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Abstract

Problem definition: Omnichannel retailers interact with customers both online and offline.
So far, they have used this richer information to optimize the sales process by designing the right
channel and supply chain structures, and by personalizing offer, pricing and promotions. We
advance an additional dimension of omnichannel value: retailers can use online clickstreams to
better understand customer needs, and optimize store layouts to maximize conversion. Method-
ology/results: We develop a model where in-store purchases depend on the customer’s product
shopping list, and the effort required to locate and reach the products within the store. Product
location in the store thus drives conversion. We then apply our model to a large home improve-
ment retailer and find that preferences of store visitors are revealed by nearby online traffic
to product pages, and hard-to-reach locations lead to lower conversion. We also do not find
evidence of cross-selling. Finally, we optimize product-location assignments using our demand
model and find that putting higher-interest and higher-price items in the most effective locations
can increase revenues by about 10%. Managerial implications: Our results show how using
online clickstream information for optimizing offline operations can create significant value. We
also show that webrooming can be beneficial even in the absence of cross-selling.
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1 Introduction

In the last decade, omnichannel has become a dominating retail strategy in which retailers do

not see online and offline as independent channels, but manage them jointly (Gallino and Moreno

2019, Caro et al. 2020). Omnichannel delivers value on multiple dimensions, because it allows

customers to learn about the product in one channel, and fulfill the demand in another (Bell et al.

2014). This flexibility implies that retailers are no longer constrained to run a single-channel sales

process, and have more freedom to optimize the funnel from need to purchase (Wiesel et al. 2011).

The additional flexibility requires closer coordination of the operations and marketing functions

(Bijmolt et al. 2021), but has the potential to groom more effective interactions with the customer,

increasing their satisfaction and delivering higher profits to the retailer.

The literature has identified different ways to extract value from omnichannel. On the one

hand, traditional marketing actions can be refined with more precise customer histories, such as

targeted advertising or promotions (Goic and Olivares 2019). On the other hand, many decisions

in the operational realm have been improved. The design of channels can be optimized by better

understanding how offline and online affect each other (Bell et al. 2017, 2020, Kumar et al. 2019,
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Bar-Gill and Reichman 2020). Information provision can drive the channel choices of the consumers

(Gallino and Moreno 2014). Information from online sources can also help predict demand better

so inventory levels can be optimized (Huang and Van Mieghem 2014, Cui et al. 2018). Finally,

fulfillment flexibility allows firms to better run their supply networks (Hübner et al. 2019).

Most of the strategies described above are effective for firms that have a large online sales

channel, but it is less clear how offline-heavy retailers can take advantage of an omnichannel strategy.

Moreover, despite the increase of online shopping, retailers keep investing in stores as these remain

the primary channel to interact with consumers (Schaverien 2018, Dowsett 2019). According to Bell

et al. (2014), the value can be obtained by providing better information online, in a webrooming

model. In this paper, we intend to uncover one additional value creation strategy available to

omnichannel retailers, which is especially important under webrooming: one can exploit online

interactions to detect (true) customer needs at a granular level – product or category level– and

study the determinants of store conversion, measured in the number of sales generated by these

potential customers.

This conversion process is complex, as visitors’ initial shopping intention must translate into

exposure to the wanted products (and others), then into consideration sets, and finally, possibly

after reflection, consultation with store staff, and try-on, into purchase. It involves time and effort

from the consumers, so a well-engineered layout can help them access their desired products quicker,

and they might end up buying with a higher probability (Underhill 2009). Indeed, convenience

increases the chances that customers buy: more formally, time pressure and higher search costs

decrease sales (Hui et al. 2009b, Brynjolfsson et al. 2011). This the reason why impulse items such as

chocolates are often located near the check-out line, and Amazon has patented the One-Click button

to reduce cart abandonment (Wagner and Jeitschko 2017). Unfortunately, the understanding of

the relationship between layouts and conversion is limited. While richer displays are known to

increase conversion (Boada-Collado and Mart́ınez-de Albéniz 2020), there is a lack of empirical

evidence linking product position in the store with sales. Causal evidence of this kind is hard to

obtain, because retailers generally do not know the store visitor’s shopping list, and hence they

only observe sales performance of a particular store area but not how effective it was in capturing

potential purchase intentions. As Goic and Olivares (2019) put it, “In contrast [to online channels],

data regarding browsing behavior in retail stores have been, for the most part, nonexistent. Studies

that seek to measure the effect of changes in the layout and display of a store have typically used

aggregate store-level data to conduct causal analysis.” In this paper, we provide one novel way to

assess the effects of layout on conversion, which can be fed into a layout optimization model and

generate improved store layouts.

For this purpose, we first build a theoretical model where conversion is affected by the physical

effort invested by the visitor to locate products in her shopping list. We then work with a large

home improvement retailer for which we observe, during 7 months, all offline and online activities.
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For 16 stores, we observe full transaction records, i.e., composition of individual tickets, and product

details and precise location within each store. For the online channel, we observe full clickstreams,

i.e., all the clicks with timestamps by distinct geolocated origins of internet traffic. For each store

and product, we are thus able to count how many different potential customers might be interested

in the product. This is a proxy for the number of store visitors genuinely interested in purchasing

the product, and we show that it is indeed a strong predictor of product sales. We are then in a

position to study how conversion is moderated by product location in the store. We find that the

distance from the store entrance is the most critical determinant of conversion and items easier to

reach – closer to the store entrance – exhibit significantly higher conversion, after controlling for

product fixed effects. In contrast, we find that spillovers from adjacent products are not significant

(recall that these are home improvement products for which there is little impulse shopping),

which suggests that using store visits to create cross-selling revenue may not always be possible

or desirable, as also suggested by Gao and Su (2017a). Our empirical findings pave the way for

optimizing store layout. We formulate this question as an assignment optimization problem, and

show that revenues can be increased by 10.2% when online information is used to decide product

locations. This involves a one-time layout change. The revenue lift marginally increases up to

10.5% if we further allow the retailer to change the layout weekly.

Our work thus contributes to the growing literature on retail analytics, specifically by showing

that having access to product preference lists – available in online interactions – as opposed to

simply shopping baskets – typical in store transaction records – is very valuable. Our approach is

thus a simpler alternative to in-store customer tracking (Hui et al. 2009a), and more importantly

gives access to information about which products attracted visitors to the store (see Chen et al.

1999 for a similar idea applied to advertising). Besides establishing the connection between store

layout and sales, we provide an integrative perspective where customer behavior is combined with

layout design decisions, which goes beyond minimization of average travel distance (De Koster et al.

2007) or consideration of product adjancencies (Ozgormus and Smith 2020).

