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Abstract

Problem Definition: Product proliferation and renewal force consumers to continuously
scan the market and selectively buy highly desired new items. At the same time, these products
are typically durable, a fact that forces consumers to think about how a new addition will con-
tribute to her already existing assortment. Methodology/Results: We develop a modeling
framework based on dynamic programming, in which, given an assortment of products in the
same category, a consumer decides in each period which product to use and how many to add
to her assortment. As time evolves, older items may decay and lose their value, which triggers
a need for assortment renewal. We provide a structural characterization of the value function
and optimal policy in the general case, as well as a closed-form analytical solution in the case of
exponentially-decaying product utilities. We then explore in more depth two distinguishing fea-
tures of durable products, obsolescence and value uncertainty, and their implication on optimal
assortments, firm revenue, consumer welfare, and generated waste. We find that, when con-
sumers discount the future, firms have the incentive to offer products with faster obsolescence,
generating conflicting interests between firms on the one hand and consumers and sustainability
on the other hand. This alignment problem cannot be solved by taxing sales, as firms and (ratio-
nal) consumers would internalize such taxation schemes, but can be mitigated through policies
that reduce the maintenance cost of the assortment. In contrast, value uncertainty negatively
affects consumers and firms alike, suggesting that it is better for everyone to offer goods with
predictable future utility. Managerial Implications: Our results suggest that business models
that help consumers maintain longer-lasting assortments may be more sustainable, financially
and environmentally, than fast-fashion ones, where both obsolescence and uncertainty are high.

Keywords: durable goods; assortment management; obsolescence; value uncertainty; Dynamic
Programming.

1 Introduction

The fast fashion industry, spearheaded by companies such as Inditex and H&M, has experienced

a meteoric rise during the last three decades, offering consumers a seemingly endless variety of

products at very affordable prices. Perhaps surprisingly, it is not uncommon for consumer surveys

to reveal disappointment with the owned fast fashion assortments, despite the presumed variety
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and affordability. For instance, a recent survey reported that the average American woman had

103 items in her closet, out of which 21% was declared to be “unwearable” and 12% had been never

been worn. Additionally, 44% of the women surveyed said that they could not find an adequate

piece of clothing inside their closet, so around 61% of them decided to buy new items. However,

even after acquiring more items, 10% of the respondents felt depressed every time they opened their

closet (Closet Maid 2016). At the same time, the industry has come under the scrutiny of policy

makers for its unsustainable practices, in terms of wasteful production methods as well as huge

amounts of finished-products waste. Examples are abundant: on the production side, indicatively,

around 7,500 liters of water are used to produce a standard pair of jeans (United Nations 2019); on

the consumer side, a recent report shows that the actual usage of fashion products has decreased by

around 30% between 2002 and 2016 (Ellen MacArthur Foundation 2017). These trends suggest that

there seems to be a contradiction between the short-term appetite for buying new items, and the

longer-term disappointment with keeping them for a long period of time in one’s closet. Moreover,

the consequence of this apparent contradiction is a poor outcome in terms of social welfare, because

of the high waste generated by the industry.

A critical observation towards understanding the origins, and the way out of this impasse, is

the fact that fast fashion has, in essence, introduced a new category of products, whose utilities to

the consumer vary significantly with time and available assortment. The life cycles of those apparel

products are typically shorter than what existing literature would traditionally classify as durable

goods (cars, furniture, large domestic appliances). On the other hand, fast fashion items are clearly

not consumable goods either (food, drinks, medicine), because they are available for use during a

few years. For this new breed of items, consumers have to actively manage their assortment, in

terms of dynamic acquisition and disposal. In contrast to the extensive literature on assortment

planning in Operations Management, in which assortments are optimized by a firm to maximize

sales, here the assortment is built and maintained by the consumer, generating an expected utility

from usage.

In this paper, we introduce a framework capturing the dynamics and decisions of assortment

management, from the perspective of a rational consumer. Specifically, we consider a risk-neutral

consumer, who optimizes her total expected net utility over a period of time, balancing acquisition

cost, holding cost, and expected utility from an assortment of durable products, by deciding when

and how much to purchase from a given product category. We provide a structural characterization

of the value function and optimal policy for the resulting Dynamic Program in the general case, as

well as a closed-form analytical solution in the case of exponentially-decaying product utilities.

Our objective for introducing and analyzing the above assortment management model is three-

fold. First, we aspire to provide a micro-founded benchmark for rational decision making in the

context of durable products, applicable not only to fast-fashion consumption, but also to other

consumption types in which products are durable but sufficiently affordable so that multiple items
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are simultaneously owned and used over time. It can then be contrasted to qualitative or empirical

findings in the literature on consumer behavior, in order to identify possible deviations, e.g., due to

behavioral biases. Second, we wish to understand the incentives of rational consumers, and whether

they are aligned or not to those of firms and policy makers. Importantly, our model provides one

of the first frameworks to analyze the incentives of the fast fashion industry, where demand is

endogenous to the decisions made by the firms. Third, the model introduced in this paper can

lay the foundations for a future decision support system for consumers seeking to optimize their

investments in durable products – their wardrobe, in particular.

The main insights of our work stem from the way that two distinguishing features of fast fashion

products, obsolescence and value uncertainty, affect rational consumer behavior and, through that,

firm profit as well as waste and societal welfare. We find that in the case of obsolescence, i.e., the

rate at which the utility of fast fashion products decreases over time, the incentives of consumers

are diametrically opposed to those of the firm when consumers discount the future: the firm’s profit

is maximized through products with fast decay, whereas the consumer’s net utility is maximized

through products of slow decay. This may not always be true when the discount factor is near one,

although we still observe opposing interests frequently. Importantly, any tax on sales, intended to

improve social welfare or reduce the rate of generated waste, is doomed to fail. This is in contrast

to the findings of Plambeck and Wang (2009), which consider a similar problem in the context of

consumer electronics, but from the firm’s point of view and with exogenous demand. In contrast,

we show that a “property” subsidy on the owned assortment, i.e., a reduction in the holding cost for

old products that remain in use, is successful in aligning the incentives of consumers and the firm,

primarily because product demand is endogenous in our case. In the case of value uncertainty, i.e.,

the unpredictable variability in the future utility to be received, the incentives of consumers are

organically aligned to those of the firm, and lesser uncertainty is preferred by both sides. In other

words, it would be better for everyone if the purported value of fast fashion products were more

predictable, because this would increase consumer’s future utility and incentivize larger assortments

which would, in turn, be beneficial for the selling firm. This suggests that ‘slower’ fashion would be

a win-win-win development for consumers, firms, and waste reduction, although this would have

to be combined with more sustainable production and recycling practices.

The remainder of the paper is organized as follows. Section 2 reviews the relevant literature.

