

4.4 Matched stocks

The results from the VAR and from the direct approach strongly suggest that S&P

500 additions do not trigger a change in betas, rather, it selects stocks that exhibit

a growth in betas. In other words, the observed change in beta of stocks added to

the S&P 500 is not a consequence of being added, but rather, a motive for being

added. S&P 500 index is meant to be representative of the economy, normally

composed by large �rms. The results are consistent with a story where Standard

and Poors chooses stocks that are going to be more central to the economy, by

having fundamentals more correlated with the fundamentals of other representative

companies.

A natural exercise that helps to distinguish between causality and selection is

a matching procedure. We can identify stocks of similar characteristics than those

added to the S&P 500, but that happened not to be added. If S&P 500 additions

are triggering or causing a change in beta, then event stocks should exhibit a change

in betas coming from the discount rates, whereas matched stocks should not. If,

however, it is Standard and Poors that is selecting stocks from certain sector and

characteristics, then we would observe similar patterns of comovement in matched

stocks as well.

Following Barberis et al., for each event stock I search for a matching stock
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similar in size and industry. I choose a stock in the same size decile at the moment

of inclusion and 36 months before inclusion. I �rst match at the SIC4 level. If no

match can be found, I allow the matched stock to be in the same SIC3 level. If

no match is found, I then go back to SIC4 level and allow the matched stock to

be within one size decile at inclusion, then within one size decile 36 months before

inclusion. If no match can be found, I repeat the size allowance for SIC3 level, and

then for the SIC2 level. I �nally repeat the same algorithm for allowance of two size

deciles at inclusion and then 36 months before inclusion.

Table 6 shows the results of the changes in beta using matched stocks. I �nd that

matched stocks exhibit similar patterns in betas, as matched stocks also experience

a signi�cant change in beta with respect to S&P 500 returns, of 0.261. The crucial

result in this table is that the di¤erence in di¤erence in betas, though mildly signi-

�cant (0.165 with a t-stat of 1.91), it all comes from the cash-�ow component: 0.158

with a t-stat of 2. This is both evidence of Standard and Poors signaling something

about future cash-�ow covariances, and of Standard and Poors�Committee being a

better predictor of future cash-�ow covariances and relevance in the economy than

the basic and always imperfect matching algorithm that we employ.

Figure 2 shows the evolution of rolling average betas (for the overall betas, and

their discount-rate and cash-�ow components). The top panel shows the betas for

the event �rms (those included in the S&P 500), and the bottom panel shows the

evolution of betas for matched �rms (�rms that could have been included in the

index, but were not).

4.5 Reconciling with Barberis et al.

How do these results compare to those of Barberis et al.? They provide evidence of an

excess-comovement coming from sentiment, and in this paper I provide evidence of

a cash-�ow driven comovement after index inclusions. In this subsection I explicitily

compare both results to better understand how they relate to each other.

Barberis et al. provide empirical evidence supportive of three sentiment- or

friction-based views of comovement. The category view, proposed by Barberis and

Shleifer (2003), argues that investors, in order to simplify portfolio decisions, allocate

funds at the category level, instead of asset level. Thus if there are noise traders with

correlated sentiment, and they are e¤ective in a¤ecting prices, they create an excess

comovement into each by moving funds from one to another category. Habitat view is
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based on the fact that many investors limit their investment universe to a preferred

habitat, due to transaction costs, or lack of information. This in turns creates a

common factor in the returns of these assets that is uncorrelated to fundamentals.

The information difussion view stems from the fact that due to market frictions, the

information is incorporated quicker into the prices of some stocks than others.

The two main contributions of their paper with respect to Vijh (1994) are as

follows. They �rst extend the sample and show that the results are stronger in the

recent period. Secondly they run bivariate regressions to enhance the power of the

tests, by controlling in the regressions for non-S&P 500 returns. This methodology

follows from the �rst two views of sentiment-based comovement: when a stock joins

a group of stocks, the comovement of the stock with the new group should go up

(as seen in Vijh), but also, and this is the novel approach, the comovement of the

stock with the group to which it belonged (the leaving group), should drop.