The rest of the paper is organized as follows. Section 2 reviews the relevant literature. Section

3 formulates the model of a shopping visit and formulates the layout optimization problem. We

estimate the impact of layout on sales in Section 4. Section 5 includes a counterfactual analysis of

alternative store layouts. Section 6 concludes the paper.

2 Literature Review

Our work is mainly related to three streams of literature. First, we build on the operations and

marketing literature that has studied the shopping funnel. Second, we are connected to the works

about offline-online channel interactions. Third, we contribute to the literature on prescriptive

models for retail execution.
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2.1 Shopping funnel

The concept of funnel is a natural approach to study the effects of different marketing strategies on

the customer. The funnel applies to both physical channels, where store visits are transformed into

units sold, and online channels, where leads become visits which in turn generate orders. Wiesel

et al. (2011) provides a framework to integrate both channels. In terms of modelling, hierarchical

models are a convenient way to capture that only a fraction of those showing an initial interest in

shopping end up making a purchase (Arora et al. 1998, Mart́ınez-de Albéniz et al. 2020). Detailed

decision processes have been developed, such as the use of consideration sets (Wang and Sahin

2018) or product evaluation heuristics (Aouad et al. 2021).

An interesting variation of the study of shopping funnels is possible when interactions between

customer and firm occur multiple times, requiring us to consider the sequence in which they occur.

Sequential decisions have been considered in the marketing and economics literature across visits

(Chintagunta et al. 2012) or within a single visit (Hui et al. 2009a,b, Ruiz et al. 2020). Hui

et al. (2009a) provides a review of marketing research that considers paths of consumers in store

settings. Ruiz et al. (2020) include memory effects as well as one-step forward considerations.

Closest to our context is Hui et al. (2009b), who model the path between supermarket categories,

using a conditional model where transitions from category to category are driven by destination

characteristics and path history, which they validate with path data in one store. Interestingly,

store layout is included in the decision process through the distance between store regions. We use

a similar approach, with some differences. First, we do not have individual path data, but have

access to product-level aggregates. Second, we focus on conversion from needs to purchases, so

our consideration of cross-product interactions is operationalized in conversion spill-overs, between

needs for one product and sales for another, which is moderated by the location of products in

the store. Third, we see variation of product locations across different stores, which allows us to

control for product characteristics and separately measure the impact of product location.

Furthermore, the literature, except for the papers that employ path data, typically considers

transaction data in the form of baskets, i.e., the set of products appearing in a given ticket. To the

best of our knowledge, only one paper theorizes about the importance of order within the basket.

Chen et al. (1999) highlights that some categories are more important than others as they are the

reason behind a store visit. They develop the concept marketing profits to reflect that profit should

be attributed to the category that brought the customer to the store. While our focus is very

different, we are able to separate online activities into initial clicks, those that appeared in the first

position of an online session, and those that were clicked afterwards. We find that first-time clicks

are more important in predicting store sales, in comparison with later clicks.
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2.2 Omnichannel

The omnichannel phenomenon has been extensively studied in the last decade. Brynjolfsson et al.

(2013) provides an early discussion of the potential of omnichannel for retailers. Gao and Su

(2017a,b) develop analytical models for channel choice under omnichannel capabilities. As concep-

tualized in Bell et al. (2014), the benefits of omnichannel come from better product information,

and from better fulfillment possibilities. In other words, there advantages in showrooming, and in

webrooming.

Showroom physical interactions in the store allows to engage with customers more effectively.

Bell et al. (2015, 2017, 2020) show how the convenience and the store experience can help online

pure players sell more. Kumar et al. (2019) identifies the possibility of making in-store returns as

another driver of sales increases.

Webrooming can also be valuable. Gallino and Moreno (2014) study the effect of Buy Online

Pickup in Store (BOPS) on online and offline sales, and find that store traffic increases due to better

information about in-store product availability. Interestingly, the quality of the online experience

has an impact on offline sales (Bar-Gill and Reichman 2020, Gallino et al. 2018).

Our study reveals a different value driver of omnichannel. It can be used to identify demand

needs at the store level and hence study the impact of store layout on the conversion process.

2.3 Retail Execution

Our work is also connected to works that develop models to improve retail execution. Interventions

have focused on different dimensions, which we briefly review. Perdikaki et al. (2012), and Mani

et al. (2015) measure the impact of staffing levels on sales, which Chuang et al. (2016) use to

develop a labor planning methodology. Caro and Gallien (2010) study inventory distribution across

stores and combine demand forecasting and inventory allocation optimization to improve sales

at Zara; Gallien et al. (2015) apply a similar approach to new product distribution. Inventory

inaccuracy is another cause of suboptimal retail performance. DeHoratius et al. (2008) measure

the extent of inaccuracies and DeHoratius and Raman (2008) use inventory replenishment and

audits to mitigate their effects. Montoya and Gonzalez (2019) develop a hidden Markov chain

model to predict phantom stock-outs based on sales time-series. The effect of store congestion has

also been explored: Lu et al. (2013) measure how queues reduce sales conversion.

We discuss here an understudied aspect of retail execution. Indeed there is no existing work

that studies the role of store layout in generating sales. In particular, Hui et al. (2009b) do not

investigate store design because they only have data on one store and hence cannot disentangle

the effect of product location from the product itself. In contrast, we study layout decisions. The

design of a store layout resembles that of designing a warehouse. There exists a broad literature

on warehouse layout optimization, see De Koster et al. (2007) for an excellent review. Usually, the
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design problem is formulated as a large integer program that is solved with heuristic techniques.

The methods have also been applied to store layout design, e.g., Mowrey et al. (2018). In these

models, customer behavior is integrated through simplified customer behavior assumptions such as

considering penalties for categories that are not adjacent (Ozgormus and Smith 2020). In contrast,

we use the moderating effect of location on conversion to propose improve layouts.

3 Model

3.1 The Shopping Process

In the same vein as the shopping funnel discussed in Section 2, we make the following assumptions

for the shoppers in our model:

1. Store choice: consumers prefer buying at a store that is closest to where they live. Hence,

each store has a “natural catchment area” that consists of all the households within a certain

radius.

2. Shopping lists: a significant fraction of consumers starts their purchasing process with a pri-

oritized list of items in mind that they would like to buy or are considering buying. Products

that are more important to the consumer are held higher in the list.

3. Webrooming: a significant fraction of consumers does product research online on the retailer’s

website, and then follow through by visiting the store to purchase (some of) the items they

researched online. A consumer’s (mental) shopping list dictates the order in which they search

the items on the retailer’s website. The first item on the shopping list can be understood as

the “lead category” for that given consumer (Chen et al. 1999).

