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Abstract

A fundamental issue faced by experience providers – ranging from retailing to cultural

institutions –is to display a collection of items for physical or digital interactions. The ar-

rangement of the exhibits in different locations, which we call the layout, affects the visitors’

choices over time and space, thereby driving their engagement with the offered experience.

This paper develops a data-driven analytics framework to inform such operational decisions,

taking into account visitors’ preferences. First, we propose a dynamic choice model, called

Pathway MNL, that represents visitor activity as a sequence of conditional logit experiments

influenced by the layout. We estimate this model on large-scale data logs of multimedia

guide usage at the Van Gogh Museum (Netherlands). Using parametric specifications of the

utility function, we uncover significant relationships between visitors’ choices and layout dis-

tances, artwork characteristics, and other contextual dimensions. Visitors value proximity

and variety when locally constructing their path into the museum, but their choices are also

influenced by the level of congestion and the number of artworks already seen. Our model

predicts the next visitor action with an out-of-sample accuracy of 63%. Natural experiments

on the layout provide further empirical validations. Second, we formulate the layout opti-

mization problem, where the goal is to assign artworks to different locations to maximize

the expected length of visitors’ paths. We establish a strong inapproximability result for

this new optimization setting. We identify realistic interventions that can significantly lift

visitors’ engagement by improving the attractiveness and retention exercised by the layout.
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1 Introduction

Customer experiences take place in physical and virtual spaces that respond to functional needs

and offer sensorial, emotional, or intellectual interactions. Individuals navigate these spaces and

receive stimuli by engaging with the offerings, which in turn generate utility or disutility, i.e.,

satisfaction or costs in the form of effort, attention or discomfort. These experiences are central

to many economically and culturally fundamental sectors that reach billions of individuals every

year, such as retailing, e.g., stores are an essential component to engage with shoppers in an

omnichannel world (Gallino and Moreno 2019), entertainment, e.g., theme parks are engineered

to bring the thrill-seekers to a “Magic Kingdom” (West 2011), and cultural institutions, e.g.,

museums seek to leave a lasting memory and an educational footprint on their visitors. In recent

years, such physical interactions are often augmented with digital experiences. For example, in

retailing, the digital trace of customer trajectories across stores enables targeted promotions

based on physical movement (Ghose et al. 2019). Cultural institutions increasingly rely on

multimedia content, ranging from audio tracks to augmented reality applications, to construct

dynamic and interactive narratives for their art collections (Giannini and Bowen 2019). In other

words, experiences are increasingly offered in a hybrid layout, combining the physical space with

a digital offering.

The design of the interface between the audience and the offered experiences is a complex

task. One must consider that the physical architecture has strong effects on individual behaviors,

and more specifically on how agents choose their idiosyncratic paths over time and space. In

this sense, experience designers should think like architects that design the space to generate

the best possible experience for their users. Even if in some contexts they can fully engineer

the experience (see Das Gupta et al. 2016 for instance), they should generally avoid imposing

inconvenient paths: most of the time, these are replaced by desire paths, which provide shortcuts

from the planned paths designed by the architect. Cases in point are Ikea stores that are

seemingly built in maze-like structures with the intention of making the customers go through

the entire store assortment. However, shortcuts, which often remain hidden from untrained eyes,

are also integrated into these layouts to allow the shoppers in a hurry to skip some parts of the

showroom. It is thus not realistic to strictly impose a given trajectory, yet it is worthwhile to

understand the connection between the structure of the layout and the realized paths so that the

layout can be engineered to improve the experience outcomes. The layout of a digital platform

similarly influences what content the users consider and choose to engage with. For example,

numerous studies based on clickstream data have established the importance of display positions
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Figure 1: Visitor behavior at the Louvre. Source: The authors.

in e-commerce settings (Montgomery et al. 2004, Ursu 2018).

In the cultural sector, the visitor experience in a museum is a rich case study for layout

design. The encounter with an artwork is influenced by the notoriety of the artist who cre-

ated it, its subject matter, its significance in art history, etc. Beyond the aesthetic experience,

visitor engagement is shaped by digital and physical layouts. Museums increasingly deploy mul-

timedia guide apps to provide more context about their collection and to recommend certain

exhibits (Lanir et al. 2013). Moreover, the placement of the artworks in the rooms and the

hanging arrangement influence the exploration of the museum collection. For example, many

studies have shown that accessible artworks, located near entrances and exits, attract substan-

tially more traffic (Nielsen 1946); visitors spend more time in front of the first few exhibits they

view (Melton 1972, Serrell and Aquarium 1977). Displaying two artworks nearby encourages

visitors to view them successively, which facilitates drawing parallels or contrasts between the

artworks. To illustrate the dramatic impact layout can have on congestion and visitor attention,

Figure 1 shows the Salle des États at the Louvre in Paris: on one side of the room, there is a

long queue to view Leonardo da Vinci’s Mona Lisa, while on its opposite side, Veronese’s The

Wedding Feast at Cana, a massive 6.8 m × 10 m painting that inspired Jacques-Louis David,

Eugène Delacroix, and Vincent van Gogh (Greenberger 2021), hardly gets any attention. While

the layout has a holistic impact on the visitor journey, most cultural institutions currently fo-

cus on curatorial and pedagogical objectives. In museums, artworks are generally displayed by

theme, chronology, art movement, etc., to facilitate the contextualisation of the collection during

the visitor journey. Nevertheless, visitors’ paths often deviate from the narrative constructed

by the museum: “Despite great efforts on the part of design teams, it is well documented that

many visitors do not view the exhibits in the intended order” (Falk 2016).

The unprecedented availability of data is transforming how the above-mentioned experience

providers operate. Retailers, entertainment providers, and cultural institutions now collect data

using various technologies, including RFID, WiFi, and mobile devices. This data allows us to

track customers in different steps of their journey (Hui et al. 2009b). Yet, there has been little
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progress in (1) modeling the relationship between the layout and the visitor pathways, and (2)

helping managers design better layouts to serve the curators’ experiential objectives. Can such

data be leveraged to construct quantitative models for sequential experiences? What layout

factors affect visitor pathways? How should a collection of items be assigned to a network of

locations, which differ in terms of access and prominence, to maximize visitor engagement?

In this paper, we propose a data-driven framework to answer these questions and support the

design of layouts. Our methodological approach is inspired by choice-based revenue management.

The trajectory of a visitor is modelled as a pathway of sequential choices. This approach leads

to a simple form of dynamic discrete choice model. Consequently, the arrangement of items is

formulated as a display optimization problem across a physical network. Through a collaboration

with a major museum, we gain insights into the structure of visitor pathways and simulate

optimized layout interventions. Our contributions are further detailed below.

Discrete choice modeling for pathways. Our starting point is to view the visitors’ move-

ment as a sequential utility-based choice process. We assume that the visitor path is constructed

by comparing the underlying utilities of the different options offered to the visitors in each tran-

sition (e.g., moving to the next item, skipping, changing floors). Under this assumption, the

estimation of the resulting choice model from observed paths reveals the structure of the utility

function, which depends on item characteristics and location specifics, maximized by the visi-

tors. For this purpose, we develop a Markov chain-based model, called Pathway MNL, where

each transition between artworks is captured by a Multinomial Logit (MNL) choice model. In

the context of museums, we provide a discussion on the hypothesized effects of artwork, layout,

and contextual factors from behavioral theories (Stokols 1976, Lu et al. 2013).

Empirical validations and insights. We collaborate with the Van Gogh Museum in Am-

sterdam, which is an emblematic cultural institution and one of the most visited museums in

the Netherlands. This museum hosts the most comprehensive collection of paintings by Vin-

cent van Gogh (1853-1890), counting over 4,600 artworks and relics. We have gained access to

large-scale datasets containing detailed logs of the multimedia tour (MMT) guide usage by 1.5

million visitors for the years 2019-2021. In complement, we constitute a record of the evolution

of the physical layout during this period and extract publicly available information about each

artwork in the museum collection. By combining these data sources, we fit an econometric spec-

ification of the Pathway MNL model and study the relationships between various factors and

visitor pathways. As one might expect, the physical distances between two artworks, including

walking distances and changes in rooms and floors, strongly reduce the propensity for visitors
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to transition from one to another. Similarly, we find that highlighted recommendations and

display positions on the multimedia guide significantly affect the visitors’ choices. Additionally,

we uncover a time pressure effect: as the number of artworks already seen by visitors increases,

they are more likely to transition towards the masterpieces of the museum collection. Finally,

we find that as the congestion within the museum increases, visitors are more likely to direct

themselves towards additional artworks, leading to an increase in the total length of their visit.

This suggests that congestion begets congestion, as visitors might not only spend a long time

viewing the artworks due to the possible queue but also see more artworks in a congested envi-

ronment. These findings are followed by a series of out-of-sample prediction comparisons. By

leveraging natural experiments during which the layout was modified, we conduct a bias analysis

of our model, where we evaluate its ability to predict the effect of new layout changes.

Layout optimization. Using the fitted Pathway MNL model, we simulate counterfactual

interventions whereby we modify the assignment of artworks to layout locations. To construct

optimized museum layouts, we formulate the artwork-to-location assignment problem as a math-

ematical program, dubbed the layout optimization problem. The objective is to maximize visitor

engagement, measured through the expected number of artworks clicked on by visitors along

their path. While formally showing that the resulting optimization setting is APX-hard, we

implement and compare several intuitive policies and a simple heuristic. We find that placing

artworks with high attractiveness (according to their ‘clickability’, a notion similar to that in

Besbes et al. 2016 which we formalize later on) in locations far away from the exit can deliver

an engagement level better than that of the current layout. Moreover, a few local exchanges of

artwork locations can significantly enhance the overall engagement against the current baseline.

Interestingly, these layout interventions not only increase the level of interaction with the most

accessible artworks, but also generate positive spillovers on nearby options.

The rest of the paper is arranged as follows. We discuss the related literature and our positioning

within it in Section 2. This is followed by Section 3 where we explain the context and data.

Section 4 has our theoretical model and hypotheses while Section 5 elaborates on the estimation

procedure, results, and validation tests. Finally, we provide counterfactuals for enhanced layouts

in Section 6 and conclude in Section 7.
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2 Related Literature

Pathway data and operations management. Our modeling approach is directly con-

nected to the study of customers’ behavior in sequential experiences (Baucells and Sarin 2010,

Das Gupta et al. 2016, Bernstein and Martínez-de Albéniz 2017) as well as the incorporation

of location effects into operational decision-making (Ahmadi 1997, Rajaram and Ahmadi 2003,

Abeliuk et al. 2016, Gallego et al. 2020, Aouad and Segev 2020, Guo et al. 2021). Research

on path analysis, with works such as the paper by Thiesse and Fleisch (2008), has relied on

the usage of RFID (radio frequency identification) technology such as the PathTracker® system

described by Sorensen (2003), with applications to in-store retailing (Hui et al. 2009a,b, 2013).

In the context of web browsing and e-commerce, clickstream data is the counterpart source of

path information (Montgomery et al. 2004, Besbes et al. 2016). In contrast, the MMT guides

offer a hybrid form of data, which tracks movement in a physical layout, but uses clicks and

other session-level events to determine the progress of the visitor in the museum. We aim to

leverage the granularity offered by our data to understand the visitor preferences and artwork

engagement patterns within the museum. Nevertheless, our modeling approach is likely to apply

to other sources of information such as RFID and WiFi tracking.

Visitor studies. There has been considerable research in the social sciences on visitor studies

to better understand visitor behavior and to inform new curatorial practices. The “Exhibit,

Visitor, and Setting” perspectives are proposed by Falk et al. (1985) to inform the design of mu-

seum layouts. In particular, the interplay between the physical arrangement, i.e., how artworks

are displayed across the exhibition space, and visitors’ preferences shape their journey in the

museum space (Bourdeau and Chebat 2001). Moreover, visitors can be segmented into different

categories based on the way they interact with the artworks, see, e.g., Véron and Levasseur

(1989) or Brown and Ratzkin (2011) for the performing arts. Despite numerous behavioral and

empirical findings, the literature so far provides very few comprehensive quantitative models to

predict and optimize visitor pathways (Güler 2009, Tröndle et al. 2014).

The application of operations research methods to cultural institutions is a largely uncharted

area of research. As a rare exception, Martínez-de Albéniz and Valdivia (2019) demonstrates the

value of adopting an optimization model to schedule and synchronize the yearly programme of

exhibitions. By contrast, our work focuses on the layout and display allocation of the artworks

across the museum to help curators and designers improve the visitor experience. There is also a

recent line of work that leverages computational methods in traffic management and pedestrian

dynamics to predict visitor traffic in museums (Pluchino et al. 2013, Centorrino et al. 2021).
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The approach developed in this paper differs by providing a utility-based representation of the

visitor choice-making process.

3 Context and Data

3.1 Museum layout

The permanent collection of the Van Gogh Museum, which is the focus of our study, is housed

in a building with four levels including the ground floor. The visitors enter the museum through

the main door that leads to the ground floor while the subsequent floors can be accessed both

by staircases and lifts. Each floor is divided into smaller rooms by the means of walls and

partitions which help distinguish different themes. Specifically, the artworks are arranged ac-

cording to 14 such themes (for example, “Face to Face with Van Gogh”, “Painter of Peasant Life”,

“New Perspectives”, etc.) which are distributed across the four levels. Each theme comprises a

collection of artworks related to a specific subject matter or period of Van Gogh’s life, which

altogether convey a dynamic narrative about the evolution of Van Gogh’s work. Figure 2a shows

the physical layout across the floors, while Figure 2b shows the themes displayed on floor 1.

(a) Physical layout across floors. (b) Layout on Floor 1.

Figure 2: Spatial configuration of the Van Gogh Museum.