They show that the evidence of excess-comovement after index inclusions is

strong when using daily data, and becomes weaker when using lower frequencies

of the data. Results for weekly and monthly data, although present, are less power-

ful than those using daily data. So the frequency used in the analysis matters. To

understand how the three views contribute to the e¤ect, Barberis et al. add a �nal

section in the paper where they repeat the daily analysis using Dimson betas: using

�ve leads and �ve lags of the right hand side variables, namely, S&P 500 index and

non-S&P 500 index. They �nd that most of the e¤ect dissappears when controlling

for Dimson betas. Some of the e¤ect remains in the univariate analysis, however

statistical signi�cance dissappears in the bivariate analysis, which is, in turn, the

novel methodology they propose to enhance the power of the tests. Results are also

shown only for event stocks, suggesting that di¤erence in di¤erences for matched

stocks is not signi�cant.

In this paper I show that there is a signi�cant change in the covariances after

index inclusions, and that such a change comes from the cash-�ow component of

the return covariance. I only use monthly frequency, as a return decomposition at

higher frequencies is not feasible given the frequency of the variables that predict

returns.

The results of Barberis et al., with especial emphasis on the Dimon betas analysis,

together with my results strongly suggest that at high frequencies, the change in

beta re�ects the friction-based view of information difussion. Stocks in the S&P 500

index incorporate information quicker than stocks outside the S&P 500 index. In
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other words, an inclusion in the index changes the speed at which information is

incorporated, but it does not change the systematic risk of the stocks added to the

index. At lower frequencies, however, when we observe a change in the systematic

risk of a stock added to the index, this change does not re�ect a change in the speed

of information incorporation (a causal e¤ect triggered by the inclusion), but rather

it re�ects the evolution of the fundamentals of the stock added to the Index. This

evolution in fundamentals is also present in matched stocks that were not added to

the Index.

4.6 Robustness to di¤erent subsamples

4.6.1 Subsample in the time dimension

I explore the e¤ect in di¤erent time subsamples to uncover e¤ects that might be

hidden in the full-sample period. Previous research has found that the change in

beta after index additions has grown over time. Consistent with those �ndings, I

�nd that the e¤ect is stronger in the last part of the sample. This analysis, shown in

table 7, re�ects three �ndings. Firstly, the e¤ect of the change in beta with respect

to S&P 500 index comes from the cash-�ow components of the stocks added rather

from the discount rates in both parts of the subsample. The changes in beta for the

two subsamples are 0.230 and 0.533, estimated with t-stats above 3, where almost

all the e¤ect is cash-�ow originated (0.297 and 0.393).

Secondly, I �nd that the di¤erence in di¤erences using matching stocks is also

coming from the cash-�ow components in both subsamples. Thirdly it is interesting

to note that when breaking the sample in early and recent parts we observe that the

change in beta related to discount rates is negative in the �rst part of the subsample

and positive in the second part: -0.077 and 0.90 respectively signi�cant at the 10%

level of signi�cance. This alone could be interpreted as evidence of sentiment-based

comovement in the later part of the sample. However, we observe that the same

pattern is observed in matched stocks, that were not added to the index (-0.061 and

0.084).
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4.6.2 Subsample in growth value dimension

In this subsection I study whether stocks with di¤erent characteristics di¤er in the

change in beta experienced after inclusion. I divide the included �rms into growth

and value stocks, by comparing the cross-sectionally adjusted book-to-market ratios.

Growth �rms tend to be more intangible and more opaque, while value �rms are

more stable, if they are �nancially sound. Because the change in beta also re�ects

the size of the companies added, growth stocks should exhibit a higher change in

beta than value stocks. Table 8 reports the results. Consistent with my prior, I �nd

that the change in beta is higher for growth �rms (0.547 versus 0.356). The results

for matched �rms exhibit similar patterns, and the di¤erence in di¤erence, although

insigni�cant, is also coming from the cash-�ow components of beta.