We introduce a model of dynamic assortment management for a rational consumer, and provide a

structural characterization of the value function and the optimal policy in §3. We derive managerial

insights regarding the role of obsolescence and value uncertainty, and their impact on consumer

behavior and firm incentives via numerical experiments in §4. Section 5 concludes the paper and

presents avenues for future research.
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2 Literature Review

The problem of consumer-side (rational) assortment management has not received much attention

in the literature thus far. However, as we argue above, it is important to understand how consumers

make decisions when they acquire durable goods, when they use them, and when they discard them.

This becomes particularly pressing when the utility of these durable goods decays quickly over time

(Coase 1972).

In contrast, there is extensive and, by now, relatively mature literature on firm-side assortment

planning within Operations Management. Van Ryzin and Mahajan (1999) are the first to formulate

the static assortment planning problem using a multinomial logit model. Their model captures

the trade-off between offering variety and inventory costs. This seminal paper triggered many

developments in assortment planning, see Kök et al. (2008) and Caro et al. (2020) for reviews of

this literature. The study of assortment dynamics, closer to this paper’s context, has also been

quite active. Smith and Agrawal (2000), Mahajan and Van Ryzin (2001), Honhon et al. (2010)

or Mart́ınez-de Albéniz and Kunnumkal (2022) consider static assortments that evolve over time

due to sales, and generate different substitutions across products once stock-outs appear. Caro and

Gallien (2007) and Sauré and Zeevi (2013) consider assortments that can be updated from period to

period, while firms learn about product’s attractiveness. Bernstein and Mart́ınez-de-Albéniz (2017)

and Ferreira and Goh (2021) analyze dynamic assortments in the presence of strategic consumers

and show that rotating the assortment can increase consumer visits to the store and sales. Caro

et al. (2014) look at multi-period assortment planning, where product attractiveness decays over

time, as in our paper, so it becomes important to spread product introductions over the sales

season.

These works consider assortments over time, but focus exclusively on the consumer purchase

process. The objective is to maximize the expected profit from the sequence of assortments, which

is mainly driven by the sales probability, derived from a choice model. Hence, what happens after

purchase is ignored. A notable exception, and perhaps the paper that comes the closest to the

present work, is Fox et al. (2017), where a rational consumer buys a bundle of products that are

sequentially consumed. This is similar to our model, except that in our case products remain in

the assortment with a certain decay and variability around their expected utility, while in Fox

et al. (2017) items disappear from the assortment. In other words, decay in Fox et al. (2017) is

complete (retention of utility is zero) but contingent on usage, while in our model it is partial, but

independent of usage. The authors find that carrying variety in the bundle is valuable, so as to

exploit the value of broader variety at the time of consumption – which allows the consumer to

pick the highest-utility item from all the remaining ones in the bundle. Our model reveals similar

insights: carrying a broad assortment may be valuable so as to generate more variability in usage

values, leading to higher utility. In contrast to Fox et al. (2017) though, we account for product
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partial decays and the possibility of renewing them whenever necessary, at any point of time during

the horizon. These features make our model more appropriate for durable goods, and hence it can

be applied to new contexts of interest. In addition, we advance the understanding of the problem

at hand by analytically describing the assortment renewal process.

On the other hand, product usage has been the focus of a separate literature thread in Eco-

nomics, studying durable goods. For these products, decay takes the spotlight, as consumers can

use an item multiple times before its value disappears. The early focus on decay revolved around

planned obsolescence, and how items would lose their value after a certain amount of time (Bulow

1986). Purohit (1992) focuses on the auto industry and shows that new vehicles have a negative

effect on the price of used ones. This suggests that manufacturers phase out older items to highlight

the fashionability of innovation. Gordon (2009) studies the PC processor industry to show that

there is a negative connection between prices and replacements, and a positive relationship between

quality and replacement. Therefore, consumers are willing to pay more for items whose quality

is better. Several studies have focused on the dilemma about leasing vs. selling. In summary,

leasing provides a higher usage rate (Gavazza 2011), which ultimately depends on the reliability of

the product (Desai and Purohit 1999), although it might not be a good choice for the environment

(Agrawal et al. 2012). Finally, the importance of technology and quality as the driving force behind

new durable goods introduction has been studied in Fishman and Rob (2000), Gowrisankaran and

Rysman (2012), and Lobel et al. (2016), among others.

Apart from the literature on durable goods, our aim is also to contribute to the burgeoning

literature on sustainable operations. Related to the present work, Plambeck and Wang (2009)

analyzes the effects of taxes on product waste in the consumer electronics industry. The authors

find that sales decrease after incorporating an additional fee at the moment of purchase. Moreover,

when the tax is included at the time of disposal, the manufacturer’s profits are reduced. Long and

Nasiry (2022) focuses on the sustainability of the fast fashion industry, and shows that the key

driver of low product quality is the firm’s incentive to offer variety. The authors also find that

waste disposal policies and production taxes are effective in reducing the firm’s leftover inventory.

Chen et al. (2022) studies the agility of fast fashion retailers, and explores the optimal tax design

for such firms that improves social welfare. We, too, investigate how taxes and subsidies can be

used to align the incentives between the firm and consumers. We contribute to the literature by

suggesting age-dependent subsidies that allow to align firm and consumer incentives.

3 Modeling and Analysis

3.1 Motivating Survey Data

Before undertaking the modeling task, and in order to obtain a better understanding of consumer
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behavior regarding durable goods purchasing and usage, we carried out a small-scale survey where

we asked participants about their everyday use of clothes and shoes. The latter constitute a prime

example of durable goods where value decay and uncertainty play an important role in the way

consumers build and maintain their assortments dynamically. Out of 90 respondents, with an

average age of 30.2 years, we found that they owned an average of 14.4 pairs of shoes, 20.9 lower-

body apparel, and 42 upper-body apparel; and were spending an average of 831.2 euros in clothing

per year. One interesting aspect of the survey is that regardless of the size of their assortments,

respondents wore their “favorite” items more: on a monthly basis, they chose their favorite shoes

13.9 days, their favorite pants 8.4 days, and their favorite shirt 6.1 days. The small size of our

survey notwithstanding, consumers tended to purchase many more items than the ones they used

with regularity.

One participant in our survey, in particular, agreed to share with us the clothes that she selected

to wear a period of 42 days. (We obtained the photographs for 31 days, and a detailed description of

the items for the entire period.) The participant used 31 different upper-body garments, repeating

7 items twice, and 2 items three times. In terms of lower-body apparel, she used 14 different

garments, repeating 3 items twice, 1 item three times, 2 items four times, and 1 item six times.

Figure 1 shows how this participant decided to mix her assortment by combining different apparel

over the course of the survey. She did not decide to repeat the same garment twice in a row, but

she did repeat several lower-body items over a short period.