We also constitute a record of layout changes that were made during the year 2019 such

as temporary exhibitions. As explained subsequently, a fraction of these layout changes result

from construction and building maintenance works: as such, they correspond to “exogenous”

interventions on the layout. The resulting relocation of artworks is used as natural experiments

to validate our predictive model for visitor activity.
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3.2 Multimedia tour guide data and pathways

Multimedia tour guide. Our analysis of visitors’ paths is based on large-scale datasets

describing their activity within the Van Gogh Museum. Specifically, the data was collected via

the session logs of MMT guides used by visitors between 2019 and 2021; a few observation records

are shown in Table 7, Appendix A. It is worth noting that MMT guides or similar smartphone

applications are offered by most major museums around the world. The device has a touchscreen

user interface that lets the visitor choose a pre-recorded audio track or visual media content.

Each track provides context about a specific artwork or a group of related artworks, which

helps better understand its significance in Van Gogh’s artistic legacy (Van Gogh Museum 2020).

The MMT tracks are available for 45 artworks in 11 languages with a duration for the English

language selection ranging from 50 seconds (for “Peasant Heads”) to 112 seconds (for “Tree

Roots”). These MMT guides focus on a subset of the artworks on display in the museum at any

given time, which is selected by the curators to shed light on Van Gogh’s most decisive creative

periods. Specifically, the MMT guides display two different tour types, comprising permanent

exhibits of the museum collection: (a) the Highlights tour covers the masterpieces and most

prominent artworks in the collection, and (b) the Leisure tour covers a wider range of artworks

that includes the aforementioned highlights. Figure 3 shows the different ways in which these

options are made available to the visitor - the highlights are displayed in a list format while the

leisure tour options are presented in a circular phone-dial format with the artwork identification

numbers assigned randomly by the museum.

(a) MMT guide equipment. (b) A list for the Highlights
Tour.

(c) A wheel for the Leisure
Tour.

Figure 3: MMT guide interface.

We leverage the structured data logs generated by visitor sessions on the MMT guides to

construct a large-scale panel dataset describing visitors’ movement and interactions with the art-
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works. In the period considered for our analyses, 25% (25th percentile) to 31% (75th percentile)

of all visitors choose to buy the MMT guide service, for a nominal cost in addition to the entry

ticket. Past surveys carried out by the museum indicate that visitors with children and those of

non-Dutch origin are more likely to buy an MMT guide (2-t t-test p-value < 0.01 for both), but

there is no difference in the age groups across the two populations (2-t t-test p-value > 0.60).

In the remainder of our analysis, our main dataset records 715,000 distinct visits in 2019.

Clickstream data. We use the clicks on the multimedia guide to determine the progress of the

visitor in the museum. This approach has some advantages and disadvantages compared with

other location-based technologies such as RFID. On the one hand, the stream of clicks does not

reveal the precise location, but it indicates the content viewed by the visitors at different points in

time. On the other hand, despite RFID’s ability to track exact physical movement in a physical

space (Larson et al. 2005, Thiesse and Fleisch 2008), it cannot easily capture the salience of

engagement between the customer and the products on offer. For example, in a physical store,

the geographical positioning of a customer is “assumed” to be an indicator of her interaction

with products in her vicinity - the only foolproof evidence of which being the buying activity

recorded at the end of the visit (Hui et al. 2009a). In contrast, clickstream data provide a more

accurate signal of user engagement with regard to the surrounding environment. For example,

in e-commerce, a customer can only interact with one webpage at each point in time (De et al.

2010, Xu et al. 2014). Hence, in our study, we combine the digital tracking mechanism enabled

by the MMT guide with contemporaneous geolocation data for the collection of artworks, to

measure visitor engagement with the exhibits displayed by the museum. Finally, we also obtain

information on the visitor’s origin through the language chosen in the MMT guide. Table 8 in

Appendix A shows the breakdown of sessions by language: about a third of visitors choose the

English language, while 8% choose Dutch, the local language.

Exploratory analysis. Our modeling approach views visitor activity as a sequence of choices

among a finite set of alternatives. That is, each visitor is a decision-maker, who, starting from

a given position within the spatial configuration of the museum, chooses in each step the next

artwork to transition to, or whether to end the visit altogether. Appendix B illustrates one

such sequence undertaken by a randomly selected visitor on the first floor of the museum. By

geolocating the artworks in the museum, we are able to estimate the distance traversed for each

transition. In our data, we see that a visitor views an artwork only once during her visit, which

reflects that there is no value in repetition (in contrast with other content types such as music

which users can listen to repeatedly). We use this observation to support one of our model
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assumptions, namely that an artwork already seen in the past is excluded from the choice set

available for future transitions. Barring this lack of repetition, visitors freely move in the museum

space: they begin their visit conventionally on the ground floor, and progressively move upwards

(the more common path) or take the lift to the third floor and move downwards; they can come

back to the floors that they have already visited and always have the option to terminate their

visit and leave the museum.

An exploratory analysis reveals that, on average, the museum features 28 artworks on the

MMT guide available for viewing, out of which visitors view 15.57 artworks. Figure 4, which

depicts the most frequent paths followed by visitors, shows that in June 2019 (before the COVID-

19 pandemic with free-flow traffic), the general trend of visitor movement was much different

than that in June 2020 (with COVID-19 social distancing rules and one-way traffic).

Figure 4: Exploratory transition graphs for visitor movement. Each node represents one art-
work and the thickness of the directional arrow between two artworks represents the number of
transitions between them. Arrows between only those nodes that saw more than 200 transitions
in 2019 and 30 transitions in 2020 are displayed.

3.3 Artistic attributes

WikiArt.org. In addition to internal data provided by the partner museum, we utilize artwork-

level data from WikiArt.org. Much like Wikipedia.org, this online repository of information is

publicly regulated and it provides a “visual encyclopedia”, which is specialized in art-related

topics. Detailed information about artworks such as their origin, commission date, style (e.g.

for the artwork “Potato Eaters”, the style identified is Realism), genre (e.g. Genre-painting), and

the subject matter represented through tags (e.g. Countryside, Mealtimes) is made available

in a standardized format, which can be cross-referenced. We use these external measures to
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describe several characteristics of the artworks in the museum collection. Table 9 in Appendix

A describes a sample observation from this dataset.

Deep Residual Learning. As an alternative method to track the artistic attributes of art-

works in our analyses, we resort to the recent advancements in computer vision models based on

Convolutional Neural Networks (CNN) in applications involving image/face recognition, object

detection, image classification, etc. Specifically, we use a Residual Neural Network (ResNet) de-

veloped by He et al. (2016), which was pre-trained on a corpus of over 1.28 million images from

ImageNet.org. As a result, it is able to differentiate between a wide range of images irrespective

of noise such as lighting, positioning, and contrast. ResNet inspects the pixel-level details of

every artwork and provides a 1000-dimensional vectorized representation of each one, providing

an objective and scalable encoding of the image features, free from the subjective biases which

inevitably arise in expert consultations (Banerjee et al. 2022). See Appendix C for more details.

4 Model for Sequential Transitions

4.1 Probabilistic specification

We start by formulating a general random path choice model, which we call the Pathway MNL

model (P-MNL). In particular, we make explicit how visitors’ sequential choices are influenced

by the layout. While our model description is tailored to the museum context and terminology,

it is straightforward to adapt it to other settings; e.g., in retailing, each “visitor” is a “customer”,

“artworks” correspond to “products”, and “exhibition spaces” correspond to “display locations”.

Layout decisions. We represent the artworks as a collection N = {1, . . . , n} of n distinct

items. The exhibition space of the museum is captured through n corresponding locations

L = {�1, . . . , �n}. In this context, the layout decision corresponds to an assignment π that maps

each artwork i ∈ N to a different location π(i) ∈ L, i.e., π : N → L is bijective. For convenience

of notation, we denote by 0 the outside option reached at the end of each visit, meaning that

0 captures the visitor’s choice of leaving the museum. By convention, the outside option is

assigned to a dummy location, denoted by �0; for all practical purposes, �0 can be viewed as the

museum entry/exit.

Random paths. For a fixed artwork-to-location assignment π, we proceed to describe the

random path σv,π induced by π for any given visit context v. Here, the index v represents all

state variables pertaining to the visitor and the museum that may affect her path, i.e., this
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may include visitors’ characteristics (e.g., language), museum-level attributes (e.g., congestion),

and any dynamic state variable representing the visitor’s path so far (e.g., path length so far).

The random path σv,π = (σv,π
1 , . . . , σv,π

�v,π) is an ordered subset of N terminating with item

σv,π
�v,π = 0, which describes the sequence of artworks chosen by the visitor until reaching the

outside option. Here, we use �v,π to denote the total number of items and σv,π
k is the random

variable corresponding to the k-th artwork on her path for every k = 1, . . . , �v,π. For simplicity of

notation, we will omit the reference to the superscripts v, π whenever the context and assignment

are fixed.

Pathway MNL model. As common in the choice modeling literature, we impose a proba-

bilistic structure on the distribution of the random paths σv,π. We assume that σv,π is a Markov

chain formed by sequential random choices, each of which follows an independent conditional

logit experiment. We refer to this probabilistic structure as the Pathway MNL model. Specif-

ically, for each transition from an artwork i located in �i to an artwork j located in �j , our

utility function is additive with respect to two factors: (i) a location-dependent nominal utility

ul(�i, �j |v) associated with the artworks’ locations (�i, �j), and (ii) an artwork-dependent nomi-

nal utility ua(i, j|v) associated with the pair of artworks (i, j). Both utility functions depend on

the context v, which includes museum-level and visitor-level state variables. Consequently, we

generate σv,π according to the following stochastic process:

• Initial artwork (k = 1): Each i ∈ N is chosen as the initial artwork with probability:

Pr [σv,π
1 = i] =

eul(�0,π(i)|v)+ua(0,i|v)∑
j∈N eul(�0,π(j)|v)+ua(0,j|v) .

• Artwork transitions (k ≥ 2): Having sampled the k − 1 first artworks (σv,π
1 , . . . , σv,π

k−1) =

(s1, . . . , sk−1), let Sk = N \{s1, . . . , sk−1} denote the subset of remaining items, including

the outside option. Each artwork i ∈ Sk ∪ 0 is chosen next with probability:

Pr
[
σv,π
k = i

∣∣σv,π
1 = s1, . . . , σ

v,π
k−1 = sk−1

]
=

eul(π(sk−1),π(i)|v)+ua(sk−1,i|v)∑
j∈Sk

eul(π(sk−1),π(j)|v)+ua(sk−1,j|v) .

Parametric form and identifiability. The aforementioned stochastic process can be viewed

as a dynamic choice model with two structural assumptions: (1) Nested choice sets: Visitors do

not see the same artwork more than once; as mentioned earlier, this assumption is in line with our

data as well as other related studies (Bourdeau and Chebat 2001). Thus, each state is described

by the system state v, the current artwork, and the subset of remaining artworks. Note that it

is possible to allow multiple repetitions of the same option, by including a disutility term that
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increases in the number of times the option has been consumed already. (2) Myopic MNL choices:

Visitors myopically maximize their random utility in every transition. In each step, moving from

i (current item) to j (potential target) yields a random utility ul(π(i), π(j)|v) + ua(i, j|v) + εi,j ,

where εi,j is an independently sampled standard Gumbel random variable.

Here, the first term ul(π(i), π(j)|v) depends on the respective locations assigned to the

artworks i and j, but it can also be influenced by the context v. This term can be understood

as the disutility created by the layout distances from π(i) to π(j). The second term ua(i, j|v)
depends on the artworks i, j, again possibly influenced by v. It should be understood as the

contributions of artworks i and j to the utility. For example, this function may include artwork

fixed effects for i and j: one might expect that the propensity of transitioning towards j depends

on how attractive j is and whether the experience of i keeps the viewer engaged.

For purposes of normalization, we impose without loss of generality that ua(i, 0|v) = ul(�, 0|v) =
0 for all i ∈ N and � ∈ L. Naturally, further parametric assumptions are necessary in order

to identify and estimate the utility functions ul(·) and ua(·) from realistic data sources. For

example, it is not possible to simultaneously identify artwork and location fixed effects, respec-

tively captured in ul(·) and ua(·). Indeed, one challenge inherent to museum data is that the

layout rarely varies: most artworks remain at fixed locations. In this context, it is only pos-

sible to disentangle the location effects from the artwork effects insofar as we adopt a suitable

parametrization of the nominal utilities and exploit the variation created by the visitors’ sequen-

tial movement. In this spirit, we formulate a number of hypotheses regarding visitors’ sequential

choice, which motivate our econometric specification of ul(·) and ua(·) in Section 4.3.

4.2 Hypotheses development

Our goal is to express the nominal utilities ul(�i, �j |v) and ua(i, j|v) as a function of underlying

features describing the pairs of layout locations (�i, �j) ∈ L and artworks (i, j) ∈ N , forming

each potential transition in the P-MNL model, along with the contextual factors v. In what

follows, we present well-established behavioral constructs, which help us postulate the effects of

various factors on the transition utilities.

Layout distance effects. The accessibility of the choice options available in each transition

is an important factor of the layout-dependent utility. While the movement across rooms and

floors is unconstrained, we do not expect visitors’ trajectories to be arbitrary. An artwork in

close proximity is more likely to be considered, whereas one that is farther away from the visitors’

current position incurs a higher cost of effort (Pancras et al. 2012, Bell et al. 2018, Kabra et al.

2020). Moreover, skipping intermediary artworks to view a distant one may create a feeling
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of loss for visitors. For both tourists and locals who have dedicated time to visit a museum,

this skipping behavior is associated with an incomplete experience, leading to a subpar utility

(Weingarten et al. 2019).

While the distance metric in the physical space plays an influential role in the transition

utilities of the visitors, it is also highly pertinent in the digital space (Ursu 2018). In our

context, a visitor not only progresses through the spatial configuration of the museum, but also

browses through the user interface of the MMT guide. Similar to physical distances, we expect

the farther away the potential option is made available on the MMT guide, the lower the utility

associated with choosing it (Ghose et al. 2014). We expect that this effect holds true both when

a visitor has to switch between tour types, in which case an additional search effort is required,

and when she navigates to different artworks within the same tour type. Consequently, we

formulate the following hypothesis regarding the effects of distances on the utility term ul(·).