4.7 Robustness to a second-order VAR

After considering parsimonious VAR speci�cations, I turn now to test the results

using richer VAR equations, both in the �rm-level and in the aggregate. Recall that

the news terms used in the benchmark event study around S&P 500 index inclusions

are the sum of the news extracted from an aggregate VAR and a �rm-level VAR. In

the benchmark speci�cation I only use one lag of the state variables, assuming that

higher order lags would not a¤ect present values of the variables, as widely used in

the literature related to stock-return decomposition.

The benchmark aggregate speci�cation assumes that the data generating process

is a �rst-order monthly VAR. I use the following four state variables: excess return

on the market (rem), the term yield spread (TY ), the log smoothed price-earnings

ratio (PE), and the small-stock value spread (V S). Previous research has shown

that these variables could help predict returns at a longer horizons (Campbell, Polk,

and Vuolteenaho, 2010). Without being exhaustive (there are many possible spe-

ci�cations), I will test the results by using a second-order VAR, i.e., allowing for up

to two lags to predict the state variables. The methodology is similar to the �rst

order VAR:

zt+1 = a+ A1zt + A2zt�1 + ut+1 (4.6)

which for analytical derivations of the news terms according to Campbell (1991), it
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can also be expressed as:"
zt+1

zt

#
=

"
a

0

#
+

"
A1 A2

I 0

#"
zt

zt�1

#
+

"
ut+1

0

#
(4.7)

Table 9 shows the results for the second-order aggregate VAR. To avoid an

unncessary display of zeros and the identity matrix, I only show A1 and A2. The

results are similar to the �rst-order VAR. Due to the additional free parameters,

however, the standard errors are somewhat larger. The coe¢ cients for the second

lag are estimated less accurately. Market returns exhibit now a bit of reversal in

the second lag (with a coe¢ cient of -0.04), term yield spread and price earning ratio

keeps the positive sign in the second lag estimate, and the small stock value spread

�ips sign with respect to the �rst lag. The intercepts and the R-Squares are very

similar to the previous speci�cation.

I now turn to the �rm-level market adjusted VAR. The variables used in the

benchmark �rst-order VAR are the following: market adjusted log stock return (ri),

the previous year return, excluding the last month (MOMi), and the log book-

to-market (BMi). I motivate this lag order as a second-order cointegrating VAR.

Previous research has also shown that these variables have predictive power beyond

the �rst month (Vuolteenaho, 2002, and Campbell, Polk, and Vuolteenaho, 2010).

Consistent with Vuolteenaho (2002), I �nd that the results are very similar to the

�rst-order VAR. Table 10 shows the coe¢ cients of the secon-order market-adjusted

�rm-level VAR. As in the aggregate VAR, the standard errors of the second-order

coe¢ cients are large, and thus the coe¢ cients are not accurately estimated. Monthly

returns also exhibit reversal in the second lag, and the previous year return computed

in the second lag predicts also positively the returns. The coe¢ cient for book-to-

market shows a di¤erent sign for the second lag, which is consistent with the �rst-

order VAR given the degree of correlation between the book-to-market at time t and

the book-to-market at time t� 1.

Following the same methodology, I extract the news from each of the new VARs

(the second-order aggregate VAR and second-order �rm-level VAR), I add them up,

yielding NiDR;t and NiCF;t, and compute the changes in cash �ow and discount rate

betas after the addition in the S&P 500 index, as before. Table 11 shows the changes

in overall beta (which I include again for comparison purposes), and the changes in

the new cash �ow and new discount rate betas. The main results are very robust to

the use of a second order VAR. In column three we observe that the change in beta
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after an S&P 500 addition comes from the cash-�ow beta. The overall change in

beta is a stronly signi�cant 0.430, the change in discount rate beta is an insigni�cant

�0:035, and the change in cash �ow beta is a stronly signi�cant 0.424. Consistent
with the results from the �rst order VAR, matched stocks also experience a change

in the cash �ow betas (column 6), and the di¤erence in di¤erence is all coming from

the cash-�ows (see column 9), although it is estimated less accurately.