4. Store sales moderated by effort: once at the store, consumers try to purchase all the items

on their shopping list but might give up on some if they run out of time or if they are not

willing to exert the necessary effort to find and fetch the item.

This sequential funnel makes some assumptions regarding customer behavior. First, it requires,

implicitly, that consumers highly value their time, so they make their store choice based on prox-

imity, and limit their willingness to shop to fill functional needs, thereby disregarding potential

impulse purchases that would require extra effort for a small additional utility. This assumption

is reasonable for a grocery or home improvement store chain in which all stores are alike and that

carry most of the products offered online.

Second, we ignore competing stores. Note that we are not assuming that consumers are captive

to a particular store, but rather that households are representative of the demand faced by the

neighboring stores, even if they do not necessarily shop there.
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Third, the shopping list assumption can be justified in retail settings where choices are made

before entering the store. Hence, there is prior choice set that is mostly unaffected by the layout.

This assumption is consistent with choice models where each customer has a preference list. In

the literature, these products are substitutes and the customer ends up buying a single, preferred

product out of the available ones. In our context, we extend this view to consider a preference list

of complementary products, so this can be interpreted as a shopping list.

Fourth, the webrooming assumption is based on a common pattern observed in omnichannel

retailing. In fact, industry reports show that the percentage of shoppers doing online research prior

to visiting the store can range from 69% to 88% (Accenture 2013, Harris 2013, Deloitte 2017).

Finally, the moderation effect that effort has on sales is justified by the value of time premise.

This assumption is consistent with behavioral models in which consumers have a time budget for

in-store purchases (Hui et al. 2009b), and is more amenable to functional products such as home

improvement, for which the time spent enjoying the store experience is not a major driver of

conversion.

3.2 An Empirical Specification

Our empirical specification is based on the assumptions presented in the previous section. Concep-

tually at a high level, it has the following form:

salesist = αi + αs + αt + f
(
online visitsist, effortis

)
+ εist (1)

The dependent variable salesist should be considered in log form, so as to justify an additive

structure of independent drivers. The terms αi, αs, αt correspond to product (i), store (s) and

time (t) fixed effects, which represents the baseline demand. The next term amplifies demand as

a function of webrooming moderated by effort, through a generic function f(·) that increases with

online visits and decreases with effort. Here, online visitsist represents a vector of relevant metrics

that characterize online traffic, and effortis should capture the time (disutility) involved in finding

product i at store s. Note that the latter excludes the fixed time/cost it takes to arrive to the store,

which would be captured by the store fixed effect. Finally, εist is the usual error term.

A few more remarks are noteworthy. We consider two amplification components in Equation

(1). Namely, (i) primary demand: people that came to the store with the intention of buying, and

exerted the effort to find the product; and (ii) secondary demand: people that came to the store

searching for something else, but got exposed to the product and ended up buying (spillover in

path, spillover nearby). Both components should be captured by online visitsist.

We can observe that there are no substitution effects included in Equation (1). This formulation

is appropriate when different products are solutions to non-overlapping functional needs. As will be

seen next, our analysis is performed at the subcategory level, and hence substitution effects across
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categories should be negligible.

Finally, the effect of store execution, via assortment and service level decisions, is captured

by the store fixed effect. Specifically, note that the model in Equation (1) does not take into

account inventory, which could censor demand when there are stockouts. This can pose a challenge.

However, in our case it was not a major issue because the service level of our industrial partner

was overall high.

4 Application to Home Improvement Retailing

4.1 Context

We collaborated with a South American chain of home improvement stores, a leader in this industry,

which operated 61 stores across Chile and an online channel at the time of the collaboration. We

obtained a comprehensive proprietary dataset providing information about stores, products and

customer interactions, which we describe below.

The retailer sells a variety of home improvement products, tools and materials. For the sake of

illustration, the items in the assortment belong to categories such as Paint and Accessories, Wood,

Plumbing, Gardening, Decor, Furniture, Lighting or Car Accessories, to name a few. The same

assortment is sold in stores and online. In the products available in the data, we list 380,134 SKUs

that are categorized in different hierarchical levels in the following manner: 5 Level-D clusters,

21 Level-0 clusters, 168 Level-1 clusters, 787 Level-2 clusters, and finally other more fine-grained

clusters.

At this retailer, the weight of the online channel is small, as it is responsible for only 2.63% and

6.20% of total tickets and revenues, respectively. At the same time, in this industry webrooming is

known to be an important factor affecting the shopping process; for instance, Home Depot states

that it influences about 60% of store purchases even though the online channel only contributes to

6% of sales (Digital Commerce 360 2017). Because products are functional and product research

is typically done in advance, this seems to be the ideal setting to assume that customers build a

shopping list before entering the store, and to empirically connect online browsing to purchases.

Three types of data are available to us, which reflect customer behavior in online and offline

channels:

• Transaction data. It describes the subset of the assortment’s products that are purchased

together. Each product bought belongs to a ticket, which is assigned to a physical store and

a date. We refer to the purchase data as shopping-cart or shopping-basket data hereafter.

From the raw information, we compute how many tickets issued by a certain store in a certain

date included products of each category.

• Clickstream data. It describes the online journey that potential customers navigate when
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visiting the retailer’s website. It consists of time-stamped observations of product-level vis-

its, with an IP address identifier (totalling 3,691,442 different identifiers). We refer to the

clickstream data as shopping-list data or webrooming data hereafter. To process clickstream

data, we first define a session as the web journey that a potential customer (given by an IP

identifier) navigates in one natural day. One session is formed by a list of ranked products,

represented in a ranked vector. IP identifiers are geolocated, so we are able to associate each

session with stores nearby. Specifically, the catchment area of a given store is a 5km radius for

stores in the Santiago Metropolitan area and 20km elsewhere. There is one special IP identi-

fier that is worth mentioning: it corresponds to a gateway assigned to all wireless connections

from mobile networks. Despite this point being geolocated in Santiago, it comprises all the

mobile connections that originate in Chile. For this reason, mobile traffic cannot reliably be

assigned to a nearby stores, so it is left out of our analysis. Furthermore, we do not consider

web visits that are thought to be generated by bots through web-scraping. To remove those

visits, we filter the visits by those IP identifiers that either visit one product more than 40

times or visit more than 300 products in one certain day.

• Store layout data. It describes the layout of the store, i.e., it details each Level-1 category’s

location in each store. The layouts of 16 brick-and-mortar stores are available in pdf files.