Hypothesis 1. The increase in distance in the physical or digital layout between the current

location and that of the potential target artwork decreases the utility of the corresponding transi-

tion.

Artistic distance effects. Several dimensions of the artworks such as their subject matter,

period in art history, and materiality (e.g., size of the canvas), together build their distinct

identities (Bourdieu 1986). Curators invest significant resources in designing layouts that con-

textualize the artworks and facilitate the transitions between the exhibits viewed by visitors

(Falk et al. 1985). These design choices are consistent with the psychological construct of habit

formation, which explains that viewers experience the aesthetic pleasure from cultural objects

that engender a higher processing fluency (Reber et al. 2004). This theory implies that visitors

prefer to engage with similar artworks consecutively (Wathieu 1997, Baucells and Sarin 2010).

Hence, in addition to the distances associated with the layout, our artwork-dependent utility

function ua(·) needs to incorporate the notion of artistic distances between the current artwork

and the potential target, which might influence the visitors’ choices. On the other hand, the

experience of contrasts might also be desirable to visitors who prefer to engage with a new

type of artwork at every turn (Ratner et al. 1999, Baucells and Sarin 2013). In this context,

a variety-seeking behavior implies that higher utilities are associated with transitions between

more dissimilar artworks. This leads us to consider the two following opposing hypotheses.

Hypothesis 2(a). The increase in artistic distance between the current artwork and the poten-

tial target artwork decreases the utility of the corresponding transition.

Hypothesis 2(b). The increase in artistic distance between the current artwork and the poten-

tial target artwork increases the utility of the corresponding transition.
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Time pressure effect. Visitors tend to plan their visits to cultural institutions by setting a

certain time budget (Thaler 1999). Inside a museum, as visitors view more artworks, they may

experience a form of time pressure due to the depletion of their allotted time budget, resulting in

disutility. This well-documented phenomenon is also known as museum fatigue (Falk et al. 1985,

King and O’boyle 2011). Such pressure or fatigue often leads them to opt for ending their visit

sooner (Suri and Monroe 2003). Under such conditions, Hui et al. (2009a) show that visitors

adapt by changing their transition strategies. Specifically, as more time has been spent in the

museum, we expect visitors to be more purposeful and less exploratory in their path (Yoshimura

et al. 2014). At this juncture, the visitor assesses the choice set of artworks that are still left

to be seen and then seeks to view the exhibits that maximize her remaining utility before she

exhausts her budget. Hence, as time pressure builds up, we expect that visitors are more likely

to hastily view prominent artworks, those considered masterpieces, and terminate their visit.

Hypothesis 3. As the cumulative time spent in the museum increases, the utility of transitioning

to an artwork decreases, relative to that of the outside option.

Hypothesis 4. As the cumulative time spent in the museum increases, the utility of transitioning

to an artwork decreases less for prominent artworks.

Congestion effect. While moving within the museum, visitors encounter other visitors which

impacts their experience. On the one hand, Swann Jr and Pelham (2002), Veeraraghavan and

Debo (2009) and Debo et al. (2012) show that people strategically select into social environ-

ments that provide self-confirmatory feedback. This implies that congestion around a particular

artwork makes the visitor gain higher utility by transitioning to the very same exhibit, with the

attention it garners acting as a proxy for its quality (Müller-Trede et al. 2018). On the other

hand, what we expect to see in our context is the prevalence of the crowding-out effect, which

suggests that the presence of a large number of visitors around an artwork would cause the focal

visitor to have a subpar utility of viewing the exhibit (Dargnies 2012, Baek and Shore 2020).

The behavioral constraint theory suggests that under such circumstances, the focal visitor may

perceive the crowding to be intrusive and restrictive, giving rise to avoidance behavior (Stokols

1976, Lu et al. 2013). This demotivates the focal visitor from transitioning to the artworks with

higher congestion rates.

Crowding is often associated with an exit-incentivising effect (Milgram 1970, Dargnies 2012,

Lu et al. 2013, Batt and Terwiesch 2015). However, in our context, visitors have already paid

the museum ticket fee, and thus, they might not renege due to congestion. Specifically, if the

underlying attraction for the artwork is higher than the cost associated with covering a large

distance, the visitor can skip the most attractive artworks during congestion time and bide her
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time by viewing less crowded exhibits before returning to the masterpieces (Kostami and Ward

2009). Hence, the visitor takes detours from the conventional linear path. Under this theory,

the total number of artworks in the visitor’s path increases, meaning that she is less likely to

end the visit at any given time in her path. Accordingly, we postulate the following hypotheses.

Hypothesis 5. As the congestion in the museum increases, the utility of transitioning to an

artwork increases, relative to that of the outside option.

Hypothesis 6. As the congestion in the museum increases, the utility of transitioning to an

artwork increases less for prominent artworks.

4.3 Econometric specification

To reflect on the hypotheses formulated in Section 4.2, we express the P-MNL utilities as a

function of a rich set of independent variables, constructed by combining our data sources

(i.e., clickstream data, layout information, and art-related repository). The primary variables of

interest are the ones that affect the utilities associated with the layout distances between pairs of

locations, ul(π(i), π(j)|v), and the artwork-related effects for pairs of artworks, ua(i, j|v). Finally,

we incorporate contextual independent variables v capturing congestion and time pressure along

with several control variables as in Hui et al. (2009a).

Formally, we fix a visitor context v and consider the (k−1)th artwork i = σπ,v
k−1 in her path at

location �i = π(i). For every potential target artwork j ∈ Sk located at �j = π(j), the transition

utility Uv
ij from i to j is expressed as follows:

Uv
ij

= β1PhysicalDistancev�i�j + β2RoomChangev�i�j

+β3FloorChangev�i�j + β4IsNearestPhysicalDistancev�i�j

+β5ReturnedToF loorv�i�j + γ1TourChangev�j + γ2MMTguideDistancev�i�j

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

ul(�i, �j |v)

+δ1ArtY earDistancevij + δ2ArtSizeDistancevij

+δ3ArtTagsDistancevij + FEorigin
i + FEdestination

j

+λ1ArtSeenv + λ2ArtSeenv × IsHighlightvj

+μ1LogCongestionv + μ2LogCongestionv × IsHighlightvj

+FELanguagev + FEDayOfTheWeekv + FEHourv + νThoroughnessv + εvij .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

ua(i, j|v)

(1)

In the above specification (1), we first introduce independent variables capturing the disu-

tility terms associated with the distances between locations. Focusing on physical distances, we

construct a distance metric that follows a hierarchically separable structure:
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(a) PhysicalDistancev�i�j : Distance in meters between locations �i and �j . If they are on

different floors, the distance includes the distance to the stairs.

(b) RoomChangev�i�j : A binary variable with value 1 if �i and �j are located in different rooms

(arranged to reflect different themes and periods of Van Gogh’s life) and 0 otherwise.

(c) FloorChangev�i�j : A binary variable with value 1 if �i and �j correspond to different floors

and 0 otherwise.

This hierarchical approach separates the effects of floor changes, room changes, and absolute dis-

tances between locations, which enables a fine-grained study of the relationships between the util-

ity and the layout structure. In addition, we use the binary variable IsNearestPhysicalDistancev�i�j

taking the value 1 if the artwork j is the closest to location �i, among all options j ∈ Sk,

and 0 otherwise. To control for the fact that visitors might be less likely to return back to

a floor they have already been to, we use the binary variable ReturnedToF loorv�i�j , where

ReturnedToF loorv�i�j = 1 if and only if �j is on a different floor than �i and the floor of �j was

previously visited by the visitor.

Next, to account for the digital layout, we make use of the specifics of the differential interface

of Highlights and Leisure tours as explained in Section 3.2. For capturing frictions in the MMT

guide search process, we have TourChangev�j as a binary variable with value 1 if and only if the

visitor v is currently on the Highlights tour while the potential target j is exclusively available

on Leisure tour. In other words, this independent variable penalizes transitions that require

switching the tour type on the MMT guide. Finally, MMTguideDistancev�i�j is the distance

between the selection of artworks i and j on either of the tours, i.e., the number of items to cross

when scrolling down or turning the wheel on the MMT guide interface. If the visitor needs to

switch the tour type, the latter variable is equal to 0 in the same spirit as the above-described

hierarchical distance metric.

We now move on to the artwork-related utility terms in Equation (1). In this context,

ArtY earDistancevij provides the absolute difference in years of creation between artworks i

and j. In addition to the chronological differences, ArtSizeDistancevij captures size-related

variations: it is defined as the absolute difference in the log-transformed surface areas of artworks

i and j measured in cm2. Moreover, ArtTagsDistancevij is computed as the opposite of the

number of common artistic tags shared by artworks i and j on the publicly regulated online

repository of Wikiart.org (see Section 3.3). As an alternative to this covariate, we make use of

the artistic attributes obtained through deep learning techniques (CNN) to estimate the artistic

distance between a pair of artworks through ArtDistanceij shown in Appendix C. Lastly, we
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incorporate fixed effects for i and j, which capture their marginal utility contributions relative

to the outside option. The fixed effect of the current artwork i (origin) can be interpreted as its

‘engageability’ (Besbes et al. 2016) since it affects the likelihood that the visitor’s path does not

terminate right after i. The fixed effect of the potential target j (destination) can be thought

of as its ‘clickability’: it captures the attractiveness of j relative to other choice options in Sk.

Finally, we incorporate in Equation (1) several independent variables describing the context

v of the visit. Since the total utility of the outside option is fixed to 0, these context variables

are implicitly interacted with the binary indicator that the potential target j is an artwork,

in opposition to the outside option. This explains why the corresponding additive terms are

part of the artwork-related utility function ua(i, j|v). ArtSeenvk is the number of artworks

already seen by the visitor at the time of the transition (alternatively, we consider cumulative

duration in the robustness check in Table 14 in Appendix D.2), while LogCongestionv tracks

the total number of visitors that begin their visit to the museum together with visitor v in

log-transformed and mean-centered format. As an indicator of which artworks are perceived to

be masterpieces of the collection, we rely on the listings of the Highlights and Leisure tours from

September and October 2019 (the same period in which our model is estimated); the selection is

decided by curators, without precise knowledge of visitor behavior, so that it can be considered

exogenous in our analysis. Namely, IsHighlightj is equal to 1 if artwork j is included in the

Highlights tour, and 0 otherwise. This independent variable is interacted with ArtSeenv and

then with LogCongestionv to see how the effects of these contextual factors are moderated by

the status of an artwork as a masterpiece. Finally, we incorporate control variables accounting for

visitor heterogeneity. The Languagev fixed effects represent the language selected on the MMT

guide. The DayOfTheWeekv fixed effects control for variations across days of the week, and

Hourv controls for within-day variations. To control for idiosyncratic heterogeneity in visitor

engagement, we define Thoroughnessv as the average proportion of the MMT guide tracks that

was listened to by the visitor until that moment.

5 Estimation Results and Model Validation

In this section, we describe our estimation results and provide extensive validations of our fitted

P-MNL model, ranging from out-of-sample predictions to natural experiments.

5.1 Results

We conduct multinomial logistic regressions in accordance with the econometric specification of

the P-MNL model of Section 4.3. Specifically, we construct a dataset of visitor choices based on
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the trajectories of 25,000 randomly selected visitors during the months of September and October

2019. Note that the exact layout and arrangement of artworks were tracked by the museum and

remained stable throughout this period. We have replicated our estimation analysis on four

other time periods of 2019 and obtained similar findings. Table 1 summarizes our estimation

results for several variants of the P-MNL model (see also Table 12 in Appendix D.2).

Model X provides an extended specification of the transition utilities that includes fixed

effects for all pairs of artworks (i, j) ∈ N , in replacement of the layout and artistic factors. It

is worth noting that Model X is not practically relevant for layout design. Indeed, since its

parametric form no longer expresses the transition utilities as a function of underlying features

associated with the layout, Model X does not describe the relationships between physical dis-

tances and transition utilities, and thus, it cannot generalize to different layouts. Despite also

being computationally taxing, it serves as a benchmark to assess the predictive performance of

our main models.

We now turn our attention to models that are based on the specification in Equation (1) with

increasing sophistication. We see in the progression from Model 0 to Model 4 that the additional

factors being considered provide a better fit reflected in the Normalized Log-likelihoods (LLH). It

is worth noting that the physical and digital layout-related factors contribute the most towards

explaining the variance in the observed transitions – the LLH improves the most for Model 1

and 2 relative to Model 0 (25% and 40%, respectively). Our estimates of the model parameters

remain consistent across the different specifications, which indicates their robustness. The fixed

effects Artworki and Artworkj , corresponding to the origin (“engageability”) and destination

(“clickability”) artworks in the transition, are reported in Table 11 in Appendix D.1.