Figure 1: Assortment usage by a participant in our small-scale survey.
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These findings motivate the modeling framework that we introduce below, and provide an

anecdotal benchmark against which we can compare the insights resulting from our analysis.

3.2 A Model of Dynamic Assortment Management of a Rational Consumer

In this section, we introduce a consumer-side model of dynamic assortment management, for prod-

ucts within the same product category, over their life cycle: from acquisition, to use, and eventually

disposal. As prime examples of the application scope of our modeling framework, one could think

of clothes, shoes, and accessories; which, on the one hand, are clearly not consumable goods; but,

on the other hand, devalue relatively quickly with time, in contrast to what the literature has tra-

ditionally considered as durable goods, such as cars, furniture, and large domestic appliances. It is

precisely for such products that dynamic assortment management makes the most sense. We adopt

the “canonical” viewpoint of a rational, risk-neutral consumer, whose objective is to maximize her

total expected discounted net utility, unaffected in her decisions by any behavioral biases.

We assume that every product in the assortment can be in one of n ≥ 2 different stages,

indexed from 0 to n − 1, which signify the number of time periods that the product has been in

the assortment: products in stage 0 have just been acquired, and are thus considered “new,” while

products in stage n − 1 are considered “old” and will become obsolete, and hence discarded from

the assortment, in the very next period. The state of the assortment is captured by the generic

vector x ∈ Rn+, where xi denotes the number of distinct products in stage i, for i = 0, . . . , n − 1.

For tractability, we assume that the composition of the assortment takes values in the nonnegative

real numbers. However, our numerical experiments are conducted for the more realistic case of

nonnegative integers.

The consumer uses exactly one of the products during each time period, as we assume that they

belong to the same product category; the one that provides the highest expected utility. We assume

that the utility that product k, in stage i = 0, . . . , n− 1, at time period t = 0, . . . , T − 1, provides

to the consumer is comprised of a stage-specific component log(ut,i), common to all products in

stage i and period t, plus a product-specific random shock ξt,i,k. We assume that these random

shocks are i.i.d., over products, stages, and periods, following the standard Gumbel distribution,

i.e., with mean equal to zero, and scale parameter equal to one. The shocks capture item-specific

preference changes, e.g., a dinner party that requires elegant clothing. This implies that, conditional

on the parameters ut,i, the probability that product k delivers the highest utility is given by the

well-known multinomial logit (MNL) formula ut,i/(1 +
∑n−1

j=0 ut,jxj). Moreover, the total expected

utility received by the consumer, given an assortment x, is equal to

log

(
1 +

n−1∑
i=0

ut,ixi

)
.

It is reasonable to assume that, in the beginning of period t, the parameters ut,i are known
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to the consumer. Before that period, however, e.g., at the time of acquisition of a product, these

parameters may have a component that is deterministic as well as one that is random. The ran-

domness could be the result of unpredictable variability in user preferences; for instance, in an

apparel context, changes in the prevailing fashion styles, or a colder-than-usual season that man-

dates warmer clothes. Therefore, we define the (instantaneous) reward function of the consumer

as follows:

Ut(x)
.
= Eut,i log

(
1 +

n−1∑
i=0

ut,ixi

)
. (1)

The introduction of uncertainty on the parameters ut,i, so that the reward function is defined as

the expectation over their joint distribution, allows us to capture the fact that consumers, at the

time of purchase, need to pay a known price for a product with intrinsically unknown value, during

the various stages of its life cycle. Furthermore, uncertainty would be extremely helpful to account

for product heterogeneity, when our model is estimated from real data; see the related discussion

in §5.

The formulation above allows us to capture several important phenomena related to durable

goods, and fashion items in particular. First, we are able to introduce seasonal values; for instance,

if a period denotes a quarter, then we could set log(ut,i) = log
[
1 + cos

(
2πi
4

)]
, so that, one year

after buying a product (in stage i = 4), its value has been restored to its starting level. Second, our

formulation allows to incorporate random fashion trends that increase the utility of old items similar

to the current trend, e.g., log(ut,i) = f (‖Zt−i − TRENDt‖), where Zt−i is a multi-dimensional

vector of attributes of the products sold in period t − i, TRENDt are the preferred attributes

for the market, and f(·) is a decreasing function. Third, our formulation allows us to introduce

products whose utilities decay with age; for example log(ut,i) = αt−i + log(β)i, with β ∈ [0, 1],

and ατ providing the base utility of products bought in period τ . This specification implies that

ut+1,i+1 = ut,iβ ≤ ut,i. Finally, the model is sufficiently flexible to incorporate all these effects

together, e.g., log(ut,i) = log
[
1 + cos

(
2πi
4

)]
+ f (‖Zt−i − TRENDt‖) + log(β)i.

Apart from the usage value of an assortment, there are also costs associated with building and

maintaining it. New products can be bought at a price pt per unit in period t. The fact that

we assume a single price for all products purchased during a period is, again, motivated by our

assumption that all products belong to the same category: while in practice there will invariably

be price variations, competition should keep them relatively close. If the consumer decides to buy

new products, they are made available to her in the next period as new, i.e., in stage i = 0, at

period t + 1. Moreover, we assume that, for each product in stage i and period t, the consumer

incurs an (instantaneous) inventory holding cost ht,i. The latter cost could be capturing actual cost

of maintaining the assortment, but more importantly, the opportunity cost of having “invested” in

the assortment and not on alternative opportunities.
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Summarizing, the net reward at time t, at state x and under purchasing decision q, is equal to

πt(q,x)
.
= Ut(x)−

n−1∑
i=0

ht,ixi − ptq. (2)

Observe that, while we have described Ut(·) as grounded in the MNL choice model, our formu-

lation and later results are only expressed as function of Ut(·). This suggests that one may consider

alternative primitives for the usage process. The only condition for our general results to hold true

is that Ut(·) is jointly concave in x. This condition is satisfied when Ut(·) follows (1).

We can formulate the dynamic assortment management problem of a rational consumer as a

Dynamic Program (DP). The value function at state x = (x0, . . . , xn−1) ∈ Rn+ is given by the

recursion:

Jt(x) = max
q≥0
{πt(q,x) + δJt+1(q, x0, . . . , xn−2)} , (3)

where t = 0, . . . , T − 1, with JT (·) .
= 0 and 0 ≤ δ ≤ 1 is a discount factor. We denote the optimal

solution to the above recursion in period t by q∗t , which corresponds to the optimal purchasing

quantity.

In the model above, dynamic assortment management has a single operational lever, product

purchasing, as the discounted long-term utility and cost of products are endogenized in the purchas-

ing decision. One could consider an extension to our benchmark model with a second decision, the

dynamic disposal of items, before they become obsolete at the end of their life cycle. Such a model

would be particularly meaningful under storage capacity or budget constraints. Nevertheless, for

the types of products that motivate our work (clothes, shoes, gadgets, consumer electronics, books)

these constraints do not seem to be a first-order consideration.

