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In Revenue Management (RM) problems with limited capacity, the optimal price or quantity decision is
mainly driven by the ratio of supply over total demand during the sales season. Under ex ante uncertainty
about certain demand statistics, primarily its rate, the seller not only adjusts pricing or capacity allocation
to optimize revenues but also to learn the demand. When capacity is limited, however, conceptually simple
strategies based on the principle of “estimate, then optimize” are unlikely to work well because the oppor-
tunity cost of every unit of capacity is high. We are interested in characterizing effective experimentation
strategies in this context. We thus consider a stylized quantity-based RM problem whereby a fixed amount
of capacity needs to be sold within a given horizon, into either a high margin, low volume channel, or a low
margin, high volume one. The demand rate in either channel is uncertain, but a prior distribution over it
is available. We formulate the dynamic optimization problem with Bayesian demand learning. We provide
a clean and intuitive structural characterization for the general case of the problem; a closed-form solution
for the special case where there is one unit of capacity to sell (precisely the regime of limited capacity);
and an efficient heuristic policy for the multi-unit case, which provides near-optimal performance in various
regimes in our numerical experiments. Somewhat surprisingly, we find that higher uncertainty regarding the
demand rate may push the seller to opt for a high margin, low volume position for longer, rather than look
for higher volumes to accelerate learning, as intuition may suggest. Finally, we show that the monetary value
of Bayesian demand learning is comparable to the value of allocating capacity in an optimal way, suggesting

that demand learning could be a first-order consideration in RM.
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1. Introduction

Revenue Management (RM), i.e., the tactical optimization of pricing and capacity allocation
decisions, supported by statistical methods for estimation and forecasting, economic theory, and
advances in Information Technology, has revolutionized the practice of demand management since
the 1980s; starting with the airline and hospitality industries, and gradually extending to mobility,
retailing, online advertising, and many others. While the scientific rigor and the potential value
that RM can add are beyond doubt, its most successful applications have some common charac-
teristics: a company has pricing power to shape the demand for its products or services, and the
available capacity (e.g., hotel rooms to rent, units of inventory to sell) is perishable and relatively
scarce compared to the demand. Indeed, it is in the regime of limited capacity where every pricing
and/or allocation decision has to be made very carefully, because every mistake counts. In contrast,
when capacity is plentiful relative to demand and the selling horizon long, there is not much need
or benefit from tactical optimization, as there is hardly any opportunity cost and, thus, heuristic
decision making rules tend to work reasonably well.

The classical formulation of RM problems is to assume that demand is stochastic but its statis-
tics are known inputs, e.g., Brumelle and McGill (1993), Gallego and Van Ryzin (1994). In many
contexts of interest, however, the firm has limited ex ante knowledge of the demand rate, and
pricing decisions not only serve to maximize expected revenue, but are an essential piece of experi-
mentation, e.g., Caro and Gallien (2007), Araman and Caldentey (2009), Besbes and Zeevi (2009),
Farias and Van Roy (2010), Harrison et al. (2012), V. den Boer and Zwart (2014). The goal of
this paper is to understand how to perform RM effectively, when the company does not know
with certainty (the statistics of) the demand for its products or services, and thus cannot be sure
to what extent its available capacity is scarce. For concreteness, let us provide some examples.
Consider, for instance, a small-sized luxury apparel brand, deciding whether to sell its products
through its direct channels or through an online marketplace for luxury clothing and accessories
such as Farfetch. Typically, production batches of luxury items are small, so each unit of available
capacity must be allocated carefully to the appropriate channel. The trade-off that the brand faces
is higher margin but lower sales volume in the direct channels, against higher volume and lower
margin through the platform (due to the latter’s hefty commission on revenues). What makes the
capacity allocation decision hard is that luxury items have short life cycles, and that their demand
is highly volatile and unpredictable ex ante. An analogous dilemma is posed to a small-sized resort
hotel, deciding whether to allocate its available capacity through their direct channels or through
an online travel agent such as Booking.com: again, the trade-off is margin vs. volume, and the

decision hindered by limited capacity and the high degree of ex ante uncertainty regarding the
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demand. In both these two cases, channels cater to different audiences and are hence mostly inde-
pendent from each other. As a result, the choice of channel should be driven by the preference of
the firm for margin vs. volume, as well as by the desired speed of learning, which usually favors
the marketplace due to its larger scale.