We now discuss the relationships captured by Model 3 in greater detail. In particular, we

calculate how each independent variable affects the attractiveness level eŪ
v
ij of the corresponding

choice option j, where Ūv
ij is the deterministic portion of the utility in Equation (1). In our

numerical application, the transition probabilities tend to be small. Thus, in this regime, the

percentage change in the attractiveness level is a good proxy for the change in the corresponding

choice probabilities.
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Transitionv
ij

(X) (0) (1) (2) (3) (4)

Physical Layout Factors
IsNearestPhysicalDistancev�i�j 3.397*** 0.583*** 0.603*** 0.395***

(0.006) (0.008) (0.005) (0.004)
PhysicalDistancev�i�j -0.287*** -0.282*** -0.296***

(0.002) (0.000) (0.000)
RoomChangev�i�j -2.318*** -2.400*** -2.386***

(0.030) (0.006) (0.006)
FloorChangev�i�j -6.836*** -7.028*** -6.123***

(0.035) (0.005) (0.005)
PhysicalDistancev�i�j ×RoomChangev�i�j 0.236*** 0.232*** 0.248***

(0.002) (0.000) (0.000)
PhysicalDistancev�i�j × FloorChangev�i�j 0.314*** 0.310*** 0.308***

(0.002) (0.000) (0.000)
ReturnedToF loorv�i�j -0.855*** -0.653*** -0.727***

(0.014) (0.012) (0.011)
Digital Layout Factors
TourChangev�j -3.093*** -2.993*** -2.104***

(0.018) (0.016) (0.013)
MMTguideDistancev�i�j -0.012*** -0.014*** -0.014***

(0.000) (0.000) (0.000)
Artistic Factors
ArtY earDistancevij 0.069*** -0.013***

(0.002) (0.002)
ArtSizeDistancevij 0.639*** 0.416***

(0.005) (0.005)
ArtTagsDistancevij -0.036*** -0.067***

(0.003) (0.003)
Contextual Factors
ArtSeenv -0.206***

(0.001)
ArtSeen_Q1v 6.080***

(0.125)
ArtSeen_Q2v 4.401***

(0.034)
ArtSeen_Q3v 2.903***

(0.024)
ArtSeen_Q4v 2.624***

(0.010)
ArtSeenv × IsHighlightvj 0.115***

(0.001)
LogCongestionv 0.565***

(0.014)
LogCongestion_Q1v -0.042*

(0.018)
LogCongestion_Q2v 0.051**

(0.017)
LogCongestion_Q3v 0.032

(0.017)
LogCongestion_Q4v 0.000

(0.017)
LogCongestionv × IsHighlightvj -0.240***

(0.008)
Thoroughnessv 3.096*** 3.112***

(0.011) (0.010)

Fixed Effects
Artworki ×Artworkj Yes No No No No No
Artworki No Yes Yes Yes Yes Yes
Artworkj No Yes Yes Yes Yes Yes
Languagev Yes Yes Yes Yes Yes Yes
Hourv Yes Yes Yes Yes Yes Yes
DayOfTheWeekv Yes Yes Yes Yes Yes Yes

AIC 1570.93 173.69 176.27 192.61 210.66 216.61
Normalized Log-likelihood -1.07 -2.30 -1.72 -1.38 -1.33 -1.38
Num. parameters 786 88 89 97 106 109
Num. events 392,209 392,209 392,209 392,209 392,209 392,209
Num. obs. 6,221,248 6,221,248 6,221,248 6,221,248 6,221,248 6,221,248

∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001. Standard errors in parentheses.

Table 1: Pathway MNL estimation results20



Layout distance effects. Our hierarchical representation of distances through the absolute

distance in meters, room, and floor changes is associated with significant negative coefficients.

Specifically, when the current artwork i and the potential target j are located on the same floor

and in the same room, as the distance between them increases by 1 meter, visitors are 24.6%

(e−0.282 = 0.754) less likely to transition to artwork j. However, visitors are much less sensitive

to absolute distances when there is a room or floor change (variation of 1 − e−0.282+0.232 =

−4.8% and 1 − e−0.282+0.310 = +2.8% per additional meter, respectively), but at the expense

of significant drops in transition rates of 91.0% (e−2.400 = 0.090) and 99.9% (e−7.028 = 0.001),

respectively. In other words, it is unlikely to observe transitions across rooms and floors, as

visitors often focus on their options in a short range. This implies that transitions to the next

room tend to occur once nearby options have been exhausted. Moreover, as expected, the

coefficients of the variables IsNearestPhysicalDistancevij , which tracks the nearest artwork

from every artwork i in the choice set, and ReturnedToF loorvij , which indicates that visitors

return to a floor they have already been to, are significant with positive and negative effects,

respectively. This implies that visitors are 82.7% (e0.603 = 1.827) more likely to transition to

artwork j if it is the nearest option available as also observed by Ahmadi (1997) in the case

of amusement parks, and 48.0% (e−0.653 = 0.520) less likely if it is on a different floor that

has been visited before, in line with the findings of Bourdeau and Chebat (2001). In summary,

these results are consistent with Hypothesis 1 for all dimensions of our distance metric, thereby

demonstrating the strong effects of the physical layout on visitor pathways.

Similarly, our notions of digital layout distance, in the form of search efforts on the MMT

guide interface, are also associated with negative effects on the transition probabilities. Once

visitors select the Highlights tour, they are 95.0% (e−2.993 = 0.050) less likely to transition

towards artworks exclusively displayed in the Leisure tour. In other words, being on one type of

MMT guide tour often makes those on the other selection go unnoticed. Moreover, within the

same tour type, the farther away an option is on the interface of the MMT guide, the less likely

the transition is to that artwork: the choice probability drops by 1.4% per position to scroll

down (e−0.014 = 0.986). These findings indicate that the MMT guide interface has a significant

impact on visitors’ activity. Recall that the artwork IDs are randomly assigned by the museum

and tour guide provider.

Artistic distance effects. The artistic characteristics of the pair of artworks forming each

transition also significantly contribute to explaining the transition choices, although with smaller

effects compared to the impact of the physical and digital layouts. On the one hand, the tran-

sition probability increases with chronological and size differences between the current artwork
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and the potential target. This relationship is consistent with a variety-seeking behavior, as

formulated in Hypothesis 2(b). On the other hand, a unit increase in the dissimilarity of the

subject/theme represented in the artworks comes with a decrease of the corresponding transition

probability. This finding is corroborated with the analyses carried out by using ArtDistancevij

as the metric of artistic distance based on deep learning techniques (CNN) discussed in Section

3.3 (see results in Table 13). Accordingly, the behavior exhibited by visitors is in line with habit

formation in Hypothesis 2(a). To refine our initial hypotheses, our results suggest that visitors

might prefer variations in the art’s material qualities, but might favour consistency in the artistic

subjects. It would be interesting for future research to study and validate such hypotheses.

Time pressure effect. We now consider the effect on the utility of the variable ArtSeenv,

which measures the cumulative number of artworks already visited. Every additional artwork

reduces the propensity to visit another one by 18.6% (e−0.206 = 0.814), relative to the outside

option. Hence, this relationship is in line with the time pressure phenomenon described in Hy-

pothesis 3. Furthermore, Model 4 shows that this effect is very strong for the initial transitions,

and less pronounced afterwards. This is because moving from quartile 1 (Q1) to quartile 2 (Q2)

results in a decrease in the transition probability to an artwork in comparison to the outside

option by 81.3% (e4.401−6.080 = 0.186), while moving from Q2 to Q3 and from Q3 to Q4 to a

decrease of 77.6% and 24.4% respectively (e+2.903−4.401 = 0.223 and e+2.624−2.903 = 0.756). In

addition, the time pressure factor is still negative but of lesser magnitude for the masterpieces,

as indicated by the significant positive coefficient +0.115 of the corresponding interaction term.

As a number of artworks seen increases, the relative probability of transitioning to the main

highlights increases compared to that of less prominent artworks. This observation is consistent

with Hypothesis 4: visitors tend to focus on the masterpieces of the collection at the end of their

visit.

Congestion effect. Finally, we examine how congestion within the museum affects visitors’

choices. We find that the effect of LogCongestionv is positive and significant, which is consistent

with Hypothesis 5. Specifically, an increase of congestion by 10% implies an increase of the

transition probabilities towards artworks by 5.5% (1.10.565 = 1.055), relative to the outside

option. In congested environments, visitors are more likely to continue engaging with artworks

on the MMT guide, as opposed to terminating their path. Model 4 shows that this effect is

concave increasing: when congestion is very low, moving from Q1 to Q2 in congestion results

in a 10.3% increase in the probability of continuing the visit (e0.051+0.042 = 1.103). As the

congestion increases from Q2 to Q3 and from Q3 to Q4, this probability slightly reduces but
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remains statistically insignificant. Finally, the effect of congestion is negatively and significantly

moderated by the artwork prominence, with a significant coefficient of -0.240. This provides

evidence for the hypothesized changes in visitor preferences outlined in Hypothesis 6. Indeed,

an increase in congestion results in the concentration of crowds around the popular highlights,

nudging the focal visitor to transition to artworks that the museum signals to be less prominent.

Taken together, these findings corroborate the initial intuition resulting from the discussion

between the authors and museum managers about crowd behavior: the visitor traffic is self-

regulating with higher levels of congestion forcing visitors to spread out and view artworks they

would not have seen otherwise.

5.2 Out-of-sample validation

We proceed to evaluate the predictive performance of the fitted P-MNL model on new unseen

data, and thus, provide external validity to this modelling approach. For this, we construct an

out-of-sample test set by taking another subsample of 25,000 visitors in the same time span as

our training set. The quality of the predictions of our main model (Model 3) is then compared

with that of several benchmarks using Normalized Log-Likelihood (LLH), classification accuracy,

and Mean Absolute Percentage Error (MAPE).

Predictive power. For this comparison, we consider both simplified and extended specifi-

cations of the P-MNL model. More specifically, to quantify the gains in prediction accuracy

from layout-related factors, we use Models 0 and 1 from Table 1 as simplified benchmarks.

Regarding the more complex benchmarks, we test out the extended specification of Model X,

which includes fixed effects for all pairs of artworks. Recall that this model cannot generalize

to different layouts, but it arguably offers the best-possible predictive power within our family

of nested P-MNL models. Additionally, we construct Model 18 (Table 15, Appendix D.2) as

a variant of our main model in which we replace the binary variables FloorChangev�i,�j with

floor-to-floor fixed effects representing each potential transition amongst floors {E, 0, 1, 2, 3, T},
where E stands for the entry and T for the exit.

Table 2 displays our predictive performance metrics across the different specifications of the

Pathway MNL model (also see Table 16). Comparing Models 0 and 1, the incorporation of the

nearest variable indicators suffices to double the classification accuracy to 48.6%. Considering

that each visitor faces 11 choice options in each transition on average, this level of accuracy

is a striking indication of the strong layout effects. Although this naive benchmark achieves a

satisfactory level of accuracy, our main model (Model 3) leads to a further 22% increase in LLH,

a 29% increase in classification accuracy and a 27% reduction in MAPE relatively to Model 1.
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As we consider more complex P-MNL specifications, the improvements in prediction accuracy

are more marginal. Model 18 provides a 5.3% increase in LLH, a 1.6% increase in classification

accuracy, and a 6.8% reduction in MAPE relatively to our main model. As expected, Model X

achieves the highest predictive performance. The gap conceded by Model 18 against Model X

shows the cost of our parametric form on the transition utilities. Yet, as explained earlier, this

gain in predictive accuracy comes at the cost of computational complexity and the inability to

generalize to modified layouts, which differ from the one in operation in October 2019. In this

context, the advantages of our main model will be further illustrated in Section 5.3.

Model Reference Log-likelihood Classification accuracy

Without layout factors Table 1 Model 0 -2.31 23.45%
With the nearest artwork Table 1 Model 1 -1.72 48.68%
Main model Table 1 Model 3 -1.34 63.00%
With floor to floor FE Appx D.2 Table 15 Model 18 -1.27 64.06%
With pair-level FE Table 1 Model X -1.08 67.20%

Table 2: Out-of-sample predictive performance of P-MNL models. Note: Log-likelihood is
normalized, i.e., we report the ratio of log-likelihood with the number of observations, and hence
this figure reports the average value of the log-probability of the actual choice in the model.

The value of a sequential model. Although our previous analysis provides an out-of-sample

validation for the marginal choice probabilities prescribed by the MNL model in each transition,

it does not inform us about the validity of the distribution over paths σv,π generated by the

P-MNL model. In particular, our key performance indicators for visitor engagement are the hit

rate of any item i ∈ N , defined as the probability Pr[i ∈ σv,π] that a visitor reaches item i,

and the total number of hits is defined as the expected total number of items reached by the

visitor E[|σv,π|] = ∑
i∈N Pr[i ∈ σv,π]. With respect to the P-MNL model, these probabilities

are estimated using Monte Carlo simulation. As a benchmark for predictive performance, we

consider a class of logistic regression models, denoted by LOGIT, which is separately fitted

for each item i ∈ N (see Appendix D.4). We mention in passing that this class of models is

subject to the same limitation as Model X: it cannot generalize to modified layouts. For a finer

comparison between P-MNL and LOGIT, we estimate the hit rates and the total number of hits

conditional to the first k elements in the visitor path σv,π
≤k = (σv,π

1 , . . . , σv,π
k ) where the parameter

k is varied in {0, 5, 10, 15}. In the case of LOGIT, we need to make a further assumption of

probabilistic independence to estimate the joint distribution of hits.

The predictive performance of P-MNL and LOGIT is reported in Table 3; each metric is

averaged over all visitors and/or artworks in the test set. As one might expect, our model

concedes a gap of 6% in LLH for k = 0. This fact is not surprising as the LOGIT benchmark
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represents a direct relationship between the visit context v and the hit rate Pr[i ∈ σv,π]. By

contrast, this relationship is only indirectly captured by P-MNL via the distribution of sequential

choices. Moreover, given that a separate LOGIT is fit for each i ∈ N , P-MNL has fewer degrees

of freedom. However, as k increases, the important observation is that the LLH value for the

P-MNL model improves from -0.50 (k = 0) to -0.36 (k = 15), whereas it degrades from -0.47

(k = 0) to -0.87 (k = 15) for the LOGIT model. In other words, P-MNL accurately describes the

correlations of hits along visitors’ paths, whereas the assumption of probabilistic independence

is inadequate in the case of the LOGIT model. The linear correlation between the observed and

predicted total number of hits corroborates this insight by exhibiting a much steeper increase for

the P-MNL in comparison to LOGIT as k increases (approximately 9x increase from k = 0 to

k = 15 for P-MNL versus 3x increase for LOGIT). Figure 5 further shows that the distribution

of the total number of hits per visitor under the fitted P-MNL model is much closer to the actual

one, compared with the corresponding LOGIT model.