4.8 An alternative speci�cation of the VAR

In the benchmark speci�cation, the cash-�ow and discount-rate news are extracted

from two di¤erent VARs. The rationale for estimating two di¤erent VARs hinged in

the fact that �rm-level idiosyncratic returns behave di¤erently than market returns.

A clear example shown in Tables 1 and 2 is that �rm-level returns exhibit a clear

short-term reversal after one month, while market returns display momentum after

one month. Following Vuolteenaho (2002) and Campbell, Polk, and Vuolteenaho

(2010), I estimated in the previous section an aggregate VAR to extract the market

return news and a �rm-level VAR to extract �rm-level market adjusted returns, to

account for the aforementioned di¤erences and to more accurately predict the two

components of a �rm return: the idiosyncratic and the market component.

In this subsection I show that the main results of the paper are not driven by the

choice of extracting the news from two di¤erent VARs. I now estimate a VAR for

�rm-level excess returns, instead of �rm-level market-adjusted returns. In the state

vector I now include �rm-level and market-wide variables. By doing so, I intend to

allow market-wide variables to a¤ect expected returns and cash �ows on all stocks.

The model is then written this way:

"
zi;t+1

xt+1

#
= A+ �

"
zi;t

xt

#
+ ui;t+1

where zi;t+1 is the vector of �rm-speci�c variables, and the �rst element of this

vector is the excess log return. Following Vuolteenaho (2002) I constrain the lower

left corner of � to zero, which means that there is no feedback from �rm-level state

variables to market-wide state variables. Also, because the variables are not cross-

sectionally demeaned, the do not necessarily have zero means, and thus and intercept

vector A is included in the VAR.
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Several speci�cations of the model are possible. In Table 12, I show the di¤erent

options. This table only shows the �rst equation of the VAR for the di¤erent speci�c-

ations (where the dependent variable is the �rm-level excess log return). Firm-level

variables include the excess log return, the previous year return (excluding the last

month) in excess of the risk free rate during the same period, the log book to market

ratio, and the log pro�tability in excess of the risk free rate. I include two sets of

market-wide variables. The �rst one comprises the cross-sectional medians of the

�rm-level state variables, and the second one includes the four aggregate variables

used to estimate the aggregate VAR in the previous section.

Columns (1) and (2) in Table 12 show the results when including the two di¤erent

blocks of market-wide variables. In column (1) we can observe that all market-wide

variables have predictive power consistent with previous literature, except the cross-

sectional median of the variable MOMt. In column (2) we also observe that all the

aggregate variables have some predictive power as well, though not all them very

signi�cant. In order to have a relatively parsimonious VAR and choose the most

signi�cant variables, I conduct a horse-race of all the variables, as shown in column

(3). Once all eight market-wide variables are included, we can see that three of

the four cross-sectional medians cease to be signi�cant, whereas the market return

and term yield spread still have explanatory power. Although the cross-sectional

median of pro�tability is signi�cant in this speci�cation, it appears insigni�cant if

the insigni�cant variables are dropped (this and other horse-race options have been

evaluated but not shown for the sake of brevity). The �nal set of variables I use are

the ones shown in column (4).

Table 13 shows all the coe¢ cients for the VAR corresponding to column (4) in

the previous table. Intercepts are included in the VAR, however the magnitude is

very small and insigni�cant in all cases. All state variables in the �rst equation are

signi�cant at the 1%. The sign of the variables is as expected: the coe¢ cient for

excess log return is negative (showing the short-term reversal), positive and strong

for momentum, pro�tability, market return and term yield spread. The equations

corresponding to the aggregate variables are consistent with the aggregate VAR

estimated in the previous section: market return exhibits momentum at the monthly

level, and term yield spread predicts positively market return. The R-Square, 2%, is

also similar (although lower, because there are only two variables predicting market

returns now) to the previous aggregate VAR 2.81%.