3.3 Structure of Value Function and Optimal Policy

We begin our analysis by providing a structural characterization of the value function and the

optimal policy of the DP in Eq. (3). We note that the analysis is only made possible by the

assumption that state and decision variables are continuous; assuming them taking integer values

would complicate the analysis significantly, making it unlikely to be tractable. We relegate all

proofs of the results presented in the remainder of the section to Appendix A.

Proposition 1 The value function Jt(·) is concave in x.

Synonymous to concavity is that the marginal value of an item at stage k is decreasing, i.e.,

J(x0, . . . , xk−1, xk + 1, xk+1, . . . , xn−1) − J(x0, . . . , xk−1, xk, xk+1, . . . , xn−1) decreases in xk. The

proposition, thus, establishes that there are decreasing returns with respect to the number of items

carried in the assortment.
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Given the concavity, one may expect that Jt(·) is also submodular. Such condition would imply

that items at different stages are largely substitutes, i.e., that the marginal value J(x0, . . . , xk−1, xk+

1, xk+1, . . . , xn−1)− J(x0, . . . , xk−1, xk, xk+1, . . . , xn−1) decreases in xj , j 6= k. While we show that

this is the case when there is no uncertainty in the parameters ut,i, perhaps surprisingly, we also

prove that this property does not hold in general.

Proposition 2 If V ar(ut,i) = 0 for all t and i, and q∗t > 0 for all t, then Jt(·) is submodular.

Establishing the submodularity of Jt(·) is cumbersome: in the proof, we use the implicit con-

dition q∗t > 0 together with the structure of function Ut(·) without uncertainty, to simplify the

recursive computation of ∂2Jt
∂xi∂xj

and prove the result. We also demonstrate that when there is

uncertainty in ut,i, and especially in the presence of negative correlations, Jt(·) may not be sub-

modular. Indeed, if random utilities are negatively correlated in time, then it is plausible that

the marginal value of a product is affected in different ways by the availability of products in the

assortment in different stages of their life cycle; that is, J(x0, . . . , xk−1, xk + 1, xk+1, . . . , xn−1) −
J(x0, . . . , xk−1, xk, xk+1, . . . , xn−1) may decrease in some xj ’s, j 6= k, but may increase in others.

The structural characterization of the value function of the DP in Eq. (3) follows, naturally, a

characterization of the optimal policy.

Proposition 3 Let the optimal purchasing quantity at period t, q∗t (x), be strictly positive. Then,

it satisfies:

q∗t (x) : δ
∂Jt+1

∂x0
(x) = pt. (4)

Furthermore, if Jt+1(·) is submodular, then the sensitivity of the optimal purchasing quantity with

respect to the existing assortment satisfies:

∂q∗

∂xi
(x) ≤ 0, i = 0, . . . , n− 2. (5)

The first part of Proposition 3 shows that the optimal purchasing quantity, in any period, is

determined by the familiar condition that the marginal value, ∂Jt+1

∂x0
, has to be equal to the marginal

cost, pt. The uniqueness of the optimal policy is guaranteed by the fact that ∂Jt+1

∂x0
(q,x) decreases

in q from Proposition 1. The second part of Proposition 3, valid under the conditions of Proposition

2, shows that the optimal purchasing quantity decreases in the existing assortment; an intuitive

result if the products are largely substitutes (under submodularity).

3.4 A Tractable Case: Stationary, Exponential Rewards and Long Horizon

The DP in Eq. (3) provides a general formulation for the dynamic assortment management problem

of a rational consumer that, unfortunately, does not admit a closed-form solution. Put differently,
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at this level of generality, the most that one can hope for, on the theory side, is the structural char-

acterization provided in §3.3. Here, we investigate a special case with time-stationary parameters,

exponential utilities and costs, and infinite horizon, where a tractable analysis and a closed-form

solution are possible.

Specifically, we consider a scenario where both T and n are very large; infinite in our mathemat-

ical model. The utility parameters ut,i are time-homogeneous and decay exponentially in i, so that

ut,i = utβ
i, where β ∈ (0, 1) and {ut} is a sequence of i.i.d. copies of a nonnegative random variable

u. Moreover, we assume that the holding costs are also homogeneous and also decay exponentially

in i, i.e., ht,i = hβi; and that prices do not change, i.e., pt = p. In this setting, the DP in Eq. (3)

can be solved in closed-form, as shown next.

Proposition 4 Consider the dynamic assortment management problem of §3.2, with T = n =∞,

ut,i = utβ
i, ht,i = hβi, and pt = p. The optimal policy is a time-stationary buy-up-to policy.

More specifically, letting s =
∑∞

i=0 β
ixi, there exists q̄ such that it is optimal to purchase q∗ =

max{q̄ − βs, 0}; and q̄ is satisfies:

E
[

1

1/u+ q̄

]
= p

(
1

δ
− β

)
+ h. (6)

The tractability of this special case stems from the fact that the high-dimensional state space,

in the general case, can be reduced to a single-dimension state here, s =
∑∞

i=0 β
ixi, as can been

seen in the proof. This implies that, under the optimal policy, the single-dimension state becomes

s = q̄ and the quantity bought in every period is q∗ = q̄ − βq̄ = (1− β)q̄.

This result sheds light on the impact of the model parameters on q̄, which relates to the “target”

assortment size; more precisely to s, the weighted sum of the products in the assortment. Since

the left-hand side of (6) is decreasing in q̄, it follows that the assortment size decreases in p and

h, as one would expect, because, as the assortment maintenance costs increase, the appropriate

response is to reduce it. We also see that as β and δ increase, i.e., as a product becomes more

durable (higher β) or the future becomes more valuable (higher δ), it is worthwhile investing in

broader assortments, because they cost the same but deliver more future value.

An interesting insight is derived with respect to the uncertainty of 1/u: since 1/(x+ q̄) is convex

in x, as σ1/u increases (keeping the expected 1/u unchanged) the term E
[

1
1/u+q̄

]
increases, and

hence it becomes optimal to increase q̄. In other words, more utility uncertainty leads to larger

assortments. This is intuitive as consumer utility is obtained by picking the largest realization of

the individual product utilities. More variability of these utilities is more valuable with a larger

assortment. Thus, the incentive to carry a larger assortment increases with the variability of 1/u.

In a way, this can be interpreted as a real option, which becomes more valuable as underlying risks

are amplified; see Trigeorgis (1996). Note however that this does not mean that the consumer is

better off with more uncertainty. In fact, expected utility is decreasing with the variability of u, as
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we observe in §4.2. But a way to protect the consumer against the drop in utility is to opt for a

broader assortment.