(a) k = 0 (b) k = 10

Figure 5: Distributions for the total number of hits: actual distribution compared with simulated
distribution using P-MNL and LOGIT.

k Log-likelihood Correlation
P-MNL LOGIT P-MNL LOGIT

0 -0.50 -0.47 0.08 0.13
5 -0.53 -0.56 0.33 0.20
10 -0.47 -0.71 0.50 0.10
15 -0.36 -0.87 0.70 0.32

Table 3: Out-of-sample predictive performance for the P-MNL and LOGIT models as a function
of k. LLH is computed with respect to the hit rate per visitor and per artwork and correlation
is computed with respect to the total number of hits per visitor.
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5.3 Natural experiments

The last step of our model validation is to evaluate its ability to predict how changes to the

layout affect the visitor pathways. For this, we leverage four natural experiments caused by

construction works and building maintenance operations in certain galleries of the Van Gogh

Museum at different points in time in November and December 2019. As result, several artworks

were relocated to the ground floor, as described in Table 4. In our context, these interventions

correspond to exogenous changes to the physical layout factors: these temporary changes are

neither driven by visitor-related objectives, nor pre-announced to incoming visitors. We conduct

a bias analysis and compare the differences in transition rates predicted by our P-MNL model

to the estimated treatment effects associated with these natural experiments.

Dates in 2019 Artworks relocated From To Artworks removed

Nov. 11-14 “The Yellow House” and “Seascape Floor 2 Floor 0 “Gauguin: Van Gogh
near Les Saint-Marie-de-la-Mer” painting Sunflowers”

Nov. 18-22 “Sunflowers” Floor 1 Floor 0

Nov. 25-28 “Almond Blossom” and Floor 3 Floor 0 “Irises” and
“Wheatfield with a Reaper” “Copies after Millet”

Dec. 9-12 “The Potato Eaters” Floor 1 Floor 0 “The Cottage” and
“Peasant Heads”

Table 4: Description of the natural experiments

Throughout the analysis, the outcome variables of interest are the artwork pair-level tran-

sition rates aggregated at the daily level. First, we estimate heterogeneous treatment effects

for each pair of artworks and each natural experiment. Given that these interventions simul-

taneously affect all units (i.e., pairs of artworks and visitors), there is no apparent control

group. As a result, the underlying assumptions for a Difference-in-Differences estimation are

not satisfied. Instead, we exploit the weekly seasonality of the visitor behavior to construct

a time series-based estimate of the treatment effect, where the control is formed by a sim-

ple auto-regressive model (see Appendix D.5). Formally, we define, ObservedTreatmentijt =

log(Observedijt) − log(Controlijt), where Observedijt is the observed transition rate from art-

work i to artwork j on day t, out of all the visitors that reached artwork i on day t, and Controlijt

is the output of our auto-regressive model, which gives an estimate of the transition rate with

respect to the original layout.

Next, using the fitted P-MNL model, we simulate the effects of each intervention by pre-

dicting the visitor transition probabilities on the new modified layouts, and compare them to

those on the original layout. Here, we define PredictedWithChangeijt as the average transition
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rate from i to j for day t obtained via simulation on the modified layout. Similarly, we de-

fine PredictedWithoutChangeijt as the average transition rate obtained via simulation on the

original layout. Consequently, the predicted treatment effect variable PredictedTreatmentijt =

log(PredictedWithChangeijt) − log(PredictedWithoutChangeijt) measures the effect of the

layout change predicted by the P-MNL model.

To test the validity of these predictions, we estimate the following simple OLS regression:

ObservedTreatmentijt = β · PredictedTreatmentijt + εijt .

In Table 5, we report our results for each of the four interventions over 3 days pre- and post-

intervention periods – except for the intervention at Nov. 25-28 in which case the pre-intervention

perdiod cannot be extended beyond 2 days to avoid colliding with the previous intervention (Nov.

22). Moreover, we use a subsample consisting only of transition pairs that include the relocated

artwork. Table 19 in Appendix D.5 shows similar results across the full sample.

ObservedTreatmentijt

Nov. 11-14 Nov. 18-22 Nov. 25-28 Dec. 9-12 Overall

PredictedTreatmentijt 0.939*** 0.547*** 0.617*** 0.657*** 0.764***
(0.048) (0.136) (0.061) (0.092) (0.035)

Pair-level Control Yes Yes Yes Yes Yes

R2 0.736 0.454 0.611 0.499 0.605
Adj. R2 0.688 0.308 0.496 0.406 0.525
Num. obs. 609 190 396 296 1491

∗p < 0.1;∗∗ p < 0.05;∗∗∗ p < 0.01.

Table 5: Relating the predicted and estimated treatment effects for four layout interventions.

The estimated regression coefficient ranges from 0.55 (for the intervention between Nov. 18

and 22) to 0.94 (for the intervention between Nov. 11 and 14) with the average effect across

all interventions being 0.77. Hence, the natural experiments provide evidence that our model

correctly anticipates how the layout changes affect visitors’ sequential choices in the museum.

Although a coefficient of one would be ideal, because our model would then provide an unbiased

estimate of the treatment effects, our results suggests that the impact of the layout change is

even larger in magnitude than that captured by our model.

6 Counterfactuals: Designing Enhanced Museum Layouts

6.1 The layout optimization problem

In this section, we formulate the design of the layout as an optimization problem. Formally, the

layout optimization problem seeks to determine an artwork-to-location assignment π : N → L
that maximizes the expected total number of hits Eσ∼Dv

π
[|σ|] along visitors’ paths. Here, Dv

π

denotes the distribution over random paths σ drawn from the Markov chain model of Section 4.1.
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To simplify the formulation of this optimization problem, we take the contextual information v

as fixed and hence drop any reference to it in our notation.

The question of choosing an adequate objective for layout design is in itself an equivocal

issue. The main mission of cultural institutions is to create engaging and educating experiences.

As such, the total number of hits is a relevant metric for visitor engagement. Additionally, as

corroborated by managers and curators of the Van Gogh Museum, more hits indicate a higher

usage of the MMT guide, which is positively associated with the quality of visitor experience in

qualitative surveys. This objective function also aligns with the goal of exposing the audience

to the largest possible variety of Van Gogh’s works implying that less renowned artworks also

receive significant share of attention. Finally, traffic and crowd management is another crucial

objective of the museum. By nudging the visitor attention towards certain artworks, the MMT

guide affects visitor movement and the congestion in the galleries. Encouraging visitors to

consider a more diverse set of artworks could possibly lead to better balance of visitors’ queues

around the artworks in opposition to concentrating the visitor attention on the main highlights.

In our simulations, we consider a realistic optimization setting that accounts for heterogeneity

in v representing different visit types. In practice, the optimal layout should depend on the

variety of visitor profiles and congestion levels. We thus consider a more general formulation of

the layout optimization problem where v is viewed as a latent random variable and the objective

function Ev[Eσ∼Dv
π
[|σ|]] proceeds from a probabilistic mixture over the realizations of v.

6.2 Computing layout policies

We first establish a strong hardness result that indicates the computational complexity of the

layout optimization problem even for a fixed visitor context v and for simple parametric forms

of the P-MNL model. Specifically, we say that the utility function is linear if the nominal utility

of each item pair only depends on the potential target, i.e., ua(i, j) = u(j) for all i, j ∈ N .

By contrast, we use the notion of interaction effects to refer to the general case where ua(i, j)

depends on both i and j.

Theorem 1. The layout optimization problem is NP-hard even under a linear utility function.

In the presence of interaction effects, the layout optimization problem is NP-hard to approximate

within some constant c > 0.

These results suggest that finding optimal solutions to the layout optimization problem might

be computationally difficult. Leaving further theoretical analyses for future research, we develop

simple and intuitive heuristics that exploit the layout structure.

Index policies. We first consider two simple index policies, denoted by πCI and πEI , where

the assignment is determined by ranking items based on their ‘clickability’ and ‘engageability’,

respectively (Gallego et al. 2020, Besbes et al. 2016). Policy πCI locates more clickable artworks

farther from the exit to pull visitors’ attention toward remote galleries, thereby generating longer

paths. Policy πEI locates more engageable artworks closer to an exit; as these locations are more
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“leaky”, the intuition is that this assignment will reduce the likelihood that visitors terminate

their path. More formally, let � = �i, . . . , �m be a numbering of the locations � ∈ L by increasing

PhysicalDistance�,�0 from the exit. The clickability policy first orders the artworks j = 1, . . . , n

by increasing FEj and then assigns πCI(j) = �j . The engageability policy first orders the

artworks i = 1, . . . , n by decreasing FEi and then assigns πEI(i) = �i. To avoid relocating

artworks across floors, we separately implement these index policies on each floor.

Local search. Next, we consider policy πLS which improves the layout through greedy im-

provements, where the locations of artworks are sequentially swapped. Initially, we consider

the assignment π0 corresponding to the current layout. In every stage t ≥ 1, we consider the

candidate assignments πt
i↔j obtained from πt−1 by exchanging the locations of a pair of distinct

items (i, j) ∈ N 2 on the same floor, i.e., πt
i↔j(k) = πt−1(k) for all k �= i, j and πt

i↔j(i) =

πt−1(j), πt
i↔j(j) = πt−1(i). The next assignment is chosen as πt = argmax(i,j)∈St

E[|σπt
i↔j |] by

maximizing the expected path length out of all candidate swaps in a set St. To ensure that

the path length may only increase, we fall back to πt = πt−1 if none of the swaps improves our

objective by more than 0.04. For simplicity, we pick St as a singleton uniformly chosen over all

possible swaps and run our algorithm for 1000 stages.

Constrained local search. One practical drawback of previously discussed heuristics is that

they can result in a completely different arrangement of the artworks, which is incompatible

with the theme-based narrative in the form of different rooms curated by the museum. To

ensure that the current content of each room is not altered, we impose constraints on the set

of candidate swaps St considered in each step of the local search. This viewpoint yields a more

realistic, room-constrained local search heuristic πCS , which is constructed by considering only

local swaps of artworks placed in the same rooms.

6.3 Results and insights

The results of the numerical simulations are reported in Table 6. Each entry is obtained by

simulating 50 independently generated paths for a random subsample of 3,000 visitors. We find

that significant improvements of visitor engagement on the MMT guide can be generated by new

layout policies in our simulated environment. First, we see that the local search policy (πLS) lifts

the total number of hits by more than 7%, and the room-constrained local search policy (πCS)

shows an improvement exceeding 4%. Hence, significant gains can be achieved by implementing

only local changes to the layout, which do not affect the thematic structure of the current

arrangement of artworks. Furthermore, we observe that our intuitive index policies πEI and

πCI are either on par or slightly better than the baseline. These results suggest that clickability

and engageability are relevant indicators to enhance the design of the layout. Note that similar

index policies in reverse order yield a comparable performance; one possible explanation is that

clickability and engageability are positively correlated across the artworks.
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Policy type Total number of hits E[|σπ|] Improvement over baseline

Baseline - 15.19 -

Indices Engageability πEI 15.19 -0.03%
Clickability πCI 15.57 2.50%

Local search
Best single swap 15.30 0.70%
Room-constrained πCS 15.91 4.69%
Unconstrained πLS 16.36 7.65%

Table 6: Simulations of counterfactuals for different layout policies and performance metrics.

To better understand the mechanics of the enhanced layouts, we decompose the effects

of a single swap. In Figure 6, we visualize in a diagram the percentage change in the hit

rates of artworks located in Floor 1 following a swap between “The Potato Eaters” and “The

Zouave”, which results in nearly a 0.7% increase of the total hit rate. As one might expect, since

the location of the former artwork is more accessible, The Zouave’s engagement increases by

11.5% whereas The Potato Eaters’ engagement sees a relatively smaller improvement of 1.5%.

Furthermore, it is striking to see that our swap has positive spillovers on the vast majority of

other artworks, initially located near The Zouave. Several artworks in the new vicinity of The

Potato Eaters seem to benefit from the higher clickability of this artwork, which attracts more

incoming transitions. At the same time, the higher level of engageability of The Zouave might

better retain visitors after the encounter with this artwork, thereby also benefiting The Potato

Eaters.

Figure 6: Effect of swapping the position of “The Potato Eaters” with “The Zouave” on the corresponding
hit rates for the artworks on Floor 1.

In addition, our results indicate that the proposed policies also generate layouts in which

visitors are less concentrated around the highlights in the museum. In other words, the increase in

engagement is not driven by higher hit rates for the highlights – those with higher clickability but

lower engageability – but the opposite: highlights are moved to less accessible positions causing

the less prominent artworks near these locations to benefit from the inflow. The highlights are

thus used as “anchors” to generate more activity in relatively less frequented parts of the museum,
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and because these locations are further from the exit, they can also improve on retention. (Note

that this is somewhat analogous to the rationale for putting milk at the back of the store in

retail settings.) Less prominent artworks now take the former positions of the highlights and

benefit from increased accessibility. In summary, our policies suggest that engineering layouts

using our quantitative approach is a promising direction for improving visitor engagement. Note

that our framework can also be easily used to optimize the digital layout of the MMT guide,

e.g., the artworks recommended in the Highlights tour. This issue is left for future research.

7 Conclusions

In this paper, we develop a model for sequential customer choices in the context of cultural

experiences, Pathway MNL, which we validate on large-scale data from the Van Gogh museum.

We find that both the physical and digital distances are crucial determinants of the visitor

journey, and that different contents and artworks may well vary in their ability to attract and

retain visitors in the museum. We illustrate how our model can be employed to optimize the

layout and lift visitor engagement on the multimedia guide. This research should be seen as an

attempt to support the curatorial decisions of museum managers using a visitor-centric approach.

Subtle adjustments to the experiences on offer can contribute to making the museum space more

inclusive and to broadening its audience – for example, by driving more visitor engagement using

digital channels. Hence, the spirit of our work aligns well with Vincent van Gogh’s artistic quest

– “I want to touch people with my art,” said Vincent in one of his letters to his brother, Theo.