We process these files automatically and we obtain the locations of the category labels within

the layouts. These locations are described in (x, y) coordinates, and measured in pixels,

but for each file, the scale conversion is available, through the width of checkout corridors

which measures 1.65 meters. Hence, we can compute the distance in meters that a potential

customer has to walk in the retailer’s store, so as to buy a product. From this map, we can

thus compute the distance between products and between an item, the store entrance and

the checkout lanes. We use Manhattan distances in meters, so as to reflect the true walking

distance given the existence of horizontal and vertical aisles in the stores.

Given the information about layouts, we focus our study on 16 of the retailer’s brick-and-

mortar stores (26.2% of the total), and its online channel. From these stores, nine are located in

the Santiago Metropolitan area, while the remaining stores belong to other regions. We use daily

data from December 1st, 2018 to June 30th, 2019, with the exception of 19 days that were removed

from the analysis due to missing values. The total study period is thus 30 weeks long.

Tables 1 and 2 compare the number of tickets and the composition of basket value and size for

these 16 stores compared to the entire network. We observe that our subsample has stores that are

slightly larger in scale (number of tickets) but does not significantly change the basket composition,

hence suggesting that no bias is introduced by focusing on our chosen store subset.

9



Table 1: Week and store distribution of tickets in stores

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

# tickets per week & store (16 stores) 468 14,804.69 5,844.029 711 10,487 18,471 34,428

# tickets per week & store (all stores) 1,788 11,677.26 5,395.334 711 7,662.2 14,659 34,428

Table 2: Basket value and size distribution in stores

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Focal sample (16 stores)

Basket value 6,928,597 39,224.43 138,006.5 0 6,110 39,280 71,200,000

# categories per basket 6,928,597 2.180 1.798 1 1 3 36

All stores

Basket value 20,878,950 39,242.500 124,958.1 0 5,990 38,600 136,596,250

# categories per basket 20,878,950 2.161 1.780 1 1 3 39

4.2 Descriptive Statistics

In this section we operationalize the variables from our conceptual model (see Section 3). The data

is aggregated weekly to avoid within-week fluctuations: each observation corresponds to a week t,

a Level-1 category i (which we call product for simplicity), and a store s. Hence, we define the

following variables of interest:

• Nist: Number of tickets that include product i issued at store s during week t.

• Nst: Total number of tickets issued at store s during week t. Note that Nst ≤
∑

iNist because

a ticket may include multiple products.

• V1,ist: Number of online sessions in which product i is viewed as the first item, within the

catchment area of store s during week t.

• V2−4,ist: Number of online sessions in which product i is viewed as the second, third, or fourth

item, within the catchment area of store s during week t.

• V>4,ist: Number of online sessions in which product i is viewed as the fifth item or further,

within the catchment area of store s during week t.

• Vist: Number of online sessions in which product i is viewed in any order, within the catchment

area of store s during week t. It follows that Vist = V1,ist + V2−4,ist + V>4,ist.

• Vst: Total number of online sessions within the catchment area of store s during week t. It

follows that Vst =
∑

i Vist.
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• Dis: Distance to pick item i in store s measured in meters, i.e., the distance between the

store entrance and product i plus the distance between product i and the checkout lanes.

In our study, we use the variables in log form for ease of interpretation of the coefficients and to

remove skewness, i.e., we transform variable X into x := log(1 +X) (we add one to avoid problems

with zero values of X). With this notation, the variable nist is our proxy for salesist, and dis is our

for proxy effortis. Our proxy for online visitsist includes vist, v1,ist, v2−4,ist, v>4,ist, and might also

include these same variables for other products j whose traffic is relevant to the sales of product i.

Table 3 contains the descriptive statistics of the logged variables, and Table 4 their correlations.

One can observe that the amount of generic online traffic vst has a small correlation with sales

indicators nst or nist. However, product-specific online traffic vist, v1,ist, v2−4,ist and v>4,ist has a

high positive correlation with product-specific sales nist. This indicates that indeed online activity

can be used as a key input for store demand forecasting, and this insight is a promising starting

point to develop a more sophisticated model as discussed in §3.

Table 3: Descriptive statistics of the main model variables, log-transformed.

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

nist 80,190 4.057 1.917 0.000 3.091 5.485 8.713

nst 80,190 9.283 1.550 0.000 9.230 9.824 10.447

v1,ist 80,190 2.901 1.449 0.000 1.946 3.932 7.771

v2−4,ist 80,190 2.715 1.377 0.000 1.792 3.689 7.594

v>4,ist 80,190 1.819 1.263 0.000 0.693 2.708 6.632

vist 80,190 3.668 1.479 0.000 2.773 4.691 8.419

vst 80,190 8.660 0.839 6.737 8.013 9.308 10.239

dis 80,190 4.694 0.439 3.386 4.368 5.026 5.936

Table 4: Correlation matrix between the variables of interest (log).

nist nst v1,ist v2−4,ist v>4,ist vist vst

nist 1

nst 0.382 1

v1,ist 0.446 -0.037 1

v2−4,ist 0.355 -0.056 0.888 1

v>4,ist 0.263 -0.065 0.755 0.883 1

vist 0.415 -0.049 0.952 0.967 0.869 1

vst -0.007 -0.062 0.515 0.600 0.605 0.577 1
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To further illustrate the available data, Figure 1 shows the joint evolution of Vist and Nist for

two stores and two products. We can see that both series tend to move together, although their

relative values (i.e., their ratio) changes across stores and products, which is natural given that some

categories may require relatively more browsing to achieve a certain level of sales, and the customers

around some stores may have higher natural conversion between browsing and purchasing, compared

to others. These structural, static differences will be captured by store and product fixed effects in

our model.

Category 415 Category 522

S
tore 34

S
tore 39

0 10 20 30 0 10 20 30

300

1000

3000

300

1000

3000

Week

Vits

Nits

Figure 1: Evolution of clickstream and sales figures, for two products and two stores.

As shown in Table 4, nist and vist are highly correlated. This suggests that clickstream activity

seems a useful lead indicator of product i’s performance. Taking into account this relationship, we

can further study the impact of the store layout on conversion. Figure 2 plots conversion for a given

store, measured as nist−vist = log ((1 +Nist)/(1 + Vist)) ≈ log (Nist/Vist), averaged over 30 weeks.

We observe that, while conversion fluctuates, we see a clear trend showing that the conversion of

distant products is lower than those near the entrance or center. This model-free evidence suggests

that a product’s location in the store strongly affects the conversion from product interest to actual

sales.

4.3 Results

We can now rewrite Equation (1) into a main specification:

nist = αi + αs + αt + βvist + γdis + εist (2)

We also consider variations of this specification, in which we incorporate quality-segregated online

visits, via v1,ist, v2−4,ist, v>4,ist instead of vist; categorical values of dis; interactions between vist

and dis; or spillover effects. We estimate Equation (2) using standard Ordinary Least Squares.
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Figure 2: Model-free representation, with sales (left) and conversion (right) in quintiles. The arrows

correspond to store entrances and exit.