3.5 Tractable Lower and Upper Bounds

The tractable analysis for the case of time-stationary, exponential rewards, motivates the devel-

opments in this section. In short, we show that even if the rewards are not exponential but can

rather be bounded from above and below by exponential functions, then tractable upper and lower

bounds can be established for the corresponding value function that hold for finite horizon and

product life cycle.

More concretely, we assume that there exist universal constants 0 < βLB ≤ βUB ≤ 1, as well as

nonnegative sequences of random variables {uLB,t} and {uUB,t}, independent of {ut,i}, such that

uLB,t · βiLB ≤ ut,i ≤ uUB,t · βiUB with probability 1, for all i and t. (7)

Further, we define

hUB,t
.
= max

i

{
ht,i
βiLB

}
and hLB,t

.
= min

i

{
ht,i
βiUB

}
, for all t,

and through the above, the functions R2
+ → R+:

πLB,t(q, s)
.
= E [log (1 + uLB,t · s)]− hUB,t · s− ptq,

and

πUB,t(q, s)
.
= E [log (1 + uUB,t · s)]− hLB,t · s− ptq.

These lead to formulating the related one-dimensional Dynamic Programs:

Jj,t
(
s
)

= max
q≥0

{
πj,t(q, s) + δJj,t+1

(
q + βjs

)}
, j ∈ {LB,UB}, (8)

with Jj,T (·) .
= 0. Since the reward functions πLB,t(·) and πUB,t(·) are designed to bound, from

below and above respectively, the reward function of the original Dynamic Program in Eq. (2):

πLB,t
(
q, sLB(x)

)
≤ πt(q,x) ≤ πUB,t

(
q, sUB(x)

)
, ∀(q,x) ∈ Rn+1

+ , ∀t,

where

sj(x)
.
=

n−1∑
i=0

βijxi, j ∈ {LB,UB},

it should come as no surprise that the value functions in Eq. (8) provide similar bounds to Jt(·).
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Proposition 5 Consider the dynamic assortment management problem of §3.2, with finite horizon,

T , and product life cycle, n; and with the random utilities satisfying the exponential-decay condition

in Eq. (7). Then, the value function of the Dynamic Program in Eq. (3) is bounded as follows:

JLB,t
(
sLB(x)

)
≤ Jt(x) ≤ JUB,t

(
sUB(x)

)
, ∀x ∈ Rn+,

for every t ∈ {0, . . . , T − 1}.

We note that these bounds are tight, in the following sense: if the utilities provided by the

different products decay (precisely) exponentially with their age, then the lower and the upper

bound coincide. Moreover, it is straightforward to show that Jj,t, j ∈ {LB,UB}, are concave and

increasing one-dimensional functions.

4 The Impact of Value Decay and Uncertainty on Optimal As-

sortments

The modeling framework of the previous section allows us to understand how a consumer should

manage an assortment of durable goods. Here, we investigate how different model parameters affect

consumer welfare, firm revenue, and generated waste, in a scenario where the demand is “rational”

and endogenous. We seek to identify situations where the incentives of firms and consumers are

inherently aligned; or in conflict, where the deciding party – the firm in most cases – will opt for

outcomes that make the other party worse off. Indeed, a well-documented problem with durable

goods is that firms prefer to release lower quality products or to speed up introduction times to

induce replacement (Nair and Hopp 1992, Lobel et al. 2016, Koca et al. 2021). Such strategies

force consumers to buy more items that are used less often which, in turn, leads to higher volumes

of generated waste. For instance, consumers in Italy disposed, on average, 7.7 kg of clothing in

2016; in the same year, UK consumers disposed 3.1 kg of clothing (Labfresh 2017). Our modeling

framework provides a micro-foundation of the process of waste creation by assuming that durable

goods become obsolete after a certain number of periods.

Our numerical experiments are focused on exploring the role of value decay and value un-

certainty, both key parameters for managing an assortment of durable good, on firm revenues,

consumer welfare, and generated waste. In cases where the incentives of firms and consumers are

not inherently aligned, we investigate regulatory interventions that bridge the gap between the two

sides of the market, and push towards more sustainable outcomes.

In the remainder of the section, we use the following baseline parameter values. We set the

product’s lifespan to four semesters (n = 4 periods), to mimic a two-year life cycle of Spring-

Summer and Fall-Winter clothes. The per-product utility u is set at 1.5, i.e., log(u) = 0.4055.
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Price varies between p = 0.04 and 0.57, and discount factor takes values from δ = 0.5 to 1. The

holding cost is 0.05, unless otherwise specified. We vary the decay parameter β between 0.1 and

0.9, and the level of value uncertainty is controlled with a noise term ε ∈ [0, 1] around the mean.

To provide some context to these unit-less values, we can assign a monetary value of $200 to each

unit of cost and utility. As a result, a value of p = 0.34 represents a one-time expense of $68 and

a holding cost of h = 0.05 represents a cost of $2 per year. Similarly, a utility of log(1 + u) = 0.91

represents an average usage value of $36 per year; this means that a wardrobe of 10 items delivers

an average usage value of log(1 + 10× u) = 2.77; equivalently, $110 per year.

The computation of the value function in steady state is done by solving the DP with 100

periods (50 years, at 2 semesters per year), and by keeping the policy and performance obtained

after removing the first 30 periods (warm-up effect) and the last 30 periods (end-of-horizon effect).

4.1 Value Decay

First, we study the impact of the decay rate of product value with time, assuming the utility

function ut,i = uβi. The reason is that, for exponential-decay utilities, Proposition 4 provides a

useful analytical benchmark: the total number of items kept in the assortment increases in β and δ;

in other words, the size of the assortment increases as the value of products becomes longer-lasting

and as consumers discount future rewards less relatively to current ones. However, Proposition 4

assumes that products have infinite durability. Here, we investigate the case of products with finite

life cycle. Specifically, we cap the life cycle of products to 4 periods; i.e., after 4 periods product

value becomes zero.

For each parameter combination, we solve the DP and retrieve the optimal number of products

purchased, which typically varies over time, and compute its average. We also report the total

average number of items maintained in the assortment, as well as the corresponding consumer

utility and firm revenue. Figure 2 illustrates one instance of these numerical experiments. As we

can see in this example, higher β’s (i.e., lower values of decay rate) increase the per-period utility

because older products retain more of their value; resulting in larger purchases, bigger assortments,

and higher consumer utility. At the same time, this also benefits the firm, which obtains higher

revenue due to higher sales. This is in line with Proposition 4.

However, this is not always representative of the situation: depending on the combination of

price p, baseline utility u, holding cost h, and discount factor δ, the firm’s revenue may be increasing

or decreasing in β. Indeed, as β increases, the utility derived from each product also increases.