Beyond the application to cultural institutions, our layout optimization framework can be

applied to other settings such as retail, entertainment, or education, in which the physical and

digital configurations affect the user paths. Hence, this work opens up new opportunities for

further research. First, it provides new predictive and prescriptive analytics perspectives for the

cultural sector, where big data has not yet generated its full potential and significant practical

impact could be achieved (Li et al. 2018). Curating an art collection is a complex endeavour,

combining historical, pedagogical, and aesthetic dimensions. In this context, our data-driven

simulation tool can support the work of curators and designers for generating and testing out

new (efficient and stimulating) display ideas and for planning visitors’ trajectories. Second, our

analysis underscores the significance of time pressure and congestion on engagement, as in Hui

et al. (2009a), so that the planner can modify the experience by introducing opportunities for

rest (Baucells and Zhao 2019), e.g., a spacious coffee shop for a pause. Third, it paves the way

for field experiments that test different types of interventions, in the physical space (more costly)

or in the digital space (cheaper and more flexible), which might uncover new insights. Finally,

our framework can inspire new methodological developments for modeling sequential customer

choices and more advanced computational analyses for layout optimization problems.
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Appendix

A Data Samples and Descriptive Statistics

Variable Value Variable Value

id 890c2b5697c700000000_1547726853535 stop_id 40
language fr artwork Van Gogh’s Palette
tour leisure event_start_time 2019-01-17 13:15:49
tour_id 1 event_end_time 2019-01-17 13:16:30
floor_number 0 segment_completed 1

Table 7: An observation in the visitor log dataset.

Language Proportion of visitors

English 32.78%
Italian 13.53%
French 8.61%

German 8.28%
Dutch 7.98%

Spanish 7.94%
Chinese 7.70%
Russian 4.68%

Portuguese 3.86%
Korean 3.11%

Japanese 1.50%

Table 8: Visitors in the Van Gogh Museum

Variable Value Variable Value

artwork The Potato Eaters media oil, canvas
details 1885, Nuenen, Netherlands location Van Gogh Museum, Amsterdam, Netherlands
style Realism dimensions 82cm × 114cm
genre genre painting tags countryside, mealtimes

Table 9: An observation in the Wikiart.org dataset.
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B Visitor Movement.

Figure 7: Path taken by a randomly selected visitor on Floor 1 during October 2019.

Path From To Distance
segment Artwork Longitude Latitude Artwork Longitude Latitude (in meters)

1 Stairs 4.88113 52.35849 The Cottage 4.88127 52.35832 21.43
2 The Cottage 4.88127 52.35832 Peasant Heads 4.88124 52.35831 2.81
3 Peasant Heads 4.88124 52.35831 The Potato Eaters 4.88118 52.35833 4.82
4 The Potato Eaters 4.88117 52.35833 Sunflowers 4.88071 52.35846 35.22
5 Sunflowers 4.88071 52.35846 The Zouave 4.88073 52.35853 7.92
6 The Zouave 4.88072 52.35853 Bridge of Langlois 4.88082 52.35850 7.21

Table 10: Distance travelled by the randomly selected visitor.

C Deep Residual Learning

To track the artistic attributes of artworks in our analyses, we make use of the recent advance-

ments in computer vision models based on Convolutional Neural Nets (CNN) in applications

involving image/face recognition, object detection, image classification, etc. CNNs provide us

a way to measure the the most salient visual features of each artwork and express them in a

standardized numerical form (Banerjee et al. 2022). In simple terms, CNNs apply a local filter

to small blocks of pixels; such local transformations are applied to all the blocks forming the

image, and the output is a modified, lower-dimensional representation of the original image.

Researchers have observed that such convolutional layers are often associated with interpretable

transformations of the original image and extractions of features (e.g., edges, curves in the first

layer, then more complex structures like squares and circles, etc.). See He et al. (2016) for more

2



details. The eventual goal of this process, is to reduce the dimensionality of the input while

extracting the most important features, and thereby reduce the computational cost associated

with downstream learning tasks such as image classification. This output, in the form of a low-

dimensional vector, provides a numerical representation of the focal image. Specifically, we use

a Residual Neural Network (ResNet) developed by He et al. (2016) that has been demonstrated

to carry out classification tasks with very low error. It operates with 152 convolutional layers as

opposed to the 8 layers of AlexNet and the 22 layers of GoogleNet. However, we use a smaller

version of this neural network architecture, ResNet50, which was pre-trained on a corpus of over

1.28 million images from ImageNet.org. As a result, it is able to differentiate between a wide

range of images irrespective of noise such as lighting, positioning, and contrast.

Accordingly, in the R environment, we first load a high-resolution picture of a painting. Using

standard encoding, this image is then converted to a matrix of 896× 896 pixels of Red, Green,

and Blue (RGB) values. By calling the ResNet50 model with pre-trained weights, we carry out

a sequential reduction of the features in layers. As the final output, we get a 1000-dimensional

vectorised representation of the artwork.

Upon getting a vectorised representation of each artwork, we estimate the cosine dissimilarity

between these vectors to get the difference between the artistic attributes of pairs of artworks.

Accordingly, for two artworks i and j represented by Vi and Vj in vector form, respectively, we

specify the ArtDistanceij variable measuring the difference between their artistic attributes as

follows:

ArtDistanceij = 1− < Vi , Vj >

||Vi|| × ||Vj || .

3



D Additional Materials from Section 5

D.1 Engageability and clickability of artworks

Artwork Artworki estimate Artworkj estimate
“Engageability” “Clickability”

Almond Blossom -1.83*** 1.50***
Bridge of Langlois -1.44*** 0.16***
Copies after Millet -2.86*** -0.07***
Fishing Boats on the beach at Les Saint-Maries-de-la-Mer -6.30*** -4.77***
Flowering Plum Orchard -5.16*** -3.12***
Gauguin: Van Gogh painting Sunflowers -1.05*** 1.02***
Gauguin’s Chair -1.49*** 0.21***
Irises -2.08*** 0.16***
Peasant Heads -3.65*** 0.44***
Portrait of Camille Roulin NA -4.59***
Seascape near Les Saint-Marie-de-la-Mer -1.00*** 1.08***
Self-Portrait with Grey Felt Hat 2.01 -3.89***
Self-Portrait with Straw Hat -3.97*** 1.37***
Self-Portrait with Straw Hat and Pipe NA -3.96***
Still life with Bible 4.58*** -3.86***
Sunflowers -2.14*** 0.52***
The Bedroom -2.58*** 0.63***
The Cottage -3.22*** 2.84***
The Harvest -23.24 -4.24***
The Pink Orchard -1.85*** 1.73***
The Potato Eaters -2.53*** 1.58***
The Yellow House -1.58*** 1.15***
The Zouave -2.04*** 0.49***
Theo Van Gogh’s Collector’s Cabinet -0.54*** 1.67***
Tree Roots -3.73*** -0.17***
Van Gogh’s Palette -2.59*** 1.96***
Wheatfield with a Reaper -2.27*** -0.34***
Wheatfield with Crows -3.60*** 0.00
∗p < 0.05;∗∗ p < 0.01;∗∗∗ p < 0.001.

Table 11: Estimates of the artworks fixed effects and their relation to the constructs of engage-
ability and clickability from Besbes et al. (2016).

D.2 Additional models

Table 12 reports variations of the models included in Table 1, with the same covariates. In Table 14 we replicate

the main models using the duration that a visitor has already spent, instead of the number of artworks seen.

Finally, Table 15 provides alternative formulations with respect to the distance metrics.
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Transitionv
ij

(5) (6) (7) (8) (9) (10) (11) (12)

Physical Layout Factors

IsNearestPhysicalDistancev�i�j 3.397*** 1.345*** 0.563*** 0.583*** 0.351*** 0.583*** 0.603*** 0.395***
(0.006) (0.007) (0.008) (0.008) (0.004) (0.005) (0.005) (0.004)

PhysicalDistancev�i�j -0.041*** -0.293*** -0.287*** -0.300*** -0.278*** -0.282*** -0.296***
(0.001) (0.002) (0.002) (0.000) (0.000) (0.000) (0.000)

RoomChangev�i�j -0.451*** -2.158*** -2.318*** -2.407*** -2.418*** -2.400*** -2.386***
(0.017) (0.029) (0.030) (0.006) (0.006) (0.006) (0.006)

FloorChangev�i�j -1.937*** -6.321*** -6.836*** -6.112*** -6.745*** -7.028*** -6.123***
(0.022) (0.033) (0.035) (0.005) (0.005) (0.005) (0.005)

PhysicalDistancev�i�j ×RoomChangev�i�j 0.237*** 0.236*** 0.252*** 0.232*** 0.232*** 0.248***
(0.002) (0.002) (0.000) (0.000) (0.000) (0.000)

PhysicalDistancev�i�j × FloorChangev�i�j 0.311*** 0.314*** 0.311*** 0.304*** 0.310*** 0.308***
(0.002) (0.002) (0.000) (0.000) (0.000) (0.000)

ReturnedToF loorv�i�j -0.993*** -0.855*** -0.762*** -0.720*** -0.653*** -0.727***
(0.014) (0.014) (0.011) (0.011) (0.012) (0.011)

Digital Layout Factors

TourChangev�j -3.093*** -2.072*** -2.874*** -2.993*** -2.104***
(0.018) (0.013) (0.015) (0.016) (0.013)

MMTguideDistancev�i�j -0.012*** -0.015*** -0.013*** -0.014*** -0.014***
(0.000) (0.000) (0.000) (0.000) (0.000)

Artistic Factors

ArtY earDistancevij -0.012*** 0.013*** 0.069*** -0.013***
(0.002) (0.002) (0.002) (0.002)

ArtSizeDistancevij 0.411*** 0.566*** 0.639*** 0.416***
(0.005) (0.005) (0.005) (0.005)

ArtTagsDistancevij -0.074*** -0.037*** -0.036*** -0.067***
(0.003) (0.003) (0.003) (0.003)

Environmental Factors

ArtSeenv -0.117*** -0.206***
(0.001) (0.001)

ArtSeen_Q1v 6.080***
(0.125)

ArtSeen_Q2v 4.401***
(0.034)

ArtSeen_Q3v 2.903***
(0.024)

ArtSeen_Q4v 2.624***
(0.010)

ArtSeenv × IsHighlightvj 0.115***
(0.001)

LogCongestionv 0.358*** 0.565***
(0.014) (0.014)

LogCongestion_Q1v -0.042*
(0.018)

LogCongestion_Q2v 0.051**
(0.017)

LogCongestion_Q3v 0.032
(0.017)

LogCongestion_Q4v 0.000
(0.017)

LogCongestionv × IsHighlightvj -0.240***
(0.008)

Thoroughnessv 3.096*** 3.096*** 3.112***
(0.011) (0.011) (0.010)

Fixed Effects
Artworkj Yes Yes Yes Yes Yes Yes Yes Yes
Artworkj Yes Yes Yes Yes Yes Yes Yes Yes
Languagev Yes Yes Yes Yes Yes Yes Yes Yes
Hourv Yes Yes Yes Yes Yes Yes Yes Yes
DayOfTheWeekv Yes Yes Yes Yes Yes Yes Yes Yes

AIC 176.27 182.53 188.57 192.61 198.60 204.64 210.66 216.61
Log-Likelihood -1.72 -1.46 -1.42 -1.38 -1.39 -1.35 -1.33 -1.38
Num. parameters 89 92 95 97 100 103 106 109
Num. events 392,209 392,209 392,209 392,209 392,209 392,209 392,209 392,209
Num. obs. 6,221,248 6,221,248 6,221,248 6,221,248 6,221,248 6,221,248 6,221,248 6,221,248

∗p < 0.05; ∗ ∗ p < 0.01; ∗ ∗ ∗p < 0.001. Standard errors in parentheses.

Table 12: Pathway MNL estimation results (extended).5



Transitionv
ij

(13) (14)

Physical Layout Factors
IsNearestPhysicalDistancev�i�j 0.705*** 0.694***

(0.005) (0.005)
PhysicalDistancev�i�j -0.283*** -0.281***

(0.000) (0.000)
RoomChangev�i�j -2.662*** -2.648***

(0.006) (0.006)
FloorChangev�i�j -7.252*** -7.056***

(0.005) (0.005)
PhysicalDistancev�i�j ×RoomChangev�i�j 0.241*** 0.241***

(0.000) (0.000)
PhysicalDistancev�i�j × FloorChangev�i�j 0.315*** 0.312***

(0.000) (0.000)
ReturnedToF loorv�i�j -0.612*** -0.752***

(0.012) (0.012)
Digital Layout Factors
TourChangev�j -2.950*** -3.081***

(0.017) (0.017)
MMTguideDistancev�i�j -0.015*** -0.015***

(0.000) (0.000)
Artistic Factors
ArtY earDistancevij 0.061*** 0.009***

(0.002) (0.002)
ArtSizeDistancevij 0.531*** 0.490***

(0.005) (0.005)
ArtDistancevij -1.606*** -1.602***

(0.011) (0.011)
Environmental Factors
ArtSeenv -0.205***

(0.001)
ArtSeen_Q1v 181.653***

(1.902)
ArtSeen_Q2v 174.557***

(0.033)
ArtSeen_Q3v 173.304***

(0.024)
ArtSeen_Q4v 173.118***

(0.010)
ArtSeenv × IsHighlightvj 0.111***

(0.001)
LogCongestionv 0.590***

(0.014)
LogCongestion_Q1v -0.049**

(0.019)
LogCongestion_Q2v 0.037*

(0.017)
LogCongestion_Q3v 0.027

(0.017)
LogCongestion_Q4v 0.000

(0.018)
LogCongestionv × IsHighlightvj -0.244***

(0.008)
Thoroughnessv 3.202*** 3.012***

(0.011) (0.010)
Fixed Effects
Artworkj Yes Yes
Artworkj Yes Yes
Languagev Yes Yes
Hourv Yes Yes
DayOfTheWeekv Yes Yes
AIC 210.65 216.67
Log-Likelihood -1.34 -1.32
Num. parameters 106 109
Num. events 392,209 392,209
Num. obs. 6,221,248 6,221,248

∗p < 0.05;∗∗ p < 0.01;∗∗∗ p < 0.001. Standard errors in parentheses.