To deal with the above challenge, one would ideally learn the demand as quickly as possible
and use the data and insights obtained in order to make better informed decisions. Of course, the
value of in-season demand learning is undisputed: a long-standing rule of thumb in retailing is
that within the first few weeks of the sales season, a company can safely distinguish hit from flop
products, e.g., Fisher and Raman (1996), Caro and Martinez-de Albéniz (2015). Leveraging this
insight in the context of RM though, has been a more recent matter: the tactical optimization of
pricing and capacity allocation decisions, combined with demand learning, gives rise to challenging
dynamic learning problems (sometimes termed “learning and earning”), whose solutions are intel-
lectually rich and practically relevant. This sub-field of RM has attracted significant attention from
academics the last 15 years, and typically employs the regret as performance evaluation criterion,
primarily through a frequentist approach and with an emphasis on how regret scales with time. In
our case, given the limited capacity and selling horizon, this approach does not seem appropriate.
In contrast, a Bayesian approach based on a prior distribution of the demand that is updated
during the sales season, and an exact (Dynamic Programming) analysis of the dynamic learning
problem at hand seems like a more fruitful avenue of investigation. Such formulations are usually
analytically intractable and often lead to computationally inefficient algorithms — something that
frequentist approaches usually succeed in. Fortunately, by focusing on a canonical model with two
possible actions, we are able to provide an exact analysis and deliver near-optimal algorithms to
support RM policies that learn and exploit effectively.

Specifically, we consider a fundamental quantity-based RM problem: a seller has a fixed amount
of capacity to sell, in a given amount of time, with the price menu also being fixed. For each unit
of capacity, the seller has to decide whether to sell through a high margin, low volume channel or
through a low margin, high volume channel, and at which point in time each channel makes sense.
Demand arrives according to a Poisson process, scaled versions of which are observed in the two
channels, but the rate of this process is uncertain. In other words, the seller knows the sizes of
the two channels in relative, but not in absolute terms. The seller has a Gamma distributed prior
over the Poisson rate parameter, which is updated dynamically as time passes and sales are made.
We formulate the decision problem as an Optimal Control one with Bayesian learning. Among the
contribution of our work, we consider the following.

1. We provide a clean structural characterization of the solution for the general case, whereby a

unit of capacity is to be allocated to the low margin, high volume channel at a given point in time,
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if and only if the value of learning minus the value of capacity of that particular unit exceeds a
certain threshold that depends on the revenues and the relative sizes of the two channels. This is
reminiscent of the structural result in the seminal paper Gallego and Van Ryzin (1994) regarding
revenue vs. opportunity cost of capacity, albeit in a price-based RM context and without any
learning considerations;

2. For the special case of one unit of capacity, we provide a closed-form solution for the optimal
allocation decision. We note that this special case is precisely our regime of interest, where capacity
is truly limited and, thus, the decision most impactful. Through this closed-form solution, we derive
an important managerial insight: the optimal time to allocate the capacity to the low margin, high
volume channel is non-monotonic with respect to the uncertainty regarding the demand statistics.
In other words, higher uncertainty regarding the mean demand may imply allocating earlier or
later. This phenomenon, which we liken to a “lottery ticket,” implies that a markdown strategy
with progressive price/margin reductions is inappropriate in our setting, because it may be optimal
for the seller to reverse a mark-down with a subsequent mark-up on certain occasions;

3. Based on the closed-form solution that we obtain for the single-unit case, we devise a heuristic
policy for the general case, where the parameters of the Gamma distribution are scaled appro-
priately. The algorithm requires, virtually, no computation and performs well in our numerical
experiments;

4. Using the special single-unit case and the corresponding closed-form solution as backdrop, we
evaluate the dollar value of Bayesian demand learning, and find it of the same order of magnitude
as the value of sharing optimally (rather than sharing in a static way). This finding suggests that
demand learning could be a first-order consideration for a firm; at least, as important as the practice
of RM itself.