I then extract the news from this new VAR, NiDR;t and NiCF;t, and compute
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the changes in cash �ow and discount rate betas after the addition in the S&P 500

index, as before. The only di¤erence is that I now estimate the betas with di¤erent

news, the ones extracted from this alternative speci�cation of the VAR. Table 14

shows the changes in overall beta (included again for comparison purposes), in the

new cash-�ow and discount rate betas. The main results are robust to this di¤erent

speci�cation of the VAR. In column three we observe that the change in beta after

an S&P 500 addition comes from the cash-�ow beta. The overall change in beta

is a stronly signi�cant 0.430, the change in discount rate beta is an insigni�cant

0.036, and the change in cash �ow beta is a stronly signi�cant 0.357. And as in

the previous Section, when compared the changes in betas with matched stocks, the

di¤erence in di¤erence is all coming from the cash-�ows, and is less signi�cant than

for the event stocks.

4.9 Alternative cash �ow risk measure

There is a recent novel method of estimating cash-�ow news alternative to the

use of a VAR decomposition, suggested by Da and Warachka (2009). They use

revisions in analyst earnings forecasts to construct an analyst earnings beta, that

measures the covariance between the cash �ow innovations of a stock and those of

the market. Empirical analysis of S&P 500 index inclusions using this speci�cation

yields results more ambiguous than the ones derived from the VAR procedure. This

is not surprising, as Da and Warachka (2009) also show that their results are not

consistent with the use of cash-�ow news extracted from a VAR.

5 Conclusion

Using a two beta decomposition, I provide evidence of changes in cash-�ow covari-

ances after stock additions to the S&P 500 index. I show that the well-known beta

change e¤ect after index inclusions is associated with the cash-�ow news components

of the individual stocks that are added into the index. These results are robust to

alternative speci�cations of the VAR, such a second-order VAR, and a unique VAR

that encompasses �rm-level and aggregate variables as state variables.

I also study direct measures of cash �ows, coming from accounting variables, as

a robustness check of my VAR approach, and show that the results do not depend

on my particular speci�cation.
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The results from the benchmark study, from a matching procedure and from

subsample analysis, as well as from a direct approach, are consistent with a story

where it is Standard and Poors selecting stocks that will exhibit a growth in betas.
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Table 1: Aggregate VAR

This table shows the OLS parameter estimates for a �rst-order monthly aggregate
VAR model including a constant, the log excess market return (reM), the term yield
spread (TY ), the log price-earnings ratio (PE), and the small-stock value spread
(V S). Each set of two rows corresponds to a di¤erent dependent variable. The
�rst �ve columns report coe¢ cients on the �ve explanatory variables and the sixth
column reports the corresponding adjusted R2. Standard errors are in parentheses.
The sample period for the dependent variables is December 1928 - May 2009, provid-
ing 966 monthly data points.

Aggregate VAR to predict market return

Constant reM;t TYt PEt V St �R2

reM;t+1 0.0674 0.1118 0.0040 -0.0164 -0.0117 2.81%
(Log excess market return) (0.0189) (0.0318) (0.0025) (0.0048) (0.0054)

TYt+1 -0.0278 0.0001 0.9212 -0.0051 0.0620 86.40%
(Term yield spread) (0.0943) (0.1585) (0.0127) (0.0243) (0.0269)

PEt+1 0.0244 0.5181 0.0015 0.9923 -0.003 99.10%
(Log price-earnings ratio) (0.0126) (0.0212) (0.0017) (0.0032) (0.0036)

V St+1 0.0180 0.0045 0.0008 -0.0010 0.9903 98.24%
(Small-stock value spread) (0.0169) (0.0283) (0.0022) (0.0043) (0.0048)
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Table 2: Firm-level VAR