We first study the use of nearby online interactions as determinants of store sales. For that

purpose, we set γ = 0 in Equation (2). The results are reported in Table 5. Model (1) presents a

benchmark model that only incorporates fixed effects for product, week and store. As we can see,

fixed effects only lead to a R2 of 0.87, which suggests that cross-product and cross-store heterogene-

ity, as well as seasonality (cross-week variation), are high in our context. Model (2) incorporates the

total online traffic for each store and week, in the same way Gallino and Moreno (2014) used online

interactions as a driver of store sales. In comparison with them, we find general online traffic is non-

significant and does not help predict product-level sales, suggesting that accounting both for store

and time variation through fixed effects is sufficient and online traffic simply contains redundant

information. In contrast, when we consider product-level online interactions in Models (3) and (4),

prediction improves steeply, to R2 = 0.92. This implies that product-level clicks provide a strong

signal about sales. Moreover, the coefficient in Model (3) is equal to 1.0382 and highly significant,

which suggests that the relationship between clicks and sales is approximately proportional, i.e.,

we can write Nist ≈ kVist. In other words, if online clicks double, sales also double. Model (4)

breaks down clicks into different ‘quality grades’, by considering separately clicks in which the focal

product was the first one in the session (the sequence of products viewed by the consumer; the

first one should be the most important for the consumer), and the clicks in which the focal product

was in positions 2 to 4, or > 4. We can observe that indeed clicks in the first position have the

highest coefficient 0.7477, while later clicks had lower coefficients 0.2864 and 0.0716 (all of them

are statistically significant). This supports our interpretation that online interactions are a proxy

for true consumer interest, and it is revealed especially when it appears early in the online search

sequence of the consumer.

With Models (1) through (4) we have established that online interactions are significant drivers
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of sales. This is a direct influence where sales are simply the consequence of a true demand need

existing prior to a store visit. Beyond this direct influence, the literature has identified other

indirect influences, namely spill-over effects between products. In other words, if there is a flow of

shoppers interested in buying a certain product, these visitors will be exposed to other products

on their way to their primary shopping objective. We thus consider two additional drivers of sales

arising from spill-over effects.

First, for a certain product i, we consider the primary demand associated with products j that

require the shopper to walk by i in their path to j. For this purpose, we define the binary variable

INPATHijs which is equal to one if the shortest path from entrance to j to exit, and the shortest

path from entrance to i to j to exit coincide, i.e., they have the same distance; and zero otherwise.

We then define PATHist as the number of online sessions within 5km of the store that include any

product j 6= i such that INPATHijs = 1:

PATHist =
∑
j 6=i

INPATHijs × Vjst, (3)

and let pathist = log(1 + PATHist). This variable should thus capture spill-overs into items that

are in central locations within the store, that see a high amount of traffic for primary items that

are further inside the store.

Second, we consider the primary demand of products j in the vicinity of i. We thus define the

binary variable NEARBYijs which is equal to one if the distance between i and j is less than 20

meters. We then let NEARist as the number of online sessions within 5km of the store that include

any product j 6= i such that NEARBYijs = 1:

NEARist =
∑
j 6=i

NEARBYijs × Vjst, (4)

and let nearist = log(1+NEARist). This variable captures spill-overs related to proximity to store

hot spots.

We incorporate these two variables in Model (5). We can see that primary demand vist remains

significant and with a coefficient similar to that in Model (3). In contrast, nearist is not significant

and pathist is negative and significant but very small in magnitude. This suggests that spill-over

effects are negligible, which is understandable given the functional, non-impulse nature of the

products sold in our home improvement context. Another possible interpretation of this result is

that webrooming informs a more focused consumer that will spend less time roaming at the store,

and therefore, opportunities for cross-selling are diminished. Other authors have discussed similar

effects of webrooming, see for instance Gao and Su (2017a).

The previous models establish that online clicks are a valuable determinant of store sales.

We can now study the impact of product location on sales, corresponding to Equation (2) with

γ 6= 0. We thus operationalize location through the ease of access to the product in the store,
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Table 5: Models using online interactions.

Dependent variable:

nist

(1) (2) (3) (4) (5)

vst −0.0749

(0.0781)

vist 1.0382∗∗∗ 1.0382∗∗∗

(0.0044) (0.0044)

v1,ist 0.7477∗∗∗

(0.0075)

v2−4,ist 0.2864∗∗∗

(0.0102)

v>4,ist 0.0716∗∗∗

(0.0086)

pathist −0.0006∗∗∗

(0.00004)

nearist −0.0001

(0.0001)

Fixed effects week week week week week

product product product product product

store store store store store

Observations 80,190 80,190 80,190 80,190 80,190

R2 0.8707 0.8707 0.9243 0.9249 0.9244

Adjusted R2 0.8706 0.8706 0.9242 0.9248 0.9244

Residual Std. Error 1.6142 1.6142 1.2352 1.2300 1.2338

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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via the distance from entrance to product to exit. Table 6 shows the result of the estimation.

The table shows two different ways of incorporating distance, directly as a continuous variable

and as a piece-wise constant function with intervals of 50 meters. We first observe, in Models

(6) and (7), that distance alone (without online clicks) is significant but only marginally improves

the result of Model (1). In contrast, Models (8) and (10) improve on Models (3) and (4). The

coefficients for vist and vk,ist, k ∈ {1, 2 − 4, > 4} do not change, which means that the role of

distance, driver of conversion, seems orthogonal to that of online interactions, a proxy for true

consumer needs. These models show a strong effect of distance, with a coefficient of -0.0012 and -

0.0013 respectively. This is a relatively high value: distance within the store roughly varies between

50 and 250 meters, which implies that the difference in sales between closest and furthest products

is about −0.0012× (250− 50) = −0.24, a 21% decrease (since e−0.24 = 0.79). Similarly, Models (9)

and (11) show that the effect of distance is monotonic, with higher distances reducing sales more

and more, with a drop of -0.24 (= −0.46 − (−0.22)) between the closest products to the furthest

ones. Figure 3 graphically compares the effect of distance on sales in Models (10) and (11).

5.8

6.0

6.2

100 200 300
Dis

n i
st Model (10)

Model (11)

Figure 3: Variation of sales as a function of in-store distance in Models (10) and (11).

4.4 Robustness

While our main models in Tables 5 and 6 are kept simple to focus on the direct impact of online

visits and effort, we run several robustness checks to discard possible confounders and to identify

possible interactions between model variables. We discuss below the findings and include details in

the Appendix.