Table 13: Pathway MNL results with ArtDistancevij estimated by using the deep learning method
of Appendix C. 6



Transitionv
ij

(15) (16)

Physical Layout Factors
IsNearestPhysicalDistancev�i�j 0.593*** 0.594***

(0.005) (0.005)
PhysicalDistancev�i�j -0.283*** -0.281***

(0.000) (0.000)
RoomChangev�i�j -2.464*** -2.411***

(0.006) (0.006)
FloorChangev�i�j -6.991*** -6.905***

(0.005) (0.005)
PhysicalDistancev�i�j ×RoomChangev�i�j 0.236*** 0.233***

(0.000) (0.000)
PhysicalDistancev�i�j × FloorChangev�i�j 0.311*** 0.309***

(0.000) (0.000)
ReturnedToF loorv�i�j -0.708*** -0.761***

(0.012) (0.012)
Digital Layout Factors
TourChangev�j -3.105*** -3.179***

(0.016) (0.017)
MMTguideDistancev�i�j -0.013*** -0.013***

(0.000) (0.000)
Artistic Factors
ArtY earDistancevij 0.040*** 0.016***

(0.002) (0.002)
ArtSizeDistancevij 0.624*** 0.603***

(0.005) (0.005)
ArtTagsDistancevij -0.022*** -0.023***

(0.003) (0.003)
Environmental Factors
DurationUptov -0.867***

(0.005)
DurationUpto_Q1v 3.049***

(0.058)
DurationUpto_Q2v 1.215***

(0.037)
DurationUpto_Q3v 0.492***

(0.022)
DurationUpto_Q4v 0.000

(0.010)
DurationUptov × IsHighlightvj 0.080***

(0.002)
LogCongestionv 0.648***

(0.014)
LogCongestion_Q1v -0.105***

(0.019)
LogCongestion_Q2v 0.015

(0.017)
LogCongestion_Q3v 0.012

(0.018)
LogCongestion_Q4v 0.000

(0.018)
LogCongestionv × IsHighlightvj -0.199***

(0.008)
Thoroughnessv 3.480*** 3.246***

(0.011) (0.010)
Fixed Effects
Artworkj Yes Yes
Artworkj Yes Yes
Languagev Yes Yes
Hourv Yes Yes
DayOfTheWeekv Yes Yes
AIC 210.65 216.65
Log-Likelihood -1.34 -1.34
Num. parameters 106 109
Num. events 392,209 392,209
Num. obs. 6,221,248 6,221,248

∗p < 0.05;∗∗ p < 0.01;∗∗∗ p < 0.001. Standard errors in parentheses.

Table 14: Pathway MNL results with DurationUptov.7



Transitionv
ij

(17) (18)

IsNearestPhysicalDistancev�i�j 2.692*** 1.181***
(0.003) (0.007)

PhysicalDistancev�i�j -0.073***
(0.001)

RoomChangev�i�j 1.962***
(0.033)

FloorChangev�i=E,�j=1 -3.358***
(0.020)

FloorChangev�i=E,�j=2 -3.236***
(0.037)

FloorChangev�i=E,�j=3 -3.492***
(0.032)

FloorChangev�i=0,�j=0 1.206**
(0.434)

FloorChangev�i=0,�j=1 0.262
(0.434)

FloorChangev�i=0,�j=2 -0.983*
(0.437)

ReturnedToF loorv�i�j 0.083∗∗∗

(0.017)
ArtSeenv -0.198∗∗∗

(0.003)
LogCongestionv 0.518∗∗∗

(0.042)

Fixed Effects
Artworkj No Yes
Artworkj No Yes
Languagev No Yes
Hourv No Yes
DayOfTheWeekv No Yes

AIC -0.14 252.73
Log Likelihood -2.14 -1.26
Num. parameters 1 127
Num. events 392,209 392,209
Num. obs. 6,221,248 6,221,248

∗p < 0.05;∗∗ p < 0.01;∗∗∗ p < 0.001. Standard errors in
parentheses.
Interactions and factors related to MMT guide, artwork,
and environment are omitted from this table for brevity.
FloorChangevi≥1,j=n, interactions and factors related to
MMT guide, artwork, and environment are omitted from
this table for brevity.

Table 15: Pathway MNL results for alternative models used in Section 5.2.
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D.3 Predictive power

Model Reference Log-likelihood Classification accuracy Pair-level MAPE

Without layout factors Table 1 Model 0 -2.31 23.45% 8.05%
With the nearest artwork Table 1 Model 1 -1.72 48.68% 5.43%
Main model Table 1 Model 3 -1.34 63.00% 3.95%
With floor to floor FE Appx D.2 Table 15 Model 18 -1.27 64.06% 3.68%
With pair-level FE Table 1 Model X -1.08 67.20% 2.51%

Table 16: Out-of-sample predictive performance of P-MNL models. Note: Log-likelihood is
normalized, i.e., we report the ratio of log-likelihood with the number of observations, and hence
this figure reports the average value of the log-probability of the actual choice in the model.

D.4 The value of a sequential model

LOGIT model. What alternative method can be employed to directly predict Pr[i ∈ σv,π]?

Perhaps, the most natural alternative to predict Pr[i ∈ σv,π] is to view it as a binary classification

task, with respect to the aggregate outcome “whether or not item i is hit by the visitor along

her path”. In this context, the class of logistic regression models, which we refer to as LOGIT,

constitutes a relevant benchmark to estimate the hit rates.

Hitvj

The Pink Orchard Sunflowers Irises
(1) (2) (3)

(Intercept) -1.999*** -2.082*** -2.802***
(0.036) (0.035) (0.036)

Congestionv
j 0.230** 0.072** 0.002

(0.030) (0.028) (0.030)

Fixed Effects
Languagev Yes Yes Yes
DayOfTheWeekv Yes Yes Yes

AIC 36.78 36.70 36.44
Normalized LLH -0.39 -0.35 -0.22
Num. obs. 145,974 174,078 309,442

∗p < 0.1;∗∗ p < 0.05;∗∗∗ p < 0.01. Standard errors in parentheses.

Table 17: Artwork level logistic models. For the sake of brevity, we present the results for only
3 artworks.

We note that the LOGIT benchmark offers more flexibility than P-MNL to predict the hit

rates because distinct model parameters can be easily fitted for each item i ∈ N to capture a

direct relationship between v and Pr[i ∈ σv,π]. By contrast, this relationship is only indirectly

captured by P-MNL through the distribution of sequential choices. Despite this advantage in

terms of model expressiveness, LOGIT overlooks the sequential structure of each visit.
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D.5 Natural experiments

For every pair (i, j), we denote Pijt as the proportion of transitions from i to j on day t,

out of all the visits to i. We then estimate the following auto-regressive specification Pij,t =

αij + βijkPij,t−k + εijk for k = [7, 8]. The model is trained with daily data from September

and October 2019 and results are shown in Table 18. Hence, we subsequently use its estimated

response Controlijt as our control for each pair of artworks (i, j) and day t during the post-

intervention period.

(a) For “The Yellow House”.

(b) For “Almond Blossom”.

Figure 8: Predicted vs. observed transition probabilities during the relocation of a few artworks.

Observedijt

(Intercept) 0.001***
(0.0003)

Observedijt−7 0.514***
(0.007)

Observedijt−8 0.451***
(0.007)

R2 0.91
Adj. R2 0.91
Num. obs. 15,132

∗p < 0.05;∗∗ p < 0.01;∗∗∗ p <
0.001. Standard errors in
parentheses.

Table 18: Estimating the control value. Subsample used is for transitions from or to the artwork
“The Yellow House”.
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ObservedTreatmentijt

Nov. 11-14 Nov. 18-22 Nov. 25-28 Dec. 9-12 Overall

PredictedTreatmentijt 0.927*** 0.391*** 0.639*** 0.557*** 0.741***
(0.036) (0.074) (0.042) (0.074) (0.019)

Pair-level Control Yes Yes Yes Yes Yes

R2 0.571 0.458 0.559 0.427 0.267
Adj. R2 0.485 0.258 0.408 0.305 0.220
Num. obs. 3527 1685 2137 3395 10744

∗p < 0.1;∗∗ p < 0.05;∗∗∗ p < 0.01.

Table 19: Relating the predicted and estimated treatment effects for four layout interventions
across the full sample.

E Proof of Theorem 1

Figure 9: Pictorial representation of the hardness reduction.

We construct a reduction from the cubic dominating set problem, which is known to be APX-
hard. Given a network (V,E) with n = |V | vertices, the latter computational setting aims to
distinguish whether there exists a dominating set of different cardinalities:

• YES instance: There exists a dominating set in (V,E) of cardinality k.

• NO instance: There exists no dominating set in (V,E) of cardinality c · k with c > 1.

Previous literature shows that the latter computational setting is NP-hard for some constant
c > 1. Moreover, since the network is cubic, it follows that we can assume that there exists a
family of NP-hard instances that further satisfy k ≥ n

4 ; note that, when the latter condition is
violated, the instance clearly falls under the “NO” case.

We proceed by devising a gap-preserving polynomial time reduction from the above decision
problem to a computational task related to an approximation of the layout optimization problem.
Specifically, we construct an instance of the layout optimization problem π �→ Dπ by specifying
a collection of items N with their corresponding nominal artwork-related utilities ua(·, ·), and
a network of locations L along with their corresponding edge utilities ul(·, ·). Our family of
instances is parameterized by an error parameter ε ∈ (0, 1).

• The collection N = G ∪ B is formed by 5n good items G = {g1, . . . , g5n} and n + 1 bad
items B = {b1, . . . , bn+1}. Items are identical except for being good or bad.
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• For all i, j ∈ N , we decompose the artwork-related utility into two terms ua(i, j) =
u1,1(j)+u1,2(i, j), where u1,1(j) is named the attractiveness and u1,2(i, j) is named the in-
teraction. Good items g ∈ G are more attractive than bad items: u1,1(g) = log(1ε ) ≥ 0 =
u1,1(b). Moreover, good items g, g′ ∈ G have a strong positive interaction u1,2(g, g

′) =
log(nε ), whereas bad items b, b′ ∈ B have a strong negative interaction u1,2(b, b

′) =
− log(nε ). Finally, all mixed interactions are zero-valued, i.e., u1,2(g, b) = u1,2(b, g) = 0.

• The collection of locations L can be viewed as a graph with four layers: (1) A distributor
star graph with a center �d connected to n distinct vertices (�dv)v∈V ; (2) A copy of V formed
by the set of vertices (�cv)v∈V ; (3) A path �p1, . . . , �

p
q with q = 4n; (4) An outside vertex �0.

These layers are connected amongst each other as follows. The center of the star graph �d

is connected to the outside vertex �0. Each leaf of the distributor �dv is connected to the
vertex with similar index in the copy layer and all its neighbors, i.e., �cv∪{�cv′ : {v′, v} ∈ E}.
Now, each vertex �cv of the copy layer is connected to �p1 as well as the outside vertex �0.
Finally, all vertices along the path are �p1, . . . , �

p
q with q = 4n are connected to the outside

vertex �0.

• Finally, it remains to specify the layout-related nominal utility function ul(·, ·). In the first
layer, the distributor utilities are zero-valued, i.e., ul(�d, �dv) = 0 for all v ∈ V , except with
respect to the outside option ul(�

d, �0) = log(n
2

ε3
). In the second layer, any edge between a

distributor leaf �dv and a copy vertex �cv′ has a zero-valued utility ul(�
d
v, �

c
v′) = 0. In the third

layer, any edge between a copy vertex �cv and �p1 has a utility ul(�
c
v, �

p
1) =

1
2 log(ε), and the

edge between �cv and �0 has a large utility ul(�
c
v, �0) = log(1ε ). In addition, any edge between

�cv and another copy vertex �cv′ has a utility ul(�
c
v, �

c
v′) = 1

2 log(
1
ε ). Finally, the utility of

every edge (�pk, �
p
k+1) is zero-valued, i.e., ul = (�pk, �

p
k+1) = 0, while ul(�

p
k, �0) = log(1ε ).

With these definitions at hand, let π �→ Dπ be the mapping from item-to-location assignments
to distributions over paths induced by the corresponding Pathway MNL instance. Our result
proceeds from the following claims.

Claim 1. Suppose that there exists an assignment π such that EDπ [|σ|] ≥ ε(4n−k)+100ε
3
2n+100.

Then, there exists a dominating set in (V,E) of cardinality k.

Proof. The proof proceeds by constructing a crucial upper bound on EDπ [|σ|]. Let nt be the
number of good items in layer t for t = 1, . . . , 3. Denote by ñ2 the number of vertices in layer 2
(the copy) assigned or connected to a good item; in the dominating set terminology, the vertex
in question is dominated.

Lemma 1. E[|σπ|] ≤ εmin{n1,ñ2}
n · n3 + 100ε

3
2n+ 100 .

Now, suppose that there exists no dominating set of cardinality k. To conclude the proof of
Claim 1, it remains to upper bound the optimal solution of the following mathematical program:

max
n1,n2,ñ2,n3∈[0,n]4

min{n1, ñ2} · n3

s.t. n1 + n2 + n3 ≤ 5n

n2 + n− ñ2 ≥ k + 1 ,

where the objective corresponds to the right-hand side term in Lemma 1 and the first constraint
follows from the total number of good items. To understand the last constraint, we observe that
a dominating set of size n2 + n − ñ2 can be obtained by selecting all non-dominated vertices
in layer 2 with respect to the good items assigned by π. By hypothesis, the cardinality of any
dominating set is at least k+ 1. Now, by noticing that n3 = 5n− n1 − n2 at optimality, we can
eliminate the constraints and formulate a relaxed mathematical program:

max
n1,ñ2∈[0,n]2

min{n1, ñ2} · (6n− n1 − ñ2 − k − 1) .

12



Now, we can easily derive a continuous relaxation of this optimization setting:

max
α∈[0,n]

α · (6n− 2α− k − 1) .

Using the fact that c ·k ≤ n, we infer that the optimal value α∗ for the variable α satisfies α = n,
which yields an upper bound of n · (4n − k). Combining this bound with Lemma 1, we obtain
the desired contradiction:

E[|σπ|] < ε(4n− k) + 100ε
3
2n+ 100 .