This table shows the pooled-WLS parameter estimates for a �rst-order monthly
�rm-level VAR model. The model state vector includes the log stock return (r),
stock momentum (MOM), and the log book-to-market (BM). I de�ne MOM
as the cumulative stock return over the last year, but excluding the most recent
month. All three variables are market-adjusted: r is adjusted by subtracting rM
whileMOM and BM are adjusted by removing the respective month-speci�c cross-
sectional means. Rows corresponds to dependent variables and columns to inde-
pendent (lagged dependent) variables. The �rst three columns report coe¢ cients
on the three explanatory variables and the fourth column reports the corresponding
adjusted R2. The weights used in the WLS estimation are proportional to the in-
verse of the number of stocks in the corresponding cross section. Standard errors (in
parentheses) take into account clustering in each cross section. The sample period
for the dependent variables is January 1954 - December 2008, providing 660 monthly
cross-sections and 1,658,049 �rm-months.

Firm-level VAR for market-adjusted returns

Variable ri;t MOMi;t BMi;t R2

ri;t+1 -0.0470 0.0206 0.0048 0.64%
(Log stock return) (0.0066) (0.0023) (0.0007)

MOMi;t+1 0.9555 0.9051 -0.0015 91.85%
(One year momentum) (0.0052) (0.0018) (0.0007)

BMi;t+1 0.0475 -0.0107 0.9863 97.10%
(Log book-to-market) (0.0050) (0.0017) (0.0011)
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Table 3: Changes in Beta - Benchmark Case

This table shows the changes in the slope of regressions of returns of stocks added
to the S&P 500 on returns of the S&P 500 index and the non-S&P 500 rest of the
market. The sample includes those stocks added to the S&P 500 between 1976 and
2008 that were not involved in mergers or related events around the stock addition.
I estimate a pooled regression with data from 36 months before to 36 months after
the addition. I interact the returns on the S&P 500 and the non S&P 500 with a
dummy Iit that takes value 1 if the stock is in the index. This way, the coe¢ cient
associated with the interaction terms reveals the change in beta after the addition.
The bivariate regression estimated is the following:

rei;t = �i + �
b
SP r

e
SP;t + �

b
nSP r

e
nSP;t +��SP Iitr

e
SP;t +��nSP Iitr

e
nSP;t + "i;t

The excess return on the S&P 500 index, reSP , is computed as the di¤erence between
the monthly return on the S&P 500 index, obtained from the CRSP Index File, and
the monthly riskfree rate, obtained from Professor Kenneth French�s website. The
return renSP are excess returns on a capitalization-weighted index of the non-S&P
500 stocks in the NYSE, AMEX, and Nasdaq, and are inferred from the following
identity:

rM;t =

�
CAPM;t�1 � CAPSP;t�1

CAPM;t�1

�
rnSP;t +

�
CAPSP;t�1
CAPM;t�1

�
rSP;t

where total capitalization of the S&P 500 (CAPSP ) is from the CRSP Index on
the S&P 500 Universe �le. Returns on the value-weighted CRSP NYSE, AMEX,
and Nasdaq index (rM) and total capitalization (CAPM) are from the CRSP Stock
Index �le. I include �rm dummies, and the standard errors are clustered by time to
account for cross-sectional autocorrelation.

rei;t

reSP;t 0.550***
(0.082)

Iitr
e
SP;t 0.425***

(0.068)
renSP;t 0.557***

(0.067)
Iitr

e
nSP;t -0.291***

(0.062)
Constant 0.007***

(0.001)
Observations 24016
R-squared 0.253
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Table 4: Changes in cash-�ow and discount rate betas