First, there could be store-specific factors that influence product success and seasonality, which

may be related to online visit patterns and thus bias our estimation. To discard this possible

confounder, we replicate the estimation of our main Models (9) and (11) with alternative fixed

effect configurations, which incorporate possible interactions between week, product and store.
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Table 6: Models using online interactions and product location.

Dependent variable:

nist

(6) (7) (8) (9) (10) (11)

vist 1.0387∗∗∗ 1.0389∗∗∗

(0.0044) (0.0044)

v1,ist 0.7491∗∗∗ 0.7500∗∗∗

(0.0075) (0.0075)

v2−4,ist 0.2873∗∗∗ 0.2872∗∗∗

(0.0102) (0.0101)

v>4,ist 0.0689∗∗∗ 0.0681∗∗∗

(0.0086) (0.0086)

Dis −0.0009∗∗∗ −0.0012∗∗∗ −0.0013∗∗∗

(0.0002) (0.0001) (0.0001)

1Dis∈[50,100] −0.2467∗∗∗ −0.2208∗∗∗ −0.2299∗∗∗

(0.0296) (0.0227) (0.0226)

1Dis∈[100,150] −0.2448∗∗∗ −0.2501∗∗∗ −0.2522∗∗∗

(0.0309) (0.0237) (0.0236)

1Dis∈[150,200] −0.3223∗∗∗ −0.3325∗∗∗ −0.3422∗∗∗

(0.0333) (0.0255) (0.0254)

1Dis∈[200,250] −0.3278∗∗∗ −0.4325∗∗∗ −0.4602∗∗∗

(0.0430) (0.0328) (0.0327)

1Dis∈[250,∞] −0.3976∗∗∗ −0.4341∗∗∗ −0.4562∗∗∗

(0.0559) (0.0427) (0.0425)

Fixed effects week week week week week week

product product product product product product

store store store store store store

Observations 80,190 80,190 80,190 80,190 80,190 80,190

R2 0.8707 0.8708 0.9244 0.9245 0.9250 0.9251

Adjusted R2 0.8706 0.8707 0.9243 0.9244 0.9250 0.9251

Residual Std. Error 1.6138 1.6132 1.2344 1.2336 1.2291 1.2282

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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The results are shown in Models (12) to (17) in Table 7. We confirm that our main findings are

preserved.

Second, even though we do have cross-store layout variation, one may think that, if stores are

far apart, then customers may be intrinsically different so in reality separate estimations should

be conducted for each of the stores. To remedy this, we focus on the nine stores located in the

Santiago Metropolitan area, which should serve a common pool of customers with homogeneous

tastes. We replicate the estimation Models (6) through (11) with the data from these nine stores,

see Table 8. Again, we observe that the main findings are preserved.

Third, we may be concerned that online visits may be endogenous and influenced by external

shocks that are also moving sales. To alleviate this concern, for each store we measure the on-

line interactions that happen far from it – a distance of more than 10km for stores in Santiago

Metropolitan area and more than 40km for stores in other region – as a Hausman-type instrument

for online visits. We argue that the online visits far from the store of interest will be exogenous and

correlated with the visits near the store, but uncorrelated with the dependent variable for sales.

Thus, this approach protects against possible endogeneity of the vist variables. Table 9 replicates

Models (8) through (11) using a two-stage least squares (2SLS) approach. We find that the results

of the 2SLS do not change our findings.

Finally, in our main specification the effect of distance is assumed to be independent of the

amount of online visits. We consider a possible interaction between distance and online traffic to

enrich Model (9), shown in Model (19) in Table 7. We see that the coefficients are similar in sign

and size. The main insight from this specification is that the impact of distance is smaller for items

with higher online activity, suggesting that products with a high amount of webrooming may be

less sensitive to in-store location.

5 Store Layout Optimization

5.1 A Product-Position Assignment Problem

Our model assumes and empirically demonstrates that a product’s location within the store has

a significant impact on its conversion. In this section, we are interested in prescribing improved

layouts that increase total sales, taking consumer true needs captured via online interactions as

fixed.

Product location optimization is a relatively well-studied area of research, mainly in warehouse

settings, see De Koster et al. (2007) for a review. In these contexts, one usually minimizes picking

costs, which results in placing high-rotation products in easily accessible locations, while slow-

movers are sent to more costly locations. In a store, the costs to bring a product to the shelf are

relatively small and insensitive to location within the store. As a consequence, we focus on the
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main driver of profits coming from the impact of product location on sales conversion.

We can formulate the layout design problem as the following assignment problem. Let xistp =

0, 1 denote whether product i ∈ I was located in position p ∈ P, in store s and time period t. One

product can go into one position, and one position can only take one product.

Let dp be the distance a consumer must travel from the entrance when a product is located in

position p (at a given store). Then, the location-dependent demand of product i can be written as

ristp = ridistp, where distp = exp
(
αi +αs +αt +βvist +γdp

)
, and β and γ come from the estimation

of Model (8). We can now formulate the layout design problem as

Jst := max
x

∑
i∈I

∑
p∈P

ristpxistp (5)

s.t.
∑
i∈I

xistp ≤ 1 ∀p ∈ P (6)

∑
p∈P

xistp ≤ 1 ∀i ∈ I (7)

xistp ∈ {0, 1}. (8)

Note that this formulation only includes constraints pertaining to the impossibility of placing

two products in the same location, or one product being sent to two locations. It is easy to

incorporate additional linear constraints reflecting business conditions for the product in the store.

For example, if a product can only be located in a particular part of the store, then we can

set xistp = 0 for infeasible locations. If products i and j must be adjacent, then we can set

xistp ≤
∑

p′ App′xjstp′ with App′ = 1 if p and p′ are adjacent and zero otherwise; in other words, if

xistp = 1, then one adjacent p′ (such that App′ = 1) is such that xjstp′ = 1.

In the absence of additional constraints, Equations (6)-(7) make a Totally-Unimodular Matrix

(TUM), and hence constraint xistp ∈ {0, 1} can be replaced with 0 ≤ xistp ≤ 1 without changing

the optimal solution of (5). In other words, Jst can be obtained by solving a linear program.

Otherwise, we solve an integer program.

Notice that we can write ridistp = r̄istgp, which will allow us to find the optimal assignment

in closed form. Indeed, we can write the objective as
∑

i∈I
∑

p∈P r̄istgpxistp. This is maximized

by assigning the largest gp to the largest r̄ist: assign the best in-store position (highest gp) to the

best-selling product (highest r̄ist).