Due to decreasing marginal returns (concavity of the value function), this would suggest that the

need for additional products is reduced. It turns out though that this effect is partially offset

by the discount factor, which values current utility more than future ones. Specifically, consider

the direct effect of a variation of qt = xt,0 = xt+1,1 = xt+2,2 = xt+3,3. The consumer utility,
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Figure 2: Solution of the DP with baseline parameter values, for different levels of value decay rate

β (continuous variation on the left; discrete values 0.1, 0.5 and 0.9 on the right, for clarity), and

mild discounting of future rewards (δ = 0.9).

U :=
∑

t′ δ
t′ log(1 +

∑n−1
i=0 uβ

ixt′,i), is such that

∂U

∂qt
= δt

n∑
i′=1

δi
′ uβi

′

1 +
∑n−1

i=0 uβ
ixt+i′,i

,

which may increase or decrease in β depending on the value of δ. (Of course, the total effect will

also depend on the variation on qt′ , t
′ 6= t.) At optimality, this should be equal to the increase in

purchase and holding cost, δt(p + h
∑n

i=1 δ
i), which is independent of β. The interplay of these

opposing effects is captured in Figure 3, where we show the average number of products in the

assortment, as a function of the value decay rate β and the price p, for different discount factors δ.

When the discount factor approaches 1, the increasing term dominates, resulting in upward-sloping

curves. Conversely, the further the discount factor is removed from 1, the more the increasing effect

diminishes, leading to downward-sloping curves.

To further understand the interplay between these opposing forces driven by β, δ, and p, we

compute the optimal β that the firm would choose in order to maximize its revenues, β∗, for a given

the discount factor δ. It is not uncommon to have multiple solutions in this optimization problem,

so we identify the optimal interval for β, and then select β∗ to be the smallest optimum; this should

be, presumably, the lowest-cost product design for the firm. We repeat this process, for different

values of δ and one hundred price points, equally spaced from 0.1 to 1. Finally, we compute the

distribution of β∗ for five different percentiles. Figure 4 reports the results: we observe that, for

δ = 0.5, in more than half of the scenarios it is optimal to set β at its lowest value 0.1. Even at

δ = 0.9, in about half of the scenarios β∗ < 0.5.

An unforced conclusion of the above numerical experiments is that, when there is no discount-

ing of future rewards (i.e., δ ≥ 1), both consumers and firms prefer high-durability products. This
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Figure 3: Average number of products in the assortment, as a function of the value decay rate β

and the price p, for different discount factors δ = 0.5, 0.75, 0.9 and 1.

Figure 4: Optimal β chosen by the firm.
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means higher production costs and ultimately more waste, but these appear to be necessary sacri-

fices in order to sustain high levels of social welfare, both at the consumer and the firm side. On the

other hand, when there is sufficient discounting of the future (e.g., δ < 0.9), there is an incentive

alignment problem: the firm earns more revenue by offering low-durability goods, which implies

lower consumer utility. Indeed, with higher-durability goods, the consumer would end up keeping

a smaller assortment – since the consumer could obtain a higher usage value for a longer time, with

fewer items – and the firm would lose sales. This misalignment is highly problematic. As the firm

is the one that selects the value of β in practice, by controlling the process of product design, it is

more likely to release products with a low β, so that the consumer purchases a larger number of

items. Obviously, this strategy has terrible consequences both from a consumer welfare and from

an environmental perspective: many low-durability items are produced and purchased, which are

disposed not long after. This echoes well-known critiques of the fast-fashion business model (Caro

and Mart́ınez-de-Albéniz 2015, Long and Nasiry 2022).

How to remedy this unsatisfying outcome? Plambeck and Wang (2009) have suggested a tax on

sales to increase the cost of production and, in turn, the time between two consecutive purchases.

In our case, where multiple items co-exist in the assortment and β affects their future usage value,

a sales tax does not change the sign of the slope of firm revenue. Moreover, in our model, product

renewal and assortment breadth are endogenous consumer decisions. Our conclusion is that the

firm would still look to release lower-durability products, despite any taxation on sales, while the

consumer would still be better off with higher-durability ones. In other words, a tax on sales would

be internalized by the firm, and would not help in aligning its incentives towards more sustainable

consumption.

Effectively, one needs a tax or a subsidy that affects the firm differently at different levels of

durability/value decay rate. In other words, one needs a scheme that makes the firm worse off

when β is low, and better off when it is high. Intuitively, we would like the consumer to keep

consuming new items at higher levels of β, as opposed to substituting many low-durability items

for few high-durability ones. This can be achieved via a β-dependent subsidy on the holding cost

or, alternatively, a subsidy on the usage of older items.

For instance, one can offer a subsidy to the holding cost when β > β̂, reducing it to a fraction

γ. We see the results in Figure 5, when the subsidy is 50% and 80% of the holding cost, at two

threshold values of β̂ = 0.5 and 0.8. We observe that, despite revenue still having a decreasing

shape above and below the threshold, it becomes optimal for the firm to set β∗ > β̂. One may

wonder how such scheme could be implemented. One such way is for the subsidy to directly cover

maintenance costs of the items, such as cleaning and repairing older clothes. One could also think

about using technology that would credit the subsidy when older items are used; recall that the use

probability of an item of age i is ut,ixt,i/(1 +
∑n−1

i′=1 ut,i′xt,i′), so usage of older products is directly

related to the value of β.
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Figure 5: Firm revenue when holding cost is subsidized, and the consumer faces an effective holding

cost ht,i
(
1− (1− γ)1β>β̂

)
, for different values of β̂ and γ.

4.2 Value Uncertainty

Uncertainty regarding the value obtained from using a durable good is another key parameter for

a consumer deciding how to manage her assortment, as the consumer pays a price, set by the firm,

without perfect knowledge of the product’s intrinsic value; akin to risk vs. reward considerations

in a portfolio selection problem. We have introduced uncertainty in Eq. (1) to define the reward

function as the expectation over their joint distribution. In this section, we regulate the amount of

value uncertainty by considering ut,i = u(1 + ε̃) with ε̃ = ±ε with probability 50%. From Eq. (1),

Jensen’s inequality implies that larger uncertainty, i.e., higher ε, reduces consumer utility. This is

in contrast to the ‘real option’ value of having more choice, in which higher variance of ξt,i,k (the

shock to individual items in each period), increases the expected utility – because the consumer

picks the item that delivers the highest realized utility. Here, uncertainty in ut,i penalizes expected

utility more in downward shocks, in comparison to increases in upward ones, leading to Ut being

decreasing in ε overall.

Of course, this direct effect applies under a given assortment. Interestingly, the same argument

should apply to marginal utility, because ∂Ut/∂xt,i = Eut,i/(1 +
∑n−1

i′=0 ut,i′xt,i′) is also concave in

ut,i; although concave in ut,i′ for i′ 6= i. As a result, the number of products purchased should also

decrease with increasing uncertainty. However, as shown in Figure 6, it is possible that the number

of products purchased may increase at high price levels. In that case, we have xt,i = 0 for some

t and i, which eliminates the convexity of ∂Ut/∂xt,i in ut,i and magnifies the concavity in ut,i′ .