This table shows the changes in the slope of regressions of returns (and its com-
ponents) of stocks added to the S&P 500 on returns of the S&P 500 index and the
non-S&P 500 rest of the market. The sample and de�nition of variables is described
in Table 3. This table shows the results of regressions similar to the previous table,
but replacing the returns on the left hand side variable with (negative of) discount-
rate news (�Ni;DR) and cash-�ow news (Ni;CF ) of the event stocks. The equations
estimated are the following:

rei;t = �i + �
b
SP r

e
SP;t + �

b
nSP r

e
nSP;t +��SP Iitr

e
SP;t +��nSP Iitr

e
nSP;t + "i;t

�NiDR;t = �i + �
DRb
SP r

e
SP;t + �

DRb
nSP r

e
nSP;t +��

DR
SP Iitr

e
SP;t +��

DR
nSP Iitr

e
nSP;t + "i;t

NiCF;t = �i + �
CFb
SP r

e
SP;t + �

CFb
nSP r

e
nSP;t +��

CF
SP Iitr

e
SP;t +��

CF
nSP Iitr

e
nSP;t + "i;t

I include �rm dummies, and the standard errors are clustered by time to account
for cross-sectional autocorrelation.

rei;t �NiDR;t NiCF;t

reSP;t 0.550*** 0.629*** -0.107
(0.082) (0.065) (0.108)

Iitr
e
SP;t 0.425*** -0.008 0.391***

(0.068) (0.036) (0.059)
renSP;t 0.557*** 0.249*** 0.209**

(0.067) (0.056) (0.087)
Iitr

e
nSP;t -0.291*** 0.049* -0.286***

(0.062) (0.029) (0.057)
Constant 0.007*** -0.001 0.001

(0.001) (0.001) (0.002)
Observations 24016 24016 24016
R-squared 0.253 0.607 0.024
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Table 5: Direct measures of cash �ows

This table shows the changes in the slope of regressions of return on equity of stocks
added to the S&P 500 on return on equity of the S&P 500 index and the return on
equity of non-S&P 500 rest of the market. The sample includes those stocks added
to the S&P 500 between 1976 and 2008 that were not involved in mergers or related
events around the stock addition. I interact the returns on the S&P 500 and the
non S&P 500 with a dummy Iit that takes value 1 if the stock is in the index. This
way, the coe¢ cient associated with the interaction terms reveals the change in beta
after the addition. The equation I estimate is:

roei;t = �i + �
b
SP roeSP;t + �

b
nSP roenSP;t +��SP IitroeSP;t +��nSP IitroenSP;t + "i;t

where roeit is the log of return on equity, de�ned as roeit = log(1 + NIt=BEt�1)
where NI is net income and BE book equity, in t and t� 1 respectively. To avoid
extreme observations, ROEit is winsorized between �1 and 3 (on a given quarter,
the return on equity cannot be lower than �100% or higher than 300%). roeSP;t and
roenSP;t are calculated as the log of 1 plus the sum of NIt over the sum of BEt�1,
for all December �scal year end stocks in each group of S&P 500 and non S&P 500
stocks. As in the previous analyses, I include �rm dummies, and the standard errors
are clustered by time to account for cross-sectional autocorrelation.

roei;t

roeSP;t 0.227***
(0.080)

IitroeSP;t 0.261**
(0.122)

roenSP;t 0.716***
(0.106)

IitroenSP;t -0.505***
(0.150)

Constant 0.011***
(0.003)

R-squared 0.170
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Table 10: Second Order Firm-level VAR

This table shows the pooled-WLS parameter estimates for a second-order monthly
�rm-level VAR model. The model state vector includes the log stock return (r),
stock momentum (MOM), and the log book-to-market (BM). I de�ne MOM
as the cumulative stock return over the last year, but excluding the most recent
month. All three variables are market-adjusted: r is adjusted by subtracting rM
whileMOM and BM are adjusted by removing the respective month-speci�c cross-
sectional means. Rows corresponds to dependent variables and columns to inde-
pendent (lagged dependent) variables. The �rst three columns report coe¢ cients
on the three explanatory variables and the fourth column reports the corresponding
adjusted R2. The weights used in the WLS estimation are proportional to the in-
verse of the number of stocks in the corresponding cross section. Standard errors (in
parentheses) take into account clustering in each cross section. The sample period
for the dependent variables is January 1954 - December 2008, providing 660 monthly
cross-sections and 1,658,049 �rm-months.