5.2 Improving on Existing Layouts

We can now apply the method of §5.1 to reengineer the actual layouts observed in our data. We

first provide an in-depth analysis for one store and then provide results for the complete set of

stores.
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We define positions p in the same way as products, i.e., p denotes the actual position of product

i = p. We compute ri to be equal to the average spending per ticket in product i over the season of

30 weeks. We force the assignment to remain stable, and hence define decision variables xisp = 0, 1

in the following decision problem:

Js(z) := max
x

∑
i∈I

∑
p∈P

(∑
t∈T

ristp

)
xisp (9)

s.t.
∑
i∈I

xisp ≤ 1 ∀p ∈ P (10)

∑
p∈P

xisp ≤ 1 ∀i ∈ I (11)

∑
p∈P
p=i

xisp ≥ |P| − z (12)

xisp ∈ {0, 1} (13)

In contrast to Equation (5), Equation (9) considers a one-time product assignment change that

applies to the entire season (hence xisp does not depend on t). It also includes an additional

parametric constraint
∑

p∈P,p=i xisp ≥ |P|−z, where z is an integer variable. This constraint limits

the number of actual product assignment changes to be z at the most. For example, if z = 0,

the only feasible solution is to set xisp = 1 when i = p and zero otherwise. If z = |P|, then the

constraint is innocuous. When z takes intermediate values, it provides us with interventions with

varying degrees of complexity. Note, however, that constraint (12) breaks the TUM structure of

the constraint matrix, and thus requires us to solve a set of integer programs. In addition, we

consider two versions of the decision set P: one that includes all products, and another one that

excludes construction products that are typically bulkier and located at the side of the store, and

hence, are difficult to place in any other store position.

Consider store 51, depicted in Figure 2. In this store, we have 168 different products (Level-1

categories) assigned to 168 positions shown in the map. Figure 4 shows the normalized value of

Js(z) as a function of the number of changes allowed z. Of course, our formulation ignores all

other business constraints, e.g., adjacencies, space limitations, etc. but still our results are useful

to understand the potential of layout optimization as suggested by our empirical findings.

When there is no limit in the number of changes (z = 168), a rearrangement of the layout

increases revenues by 13.8% when all products can be moved. The value decreases to 7.5% when

construction products are excluded from the optimization. These are both significant lifts for a

home improvement retailer where margins are thin and increasing the top line typically has a very

strong effect on net margins. When examining in more detail the type of changes recommended in

this scenario, we see that top-selling products located towards the back of the store are moved to
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the front, and some minor ones in front positions are relegated to the back of the store.

Additionally, Figure 4 informs us about how much complexity is needed to achieve a certain

level of lift. Specifically, when all products can be moved, with just swapping two products with

each other (z = 2), a revenue lift of 2.0% can be achieved; when changing 10 products, the lift is

7.3%, more than 50% of the unconstrained maximum lift possible 13.8%. The insight is similar

when we exclude construction products. This suggests that with minimal effort, the retailer can

achieve relevant improvements in its operations.
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Figure 4: Expected revenue in store 51, after applying product-location assignment changes, as

a function of the maximum amount of changes z allowed. The revenue is shown relative to the

revenue achieved with the current layout, Js(0).

Furthermore, through this type of analysis we can also evaluate the value of changing the layout

on a recurrent basis. Namely, is there value in changing the layout every week, as opposed to just

once? This may be a useful intervention motivated by the changing patterns of vist, which may

change the potential of each product r̄ist over time. To answer this question, we can compare

Jrecurring
s (z) :=

∑
t∈T Jst(z) to Js(z). Figure 5 compares the values of Jrecurring

s (z) and Js(z) as a

function of the number of changes made. We find that flexibility may just increase revenues by less

that 0.5%, suggesting that a one-time intervention is sufficient to improve store performance. In

other words, the order of products along their ‘natural’ revenue r̄ist does not change significantly

across periods t, and thus the optimal assignment given z is stable over time.

Finally, we can extend this analysis to the entire network of 16 stores for which we can reengi-

neer the layout. Figure 6 shows the distribution of the revenue improvements achieved with an

unconstrained layout change and one limited excluding construction products. As we can see, the

revenue lift can be significant, with one store achieving improvements of 17.5%, with the average in

the sample being 10.2%. Average improvements are already 6.0% when the intervention excludes

construction products.
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Figure 5: Jrecurring
s (z)/Js(z) in store 51 as a function of the maximum amount of changes z allowed.
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Figure 6: Distribution of Js(∞)/Js(0) across 16 stores (each point corresponds to a store).

6 Conclusion

In this paper, we have provided a new perspective on how omnichannel, via webrooming customer

interactions, can help retailers manage better their physical stores. Specifically, we have posited

that, when sales are preceded by a need that crystallizes into a shopping list and pre-purchase

product search, then store sales are driven by both the amount of nearby online visits and the

effort that it takes to fetch the product in the store. We validate our conceptual model with data

from a home improvement chain, over multiple products, weeks and locations. The data provides

variation of product interest and in-store location, and allow us to identify the effect of online visits

and effort on sales. We find that sales grow proportionally with online visits, and that easy-to-reach

store positions lead to significantly higher conversion (with about a 20% variation between best

and worst locations). In addition, we generate evidence that there is negligible cross-selling in this

context.
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Our results furthermore have important implications for the management of physical stores.

First, they suggest that layout reengineering can provide a tempting lift in revenues, of about 10%

on average within the stores in our study. Second, they imply that the efforts to generate store

visits, in the hope that they will generate unplanned purchases, may not be fruitful. In other words,

it may be better that stores do not accept new roles as delivery points (Faithfull 2018, Jones 2019),

if the products on sale are related to a functional need that requires previous research. Third, our

results identify the effort to find products in the store as a hindrance to conversion. In other words,

actions to make in-store product search simpler may lead to increased sales. One such action could

be to provide product ‘addresses’ to consumers when they prepare their shopping lists, as Target

does, see Figure 7.

This study highlights the importance of better understanding the role of store design on cus-

tomer experiences. This is a promising direction for future research. Indeed, the adoption of Inter-

net Of Things technologies in stores provides new data sources for a more granular understanding

of the trajectories of customers over time (the funnel view) and space (transitions between home,

work and shopping destinations). This requires the full digitalization of the store conditions, and

precise product locations, a piece of information that to date is rarely available, with the exception

of supermarket planograms, common in grocery retailing, or RFID sources, installed by Walmart

or Zara among others. It can potentially reveal the causal impact of different interventions such as

product viewing, product information provision, staff advice or fitting (Musalem et al. 2021), as well

as environmental stimuli such as music or temperature (Mart́ınez-de Albéniz and Belkaid 2021).