Finally, we also observe that consumer utility may not be monotonic in variability. This is because

utility decreases with fixed xt,i, but may have sharp increases when the optimal xt,i increases.

Regardless of these different situations, we observe that incentives are aligned between firm and

18



Figure 6: Firm profit (left), consumer utility (middle) and average number of products purchased

(right) as a function of value uncertainty levels ε, for low-price scenario (top) and high-price scenario

(bottom).

consumers. With the exception of high prices, both prefer lower variability, as more predictable

future incentivizes larger assortments, consumer utility and firm profits. Going back to the fast

fashion business model, this suggests that firms operating in the mass market, e.g., Zara or H&M,

should prefer to sell items of more basic nature, making its future value more certain, and stay

away from more radical fashion with the same average utility but more variability.

5 Conclusion

The present paper constitutes a first attempt towards micro-founding the way that rational con-

sumers build and maintain an assortment of durable goods over time. Our analysis sheds light

on the interaction between assortment renewal (purchases) and usage in a dynamic context. We
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provide a structural characterization of the value function of the corresponding Dynamic Program

– concave and, in the case of no utility uncertainty, submodular – as well as a closed-form solution

in the case of infinite horizon and exponential utilities; a buy-up-to policy, reminiscent of base-stock

policies in inventory management.

We accompany our analytical results by an extensive numerical study, which highlights the

impact of value decay and uncertainty on consumer choice and the resulting assortments; two

crucial characteristics of fast fashion goods, which have been the main motivation behind our

work. Regarding value decay, we find that, unless the factor by which consumers discount the

future is sufficiently high, there is an inherent misalignment between the incentives of firms and

consumers: firms prefer products whose value decays fast in order to incentivize new purchases,

while consumers would rather have longer-lasting products. Given that firms are the ones who

ultimately decide on product design, the outcome is products with shorter effective life cycles, usage

concentrated around recently bought items, and large amounts of generated waste; as corroborated

by current business practice. We find that taxation on sales cannot align the incentives of firms

and customers. However an age-dependent usage subsidy would succeed in incentivizing firms to

produce longer-lasting goods, while keeping consumption high. Regarding value uncertainty, our

results show that, with the exception of high-price regimes, both firms and consumers are aligned in

preferring goods with lower value uncertainty. Together, these insights suggest that business models

that help consumers maintain longer-lasting assortments may be more sustainable, financially and

environmentally, than fast-fashion ones, where both obsolescence and value uncertainty are high.

We hope that our work can serve as a building block for more comprehensive models of dynamic

product acquisition and usage over time. In particular, it would be interesting to understand how

firms should design their go-to-market strategies to ‘enter’ the assortment of a rational consumer.

This could mean, for example, determining the utility and price positioning (high value and price vs.

lower ones), as well as the adequate revenue model (high upfront payment vs. pay-per-use or other

servitization approaches). It would also be useful to understand the competitive implications of our

assortment model. Specifically, when single products are bought, competition between firms is well

understood (Vives 1999). However, when many products constitute the consumer’s assortment,

there is usually a ‘first-sale’ advantage, in which the first product purchased makes the bar for the

second one higher, and this creates inter-temporal effects in the pricing game.
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Appendix A

Proof of Proposition 1

Let x ∈ Rn+ and q ∈ R+. We prove the concavity of the value function, by means of mathematical

induction. For t = T the result clearly holds, establishing the basis of the hypothesis. Let us

assume that Jt+1(·) is concave. Note that the objective function on the right-hand side of Eq. (3)

is jointly concave on Rn+×R+: πt(q,x) is jointly concave as a sum of concave functions, and Jt+1(·)
is concave by the induction hypothesis. Moreover, joint concavity is a joint extension of concavity

on Rn+ × R+; see Example 2 in Section 6.1 in Smith & McCardle (2002). This implies that Jt(·) is

concave; see Proposition 4 in Smith & McCardle (2002).

Proof of Proposition 2

We prove the submodularity of the value function Jt(·) when the parameters ut,i are deterministic,

for all i and t. Under this condition, we have that

∂2Ut
∂xi∂xj

(x) = − ut,iut,j(
1 +

∑n−1
k=0 ut,kxk

)2 ≤ 0. (9)

From the expression above, it is also straightforward to verify that, for all i 6= j 6= 0,

∂2Ut
∂xi∂xj

(x)
∂2Ut
∂x2

0

(x)− ∂2Ut
∂xi∂x0

(x)
∂2Ut
∂xj∂x0

(x) = 0. (10)

Our proof strategy relies on showing that the utility function Ut(·) endows the properties in

Eqs. (9)-(10) to Jt(·); this implies directly the submodularity of the value function. Specifically, we

prove by induction that, for all i 6= j,

∂2Jt
∂xi∂xj

(x) =
∂2Ut
∂xi∂xj

(x).

(Note that Jt(·) is twice differentiable because Ut(·) is twice differentiable). For t = T , we have

that JT = 0, so the basis of the induction is true. Assume that the property above is true for t+ 1,

i.e.,
∂2Jt+1

∂xi∂xj
(x) =

∂2Ut+1

∂xi∂xj
(x).

We show that this property remains true for t. By the Envelope Theorem, we have that

∂Jt
∂xi

(x) =
∂πt
∂xi

(
q∗(x),x

)
+
∂Jt+1

∂xi+1

(
q∗(x),x

)
=
∂Ut
∂xi

(x)− ht,i +
∂Jt+1

∂xi+1

(
q∗(x),x

)
.

This implies that

∂2Jt
∂xi∂xj

(x) =
∂2Ut
∂xi∂xj

(x) +
∂2Jt+1

∂xi+1∂xj+1

(
q∗(x),x

)
+

∂2Jt+1

∂xi+1∂x0

(
q∗(x),x

)∂q∗
∂xj

(x).
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The (implicit) derivative of q∗(x) with respect to xj can be computed via the Implicit Function

Theorem, applied to the optimality equation

∂Jt+1

∂x0

(
q∗(x),x

)
=
pt
δ

(see Proposition 3), which is valid when q∗ > 0, and hence true by assumption in this result. We

have that

∂2Jt+1

∂xj+1∂x0
(x) +

∂2Jt+1

∂x2
0

(x)
∂q∗

∂xj
(x) = 0 =⇒ ∂q∗

∂xj
(x) = − ∂2Jt+1

∂xj+1∂x0
(x)
/∂2Jt+1

∂x2
0

(x),

and hence,

∂2Jt+1

∂xi+1∂xj+1
+

∂2Jt+1

∂xi+1∂x0

∂q∗

∂xj
=

(
∂2Jt+1

∂xi+1∂xj+1

∂2Jt+1

∂x2
0

− ∂2Jt+1

∂xi+1∂x0

∂2Jt+1

∂xj+1∂x0

)/∂2Jt+1

∂x2
0

.