Second order �rm-level VAR for market-adjusted returns

Variable ri;t MOMi;t BMi;t ri;t�1 MOMi;t�1 BMi;t�1 R2

ri;t+1 -0.0336 0.0189 0.0210 -0.0109 0.0028 -0.0162 0.0066
(Log return) (0.0085) (0.0054) (0.0036) (0.0082) (0.0052) (0.0035)

MOMi;t+1 0.9584 0.8365 -0.0025 0.1551 0.0593 0.0018 0.9197
(1Y Momentum) (0.0070) (0.0065) (0.0032) (0.0074) (0.0057) (0.0033)

BMi;t+1 0.0270 -0.0261 0.9631 0.0211 0.0151 0.0235 0.9709
(Log BM) (0.0053) (0.0036) (0.0041) (0.0054) (0.0035) (0.0038)
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Table 12: Alternative VAR: di¤erent speci�cations

This table shows the pooled-WLS parameter estimates for the �rst equation of a
�rst-order monthly �rm-level VAR model. The state variables include a constant,
a set of �rm-level variables, and two sets of aggregate variables. The �rm level
variables are: the excess log stock return (rei;t), stock momentum (MOM e

i;t), the
log book-to-market ratio (BMi;t), and the log pro�tability in excess of the risk free
rate. The �rst set of aggregate variables is formed by the cross-sectional median
of each of the �rm-level variables. The second set of aggregate variables consists
of the log excess market return (reM), the term yield spread (TY ), the log price-
earnings ratio (PE), and the small-stock value spread (V S). Standard errors are
in parentheses. The weights used in the WLS estimation are proportional to the
inverse of the number of stocks in the corresponding cross section. Standard errors
(in parentheses) take into account clustering in each cross section. The sample
period for the dependent variables is January 1954 - December 2008, providing 660
monthly cross-sections and 1,658,049 �rm-months.

Predicting �rm-level excess returns, dependent variable: rei;t+1

(1) (2) (3) (4)

Constant 0.0000 0.0000 0.0000 0.0000
(0.0000) (0.0000) (0.0000) (0.0000)

rei;t -0.0526*** -0.0478*** -0.0524*** -0.0477***
(0.0060) (0.0075) (0.0060) (0.0076)

MOMe
i;t 0.0170*** 0.0146*** 0.0171*** 0.0151***

(0.0023) (0.0046) (0.0022) (0.0045)
BMi;t 0.0050*** 0.0069*** 0.0050*** 0.0073***

(0.0007) (0.0014) (0.0007) (0.0015)
ROEei;t 0.0135*** 0.0184*** 0.0141*** 0.0206***

(0.0022) (0.0025) (0.0021) (0.0035)

median rei;t 0.2950*** 0.0928
(0.0488) (0.1041)

median MOMe
i;t -0.0072 -0.0162

(0.0149) (0.0158)
median BMi;t 0.0240*** 0.0147

(0.0099) (0.0142)
median ROEei;t 0.1534*** 0.2742**

(0.0522) (0.1362)

reM;t 0.2698*** 0.1926* 0.2753***
(0.0490) (0.1037) (0.0479)

TYt 0.0059* 0.0050* 0.0068**
(0.0030) (0.0031) (0.0031)

PEt -0.0103* -0.0116
(0.0059) (0.0102)

V St 0.0224* 0.0146
(0.0119) (0.0153)

�R2 0.0203 0.0192 0.0226 0.0182
Observations 1,658,049 1,658,049 1,658,049 1,658,049
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Figure 1: This �gure plots the evolutions of betas around S&P 500 inclusions. In
the left Panel, I plot the evolution of the overall beta and in the right Panel the two
di¤erent components of beta are displayed.
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Figure 2: This �gure shows rolling betas (total, discount rate, and cash-�ow betas),
for event stocks (top panel), and matched stocks (bottom panel).
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