Combining on-premise data with online interactions is particularly interesting, so that conceptual

frameworks such as Bell et al. (2014) can be operationalized and translated into prescriptive advice

for retailers.
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Appendices

Supporting Tables for Robustness

Table 7: Alternative fixed effects for Models (9) and (11) and interaction model

Dependent variable:

nist

(12) (13) (14) (15) (16) (17) (18)

vist 1.0453∗∗∗ 1.0479∗∗∗ 1.0546∗∗∗ 1.0021∗∗∗

(0.0043) (0.0044) (0.0044) (0.0085)

v1,ist 0.7562∗∗∗ 0.7423∗∗∗ 0.7484∗∗∗

(0.0074) (0.0075) (0.0074)

v2−4,ist 0.2913∗∗∗ 0.2973∗∗∗ 0.3019∗∗∗

(0.0100) (0.0102) (0.0101)

v>4,ist 0.0680∗∗∗ 0.0854∗∗∗ 0.0860∗∗∗

(0.0086) (0.0087) (0.0087)

Dis −0.0024∗∗∗

(0.0003)

1Dis∈[50,100] −0.3470∗∗∗ −0.3729∗∗∗ −0.2206∗∗∗ −0.2282∗∗∗ −0.3469∗∗∗ −0.3712∗∗∗

(0.0325) (0.0323) (0.0225) (0.0224) (0.1001) (0.0996)

1Dis∈[100,150] −0.5075∗∗∗ −0.5119∗∗∗ −0.2501∗∗∗ −0.2510∗∗∗ −0.5084∗∗∗ −0.5121∗∗∗

(0.0371) (0.0369) (0.0235) (0.0234) (0.0987) (0.0981)

1Dis∈[150,200] −0.6147∗∗∗ −0.6151∗∗∗ −0.3325∗∗∗ −0.3407∗∗∗ −0.6157∗∗∗ −0.6146∗∗∗

(0.0401) (0.0399) (0.0253) (0.0252) (0.0991) (0.0985)

1Dis∈[200,250] −0.7187∗∗∗ −0.7247∗∗∗ −0.4334∗∗∗ −0.4590∗∗∗ −0.7212∗∗∗ −0.7253∗∗∗

(0.0504) (0.0501) (0.0326) (0.0325) (0.1033) (0.1027)

1Dis∈[250,∞] −0.7368∗∗∗ −0.7558∗∗∗ −0.4345∗∗∗ −0.4547∗∗∗ −0.7383∗∗∗ −0.7554∗∗∗

(0.0622) (0.0619) (0.0424) (0.0422) (0.1096) (0.1090)

Dis : vist 0.0003∗∗∗

(0.0001)

Fixed effects week week week-product week-product week-product week-product week

product-store product-store store store store-product store-product product

store

Observations 80,190 80,190 80,190 80,190 80,190 80,190 80,190

R2 0.9264 0.9273 0.9261 0.9267 0.9280 0.9288 0.9244

Adjusted R2 0.9261 0.9269 0.9255 0.9261 0.9272 0.9280 0.9243

Residual Std. Error 1.2198 1.2128 1.2250 1.2197 1.2110 1.2040 1.2342

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 8: Models (6) through (11), subset Santiago Metropolitan area

Dependent variable:

nist

(19) (20) (21) (22) (23) (24)

vist 1.0358∗∗∗ 1.0366∗∗∗

(0.0062) (0.0062)

v1,ist 0.7379∗∗∗ 0.7393∗∗∗

(0.0104) (0.0104)

v2−4,ist 0.3134∗∗∗ 0.3119∗∗∗

(0.0139) (0.0139)

v>4,ist 0.0463∗∗∗ 0.0480∗∗∗

(0.0120) (0.0120)

Dis −0.0010∗∗∗ −0.0013∗∗∗ −0.0015∗∗∗

(0.0002) (0.0002) (0.0002)

1Dis∈[50,100] −0.3004∗∗∗ −0.3057∗∗∗ −0.3290∗∗∗

(0.0452) (0.0355) (0.0356)

1Dis∈[100,150] −0.2845∗∗∗ −0.3150∗∗∗ −0.3328∗∗∗

(0.0470) (0.0369) (0.0370)

1Dis∈[150,200] −0.3454∗∗∗ −0.3781∗∗∗ −0.4062∗∗∗

(0.0483) (0.0380) (0.0380)

1Dis∈[200,250] −0.3667∗∗∗ −0.5474∗∗∗ −0.5894∗∗∗

(0.0584) (0.0459) (0.0460)

1Dis∈[250,∞] −0.6345∗∗∗ −0.5257∗∗∗ −0.5422∗∗∗

(0.0839) (0.0660) (0.0661)

Fixed effects week week week week week week

product product product product product product

store store store store store store

Observations 44,910 44,910 44,910 44,910 44,910 44,910

R2 0.8677 0.8678 0.9181 0.9182 0.9179 0.9180

Adjusted R2 0.8675 0.8677 0.9180 0.9181 0.9178 0.9179

Residual Std. Error 1.6527 1.6519 1.3004 1.2994 1.3022 1.3009

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 9: TSLS for Models (8), (9), (10) and (11)

Dependent variable:

nist

(25) (26) (27) (28)

vist 1.1184∗∗∗ 1.1186∗∗∗

(0.0047) (0.0047)

v1,ist 0.9518∗∗∗ 0.9554∗∗∗

(0.0159) (0.0158)

v2−4,ist 0.2379∗∗∗ 0.2289∗∗∗

(0.0415) (0.0414)

v>4,ist 0.0213 0.0285

(0.0370) (0.0369)

Dis −0.0012∗∗∗ −0.0014∗∗∗

(0.0001) (0.0001)

1Dis∈[50,100] −0.2188∗∗∗ −0.2353∗∗∗

(0.0227) (0.0228)

1Dis∈[100,150] −0.2505∗∗∗ −0.2590∗∗∗

(0.0237) (0.0238)

1Dis∈[150,200] −0.3332∗∗∗ −0.3525∗∗∗

(0.0255) (0.0256)

1Dis∈[200,250] −0.4405∗∗∗ −0.4893∗∗∗

(0.0329) (0.0331)

1Dis∈[250,∞] −0.4369∗∗∗ −0.4736∗∗∗

(0.0428) (0.0429)

Fixed effects week week week week

product product product product

store store store store

Observations 80,190 80,190 80,190 80,190

R2 0.9241 0.9242 0.9238 0.9239

Adjusted R2 0.9240 0.9241 0.9237 0.9238

Residual Std. Error 1.2370 1.2361 1.2391 1.2382

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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