To put the contributions of the present work in perspective, we note that the same volume vs.
margin trade-off lies at the heart of the most studied — and most applied in practice — model of
quantity-based RM, that of capacity allocation in a single-leg flight with two fare classes, e.g.,
Business and Economy, and uncertain demand. The concept of booking limit captures the fact
that a certain amount of seats need to be protected for the high-margin class of customers that
arrives later, and Littlewood’s rule (equivalent to the newsvendor model in an inventory context)
quantifies the trade-off and provides a prescription for the booking limit in this stylized model. We
argue that our study is closely related to the aforementioned single-leg, two-class capacity control
problem: the booking limit and Littlewood’s rule educate the tactical decision of how many seats
to protect for the high-margin customers, which is made at the beginning of the sales season,
several months before the flight. In our model, this corresponds to deciding the available capacity

that the seller starts with. In RM practice, the above tactical decision is operationalized through
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frequent reoptimization, a heuristic but effective approach. Our work can be viewed as providing
the optimal way to execute the booking limit, while dynamically learning the demand.

The remainder of the paper is organized as follows. In Section 2, we review the relevant literature
to our work. Sections 3 and 4 provide a detailed description of our quantity-based RM model with
Bayesian demand learning; the main analytical results and managerial insights derived from the
special single-unit case; and an efficient heuristic for the general case. In Section 5, we compare
the value of learning to the value of sharing optimally, and show that they are of the same order.

We conclude the paper with a broader discussion in Section 6.

2. Literature Review

We start our literature review with the papers related to quantity-based RM; specifically, the ones
that focus on a single resource, e.g., single-leg flights in an airline context. This literature began with
the seminal work of Littlewood (1972) on the booking limit/protection level for the static single-
leg, two-class capacity allocation problem. The EMSR heuristics in Belobaba (1989) and Belobaba
(1992) capitalized on “Littlewood’s rule” in order to solve the n-class problem in an approximate
yet computationally efficient way, and were adopted widely by the airline industry. In parallel, a
series of papers provided the optimal solution to the n-class problem under different assumptions;
e.g., see Curry (1990), Wollmer (1992), Brumelle and McGill (1993) and Robinson (1995). Other
works focused on relaxing an important assumption of Littlewood’s work, that customers of a given
fare class arrive all together, and different classes arrive in a segregated, sequential way; e.g., see
Lee and Hersh (1993) and Lautenbacher and Stidham Jr. (1999). Within this strand of literature,
the work that comes closest to ours is that of Martinez-de Albéniz et al. (2022): their model is
quite similar to the one introduced here, but their focus is quite different, as the optimal capacity
allocation policy of the seller is used to study the best-response pricing of the partner channel.

A common characteristic of the aforementioned works is that a probabilistic description of
demand uncertainty is readily available, hence there is no need to learn the demand. An early
paper that has a learning “flavor” is the adaptive algorithm of van Ryzin and McGill (2000) for
the two-class capacity problem, which employs a stochastic approximation approach in order to
update directly the booking limit based on new data, without resorting to cycles of forecasting
and optimization. In a quantity-based Network RM setting with parametric demand uncertainty,
Jasin (2015) develops a Linear Programming (LP)-based probabilistic allocation control, based on
re-optimization of allocation decisions and re-estimation of parameter values, which outperforms
standard LP-based booking limit and bid price control policies.

In the broader class of quantity-based RM, one can also include assortment optimization prob-

lems. Of particular relevance to our paper is Caro and Gallien (2007), which formulates the problem
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of dynamic assortment optimization for seasonal consumer goods as a multi-armed bandit problem
with Bayesian demand learning. Specifically, the authors assume a Poisson demand model with a
Gamma prior distribution on its rate parameter. The fact that the two distributions are conjugate
implies that the posterior distribution is also Gamma, resulting in tractable updating of its shape
and rate parameters. We follow a similar approach in this paper.