Now, by combining the induction property and Eq. (10), we have that the numerator of this

expression is equal to zero:

∂2Jt+1

∂xi+1∂xj+1

∂2Jt+1

∂x2
0

− ∂2Jt+1

∂xi+1∂x0

∂2Jt+1

∂xj+1∂x0
=

∂2Ut+1

∂xi+1∂xj+1

∂2Ut+1

∂x2
0

− ∂2Ut+1

∂xi+1∂x0

∂2Ut+1

∂xj+1∂x0
= 0.

Therefore,
∂2Jt
∂xi∂xj

(x) =
∂2Ut
∂xi∂xj

(x) ≤ 0,

which concludes the proof by induction of the submodularity of Jt(·).

On the other hand, when the parameters ut,i are (non-deterministic) random variables, Jt(·)
may not be submodular. We provide a simple example: consider t = T − 2 and uT−2,i(·) = 0 for

all i. In this special case, the analysis above implies that

∂2Jt
∂xi∂xj

(x) =

(
∂2Jt+1

∂xi+1∂xj+1

∂2Jt+1

∂x2
0

− ∂2Jt+1

∂xi+1∂x0

∂2Jt+1

∂xj+1∂x0

)/∂2Jt+1

∂x2
0

.

Recalling that Jt+1(·) = UT−1(·), and that ∂2Jt+1

∂x20
≤ 0 by the concavity of the value function, Jt(·)

is submodular if and only if at y = (q∗,x):

∂2Ut+1

∂xi+1∂xj+1
(y)

∂2Ut+1

∂x2
0

(y)− ∂2Ut+1

∂xi+1∂x0
(y)

∂2Ut+1

∂xj+1∂x0
(y) ≥ 0, ∀i 6= j.

Exploiting the structure from Equation (1), and letting Sk
.
= ut+1,k/(1 +

∑n−1
j=0 ut+1,jxj) be the

(random) choice probability for product k in period t + 1 = T − 1, the condition above takes the

form:

E
[
Si+1Sj+1

]
E
[
S2

0

]
≥ E

[
Si+1S0

]
E
[
S0Sj+1

]
.

This may not be satisfied when S0 is independent of Si+1 and Sj+1, but Si+1 and Sj+1 themselves

are negatively correlated. For instance, suppose that i + 1 = 1, j + 1 = 2, n = 3, y1 = y2 = 1, u1

be uniform in [0, 1], u2 = 1− u1, and u0 = 1 (t+ 1 = T − 1 omitted). Then, S0 = x0/(1 + x0 + 1),

S1 = u1/(1 + x0 + 1), and S2 = (1− u1)/(1 + x0 + 1), which imply that

E
[
S1S2

]
E
[
S2

0

]
< E

[
S1

]
E
[
S2

] (
E
[
S0

])2
= E

[
S1S0

]
E
[
S0S2

]
.
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Proof of Proposition 3

Assume that q∗t (x) > 0, i.e., that the optimal purchasing quantity at period t is strictly positive,

and that the value function Jt+1(·) is submodular. Since the objective function of the DP in Eq.

(3) is concave, and q∗t (x) is its unconstrained maximizer,

q∗t (x) :
∂Jt+1

∂x0
(x) = −∂πt

∂q
(x) = pt

is a necessary and sufficient condition for optimality. As already discussed in the proof of Proposi-

tion 2, the Implicit Function Theorem implies that

∂q∗

∂xi
(x) = − ∂2Jt+1

∂xi+1∂x0
(x)
/∂2Jt+1

∂x2
0

(x),

given that q∗t (x) > 0. From concavity, we have that

∂2Jt+1

∂x2
0

(x) ≤ 0.

Therefore,
∂q∗

∂xi
(x) ≤ 0 ⇐⇒ ∂2Jt+1

∂xi+1∂x0
(x) ≤ 0,

which holds because Jt+1(·) is submodular.

Proof of Proposition 4

The problem in Section 3.4 is a time-stationary, infinite-horizon discounted DP. Hence, the sequence

of value functions converges to a steady-state one, Jt(s) → J(s); see (Bertsekas 2000). Then, the

result follows as a corollary of Proposition 5 (noting that we need to ensure convergence of sum of

discounted costs, which is a result of Lebesgue’s dominated convergence theorem): in the case of

exponential rewards, it can be verified that upper and lower bound coincide, and the steady-state

version of the DP in Eq. (8) gives:

J
(
s
)

= max
q≥0

{
π(q, s) + δJ

(
q + βs

)}
.

The unconstrained maximum of right-hand side of the equation above is characterized by the first-

order optimality condition:

π′(q, s) + δJ ′(q + βs) = 0 =⇒ p = δJ ′(q + βs).

Letting q̄ such that p = δJ ′(q̄), we must have that q∗ + βs = q̄ if q∗ ≥ 0, and zero otherwise. This

implies that

q∗ = (q̄ − βs)+.
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Furthermore, since the problem is time-stationary, we can characterize q̄ in closed-form. Indeed,

for s ≤ q̄, in which case q∗ = q̄ − βs, we have that

J(s) = π(q̄ − βs, s) + δJ(q̄).

As a result,

J ′(s) =
∂π

∂s
(q̄ − βs, s) = βp+

∂U

∂s
(s)− h,

which implies that

J ′(q̄) = βp+ E
[

u

1 + uq̄

]
− h.

The fact that p = δJ ′(q̄) implies Eq. (6).

Proof of Proposition 5

Eq. (7) implies that

uLB,t ≤ min
i

{
ut,i
βiLB

}
, w.p.1, ∀t.

and

uUB,t ≥ max
i

{
ut,i
βiUB

}
, w.p.1, ∀t.

Combined with the fact that

hUB,t
.
= max

i

{
ht,i
βiLB

}
and hLB,t

.
= min

i

{
ht,i
βiUB

}
,∀t,

we have:

πLB,t
(
q, sLB(x)

)
≤ πt(q,x) ≤ πUB,t

(
q, sUB(x)

)
, ∀(q,x) ∈ Rn+1

+ , ∀t,

where

sj(x)
.
=

n−1∑
i=0

βijxi, j ∈ {LB,UB}.

Since the instantaneous expected rewards πLB,t
(
q, sLB(x)

)
and πUB,t

(
q, sUB(x)

)
bound from below

and above, respectively, the actual reward, πt(q,x), at all states and periods, then proving that

the value functions of the corresponding DPs follow a similar ordering can be proved via a simple

mathematical induction.
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