Proof of Lemma 1. Let V 1 = {v ∈ V : π−1(�dv) ∈ G} be the subset of vertex indices in layer 1
(i.e., the distributor) that hold a good item and let V 2 = {v ∈ V : π−1(�cv) ∈ G ∨N (π−1(�cv)) ∈
G} be the subset of vertex indices in layer 2 (i.e., the copy) that are dominated, meaning that
either the location in question holds a good item or it has a neighbor in the copy that holds a
good item. Let L1 = {�dv : v ∈ V 1} and L2 = {�dv : v ∈ V 2}. Based on a straightforward path
decomposition, we have

E [|σπ|]
= Pr

[
π(σπ

1 ) ∈ L1 ∧ π(σπ
2 ) ∈ L2

] · E [ |σπ||π(σπ
1 ) ∈ L1 ∧ π(σπ

2 ) ∈ L2
]

+Pr
[
π(σπ

1 ) /∈ L1
] · E [ |σπ||π(σπ

1 ) /∈ L1
]

+Pr
[
π(σπ

1 ) ∈ L1 ∧ π(σπ
2 ) /∈ L2

] · E [ |σπ||π(σπ
1 ) ∈ L1 ∧ π(σπ

2 ) /∈ L2
]

≤ Pr
[
π(σπ

1 ) ∈ L1 ∧ π(σπ
2 ) ∈ L2

] · E [ |σπ||π(σπ
1 ) ∈ L1 ∧ π(σπ

2 ) ∈ L2
]

+
n

n2ε−3 + n
· 6n+ Pr

[
π(σπ

1 ) ∈ L1
] · E [ |σπ||π(σπ

1 ) ∈ L1 ∧ π(σπ
2 ) /∈ L2

]
≤ Pr

[
π(σπ

1 ) ∈ L1 ∧ π(σπ
2 ) ∈ L2

] · E [
σπ|π(σπ

1 ) ∈ L1 ∧ π(σπ
2 ) ∈ L2

]
+6ε3 + 24ε

3
2n + 2ε

≤ εmin{n1, ñ2}
n

· E [
σπ|π(σπ

1 ) ∈ L1 ∧ π(σπ
2 ) ∈ L2

]
(2)

+6ε3 + 24ε
3
2n+ 2ε ,

where the first inequality holds by noting that the user path is of length at most 6n. Moreover,
the transition probability Pr[π(σπ

1 ) /∈ L1] is maximized when L1 = ∅, meaning that all distributor
vertices hold bad items: in such a case, we straightforwardly compute Pr[π(σπ

1 ) /∈ L1] = n
n2ε−3+n

.
The next inequality proceeds by noting that

Pr
[
π(σπ

1 ) ∈ L1
] ≤ nε−2

nε−2 + nε−3
≤ ε

where the first inequality follows from the observation that the probability on the left-hand side
is maximized when L1 = V . In addition, we note that

E
[ |σπ||π(σπ

1 ) ∈ L1 ∧ π(σπ
2 ) /∈ L2

] ≤ 2 + Pr
[
σπ
3 �= 0|π(σπ

1 ) ∈ L1 ∧ π(σπ
2 ) /∈ L2

] · 6n
≤ 2 + 24ε1/2n ,

where the first inequality proceeds by noting that, after stage 2, the user transitions either to
the outside option or towards a different vertex. In the former case, the path length is exactly

13



2, while in the latter case the path length is at most 6n. The second inequality holds since

Pr
[
σπ
3 = 0|π(σπ

1 ) ∈ L1 ∧ π(σπ
2 ) /∈ L2

]
= Pr

[
σπ
3 = 0|π(σπ

2 ) /∈ L2
]

≥ ε−1

3ε−
1
2 + ε1/2ε−1 + ε−1

≥ 1− 4ε1/2 ,

where the first inequality proceeds from the facts that the conditional probability is minimized
when the first path vertex holds a good item and π(σπ

2 ) is only connected to vertices in layer 2
holding bad items.

Finally, inequality (2) is a consequence of the fact that

Pr
[
π(σπ

1 ) ∈ L1 ∧ π(σπ
2 ) ∈ L2

]
=

∑
v∈V 1∩V 2

Pr
[
π(σπ

1 ) = �dv

]

= |V 1 ∩ V 2| · nε−2

n2ε−3 + |V 1| · nε−2 + n− |V 1|
≤ εmin{n1, ñ2}

n
,

where the second equality holds since all vertices in L1 hold good items. The inequality proceeds
by noting that |V 1 ∩ V 2| ≤ min{n1, ñ2}.

The remainder of our proof aims to upper bound E[|σπ||E] where E = {π(σπ
1 ) ∈ L1∧π(σπ

2 ) ∈
L2}. Define τ as the stopping time corresponding to a transition to the first path vertex �p1 or
to the outside option, whichever is reached first, i.e., τ = min{k ≥ 0 : σπ

k ∈ {0, π−1(�p1)}}. We
distinguish between two cases depending on whether a good or a bad item is assigned to the
first path vertex.
Case 1: π−1(�p1) ∈ B. The important observation is that Pr[σπ

τ = π−1(�p1)|E] ≤ ε
3
2 . To

explain this inequality, we note that until stage τ , the ratio between a transition to location
�p1 and a transition to �0 is upper bounded by ε

3
2 ; this bound corresponds to the case where

the current location holds a good item, and thus, the attractiveness of π−1(�p1) is exactly ε
1
2 .

Moreover, conditional on reaching �p1, the remaining path length is clearly upper bounded by
4n. By combining these observations, we have

E [ |σπ||E]

= E [τ |E] + Pr
[
σπ
τ = π−1(�p1)

∣∣E] · E [ |σπ| − τ |σπ
τ = π−1(�p1)

]
≤ 2 + n+ 4ε

3
2n

≤ 2 + n3 + 4ε
3
2n ,

where the first inequality proceeds from the bounds described above. The last inequality holds
given that there 5n good items and only 2n + 1 locations in the first two layers, implying that
n3 ≥ 3n− 1 ≥ n for a sufficiently large value of n.
Case 2: π−1(�p1) ∈ G. Here, we have

E [ |σπ||E]

= E [τ − 1|E] + Pr
[
σπ
τ = π−1(�p1)

∣∣E] ·
⎛
⎝1 +

4n∑
k=1

k∏
q=1

Pr
[
σπ
τ+q = π1(�pq+1)

∣∣∣σπ
τ+q−1 = π1(�pq)

]⎞⎠

= E [τ |E] + Pr
[
σπ
τ = π−1(�p1)

∣∣E] ·
⎛
⎝1 +

4n−1∑
k=1

k∏
q=1

εwq

1 + εwq

⎞
⎠− 1 ,
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where the first equality proceeds from the path structure and the fact that each vertex can be
visited at most once; these properties entail that there are only forward transitions along the
path �p1, �

p
2, . . . until reaching the outside option. In the next equation, we define the coefficients

(wk)k∈[4n−1] as follows:

wk =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

n

ε2
if π−1(�pk), π

−1(�pk+1) ∈ G ,

1

ε
if π−1(�pk) ∈ B and π−1(�pk+1) ∈ G ,

1 if π−1(�pk) ∈ G and π−1(�pk+1) ∈ B ,
ε

n
if π−1(�pk), π

−1(�pk+1) ∈ B .

Let k∗ be the �log n�-th index k ∈ [4n] with a small transition probability εwk
1+εwk

≤ 1
2 . In the

above case disjunction, this inequality is satisfied for all transitions except between consecutive
good items. By definition, for every k ≥ k∗, we have

4n−1∑
k=k∗

k∏
q=1

εwq

1 + εwq
≤

4n−1∑
k=k∗

1

n
≤ 4 .

Additionally, we note that k∗ ≤ n3 + �log n� since the first k∗ locations in the path are either
filled by good items or by at most �log n� bad items. By combining the above inequalities, we
infer that

E [ |σπ||E] ≤ E [τ |E] + 5 + n3 + �log n� ≤ n3 + 7 + 4ε−1 + �log n� ,

where the last inequality proceeds from the next claim.

Claim 2. E[τ |E] ≤ 2 + 4ε−1.

Proof. The desired claim proceeds by providing a lower bound on the conditional probability
of transitioning to locations �0 or �p1 k = 3, 4, . . . , τ . From stage k = 3 onwards, until reaching
stage t, we are located in layer 2 of the graph (the copy). Suppose that the current location holds
a good item. The probability of transitioning to layer 2 is maximized if the current location is
connected to three copy vertices assigned with good items. Based on this reasoning, we have

Pr
[
σπ
k ∈ {0, π−1(�p1)}

∣∣σπ
k−1 ∈ G,Sk

] ≥ nε−
3
2 + ε−1

3nε−
5
2 + nε−

3
2 + ε−1

≥ ε

4
. (3)

Conversely, suppose that the current location holds a bad item. Similarly to the previous case,
the probability of transitioning to layer 2 is maximized if the current location is connected to
three copy vertices assigned with good items. Here, we have

Pr
[
σπ
k ∈ {0, π−1(�p1)}

∣∣σπ
k−1 ∈ G,Sk

] ≥ ε−1 + ε−
1
2

3ε−
3
2 + ε−1 + ε−

1
2

≥ 2

5
ε ≥ ε

4
. (4)

By combining inequalities (3)-(4), we infer that

E [τ |E] ≤ 2 +
ε

4
·

n∑
k=0

(
1− ε

4

)k−1
k ≤ 2 + 4ε−1
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Claim 3. Suppose that there exists no assignment π such that EDπ [|σ|] ≥ ε (4n− �ck�)−120ε
3
2n.

Then, there exists no dominating set in (V,E) of cardinality �ck�.
Proof. Suppose ad absurdum that there exists a dominating set V ∗ in (V,E) of cardinality
smaller or equal to �ck�. We define the assignment π as follows:

• Items of G: Good items are allocated to locations �dc and {�dv : v ∈ V } in the distributor,
{�cv : v ∈ V ∗} in the copy, and {�p1, . . . , �p4n−1−	ck
}

• Items in B: All remaining locations are filled with bad items.

The proof proceeds by lower bounding the expected path length. The probability of transitioning
from location �dc to any vertex in {�dv : v ∈ V } is exactly

Pr [σπ
1 �= 0] =

n2ε−2

n2ε−3 + n2ε−2
≥ ε(1− ε) . (5)

Next, we define τ as the stopping time corresponding to the first stage k ≥ 3 where σπ
τ ∈

{0, π−1(�p1)} if σπ
1 �= 0 and τ = +∞ otherwise. We introduce the following probabilistic events:

E1 = {σπ
3 ∈ {0} ∪ B} and E2 = {∃ k ∈ [3, τ ] : σπ

k−1 ∈ G ∧ σπ
k ∈ {0} ∪ B}. The important

observation is that, by the union bound, we have

Pr [σπ
τ = 0|σπ

1 �= 0] ≤ Pr [E1] + Pr [E2] ≤ 8
√
ε , (6)

where the last inequality follows from Claims 4 and 5 below.
The last piece of our analysis consists in showing that, conditional on {σπ

τ = 0}, the proba-
bility of reaching the last good item along the path is sufficiently large. Namely,

Pr
[
σπ
τ+4n−2−	ck
 = π−1

(
�p4n−2−	ck


)∣∣∣σπ
τ = π−1(�p1)

]

=

4n−2−	ck
∏
k=1

Pr
[
σπ
τ+k = π−1(�p1+k)

∣∣σπ
τ+k−1 = π−1(�pk)

]

=

4n−2−	ck
∏
k=1

(
ε−2n

ε−2n+ ε−1

)

≥
(
1− ε

n

)4n

≥ 1− 4ε . (7)

Consequently, by combining (5)-(7), we obtain

E [σπ]

≥ (4n− �ck�) · Pr
[
σπ
τ+4n−2−	ck
 = π−1

(
�p4n−2−	ck


)]

≥ (4n− �ck�) · Pr
[
σπ
τ+4n−2−	ck
 = π−1

(
�p4n−2−	ck


)∣∣∣σπ
τ = π−1(�p1)

]
· Pr [σπ

τ = π−1(�p1)
]

≥ ε (4n− �ck�)− 120ε
3
2n . (8)

Claim 4. Pr[E1] ≤ 4
√
ε .

Proof. Note that Pr[E1] ≤ max{Pr[σπ
3 ∈ {0} ∪ B|σπ

2 ∈ G],Pr[σπ
3 ∈ {0} ∪ B|σπ

2 ∈ B]}. Condi-
tional on {σπ

2 ∈ G}, the transition probability toward {0} ∪ B is maximized in the case where
the current location is connected to copy vertices holding bad items, meaning that

Pr [σπ
3 ∈ {0} ∪B|σπ

2 ∈ G] ≤ ε−1 + 3ε−
1
2

ε−1 + 3ε−
1
2 + nε−

3
2

≤ 4
√
ε

n
. (9)
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Similarly, conditional on {σπ
2 ∈ B}, the transition probability toward {0} ∪ B is maximized in

the case where the remaining neighbors of the current location in layer 2 hold bad items. Here,
we have:

Pr [σπ
3 ∈ {0} ∪B|σπ

2 ∈ B] ≤ ε−1 + 2ε
1
2n−1

ε−1 + ε−
3
2 + 2ε

1
2n−1 + ε−

1
2

≤ 3
√
ε .

Claim 5. Pr[E2] ≤ 4
√
ε .

Proof. Fix k ∈ [3, n]. We have

Pr
[
σπ
k−1 ∈ G ∧ σπ

k ∈ {0} ∪B
] ≤ Pr

[
σπ
k ∈ {0} ∪B|σπ

k−1 ∈ G
] ≤ 4

√
ε

n
,

where the last inequality proceeds from a reasoning identical that of inequality (9). Since
Pr[τ ≤ n] = 1, the union bound implies that

Pr[E2] ≤
n∑

k=3

Pr
[
σπ
k−1 ∈ G ∧ σπ

k ∈ {0} ∪B
] ≤ 4

√
ε .
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