Related to capacity allocation, although not RM strictly speaking, Chod et al. (2021) study the
question of investing in flexible resources in a two-period model, and argue that the monetary
value of learning the demand from censored observations is of the same order as the celebrated risk
pooling benefit of resource flexibility; hence, potentially a first-order consideration for a firm. Our
results confirm and strengthen this insight in the context of a continuous-time model of quantity-
based RM with Bayesian learning.

On the other hand, during the last two decades, we have witnessed intense research activity on
price-based RM with demand learning. The part of this literature that methodologically comes
closer to our work is the one that employs Bayesian demand learning. We can roughly classify these
works in two types. The first one assumes a conjugate prior to the demand process, much like in
Caro and Gallien (2007); e.g., in Aviv and Pazgal (2002), this is integrated in a certainty-equivalence
approach; in Cope (2007), it is the basis of a one-step lookahead with recourse policy; in Farias and
Van Roy (2010), the core of their proposed decay-balancing heuristic; and in Papanastasiou and
Savva (2017), to study the effect of social learning on dynamic pricing with strategic consumers.
The second type assumes that the unknown demand parameter can only take two values (e.g., high
and low), resulting in the Bayesian updating of a single parameter, and maintaining tractability
that way; e.g., Araman and Caldentey (2009) and Harrison et al. (2012) follow such an approach
in their greedy heuristic and myopic Bayesian policy, respectively. It is worth emphasizing that,
even though the Bayesian updating of the unknown parameters is tractable in the above works, the
corresponding dynamic learning problems are not. The first two papers, chronologically, provide
no theoretical guarantees and resort to numerical experiments for performance evaluation, whereas
the remaining ones provide interesting analytical results in the form of upper and lower bounds
that are more meaningful in asymptotic regimes though. (Papanastasiou and Savva (2017) is an
exception, by postulating a two-period model that they solve to optimality.)

In parallel, a significant body of work has been developing on price-based RM of a single prod-
uct /resource, adopting non-Bayesian learning approaches. For instance, Besbes and Zeevi (2009)
propose a nonparametric pricing algorithm, based on the separation of learning and optimization;
Broder and Rusmevichientong (2012) introduce the MLE cycle policy, where the selling horizon

is split in exploration-exploitation cycles; Chen and Farias (2013) focus on the re-optimized fixed
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price policy; Wang et al. (2014) provide an algorithm that searches for the optimal price in progres-
sively shrinking intervals; V. den Boer and Zwart (2014) develop the controlled variance pricing
approach, which combines the certainty equivalence principle with a progressively shrinking taboo
interval; and Besbes and Zeevi (2015) show the sufficiency of simple parametric models in this
setting. In contrast to the papers above, V. den Boer and Zwart (2015) consider a fixed amount
of inventory that needs to be sold within a fixed amount time — a setting that comes closer to our
work — and employ a combination of certainty equivalence and maximum-likelihood estimation.
The analyses in the aforementioned papers are based on deriving order-wise matching upper and
lower bounds, and all but one employ the regret as performance evaluation criterion. On the other
hand, there is also literature on price-based Network RM with non-Bayesian learning, e.g., Besbes
and Zeevi (2012) and Chen et al. (2019) follow nonparametric approaches, whereas Chen et al.
(2021) employ a parametric demand model.

A work that, perhaps, bridges the two strands of literature on dynamic demand learning in price-
based RM, Bayesian and non-Bayesian, is Johnson Ferreira et al. (2018), which employs Thompson
(posterior) sampling to solve the online version of the Network RM problem. The approach is
Bayesian in nature but the notion of regret is adopted for performance evaluation; in this case,
the expected regret with respect to the posterior demand distribution, often termed as Bayesian
regret. As already argued though, performance guarantees in terms of the regret make more sense
in problems where the inventory/capacity and the horizon are large, which is not our regime of
interest.

Bayesian approaches to dynamic learning problems in RM can also be found in a strand of
literature that may be smaller compared to quantity-based and price-based RM, but is of increasing
importance, which we could call information-based RM, e.g., see Bertsimas and Mersereau (2007)
and Drakopoulos et al. (2021). It is clear though that (limited) capacity is not an issue there,
leading to different dynamics and insights compared to our work.

Finally, it is worthwhile acknowledging the sizeable literature on inventory management with
Bayesian demand learning. The most followed setting of investigation is the inventory manage-
ment of a perishable product over repeated selling seasons (effectively, a repeated newsvendor
model), where the demand over different seasons is i.i.d. and belongs to a particular family of
probability distributions, with one or more parameters unknown. A prior on these parameters is
assumed to be known though, and the belief about the true parameter values is updated with
observed demand samples through Bayes rule. Early works in that direction include Scarf (1959),
Karlin (1960), and Iglehart (1964), which focus on exponential families of demand distributions.
Murray and Silver (1966), Azoury (1985), and Eppen and Iyer (1997) study the inventory manage-

ment of non-perishable products and incorporate Bayesian learning into a Dynamic Programming
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framework, while Chang and Fyffe (1971) uses a Kalman filtering approach to achieve efficient
learning /forecasting. Lovejoy (1990) shows the near-optimality of simple myopic inventory manage-
ment policies, when combined with adaptive tuning of the parameters via Bayes rule or exponential
smoothing.

More recently, the focus of this strand of literature has shifted to learning under censored data,
e.g., by observing sales rather than the actual demand. Lariviere and Porteus (1999) provides the
Bayesian optimal inventory level if the demand belongs to the class of “newsvendor distributions,”
and confirms that it is optimal to enhance learning through stocking higher; a phenomenon that
has been termed information stalking. Besbes et al. (2022), building on the framework of Lariviere
and Porteus (1999), provides both analytical and numerical evidence to the fact that the cost in
being myopic (rather than far-sighted, in the Dynamic Programming sense) is actually small. The
picture becomes more complicated in the case of nonperishable products: the inventory carried
over from previous periods may force the inventory manager to stock higher or lower compared
to the Bayesian myopic benchmark; see Chen and Plambeck (2008). We note that these settings
are distinctly different than ours due to the ability to re-stock inventory before the next period or
selling season. In contrast, we have a fixed inventory to sell, in a fixed amount of time, with the
selling channel being the main decision. Thus, the dynamics of our model are much closer to those

of quantity-based RM.

3. Model

In this section, we introduce a canonical quantity-based RM problem, which we construct with
analytical tractability and insights in mind rather than exact prescriptions. Specifically, we consider
the problem of a seller that has ) units of capacity to sell within T units of time. We denote by
t, a continuous variable, the time remaining until the end of the selling season which, following
the quantity-based RM convention, we define as t = 0. In other words, t =T corresponds to the
beginning of the selling season, and time goes backward to zero.

Let us assume that, at time ¢ € [0, 7], the seller has ¢; units of capacity remaining. If ¢; > 0, then
the seller can allocate capacity to one of two distinct selling channels: either to a lower-volume
channel with margin rg =1, or to a higher-volume partner channel with margin r;, < 1. We denote
these actions by a; = H (high margin) or a; = L (low margin). Note that, in practice, a; = L may
involve selling in both channels, e.g., see Martinez-de Albéniz et al. (2022), but in which case our
formulation is still valid by setting r; to be the weighted average of margins across channels. In
contrast, if ¢; =0, then there is no capacity for sale anymore, which we note as action a; = 0.

There is a demand intensity parameter A that is uncertain (below, we become more precise

regarding the information that the seller possesses about A), so that the demand in each selling
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channel follows a Poisson process of intensity ¢,, A\, when the chosen action is a;. Without loss of
generality, we set g =1, so the demand intensity is A in the lower-volume channel; and 6y > 1 in
the higher-volume channel, so that the demand intensity is 67 A. (If ; was less than or equal to
one, then the seller would have no incentive to ever opt for channel L). Summarizing, the Poisson
multipliers, which represent the relative sizes of the different channels and are known to the seller

a priori, are:

1, lf at == H
eat: 9L>17 ifat:L
0, otherwise.

Note that we assume that these multipliers are independent of the capacity allocation decision.
This assumption is reasonable in our chosen context, e.g., if the high-margin channel corresponds
to a brick-and-mortar retail store and the low-margin channel to an online store, dedicated to
serving locations where the company does not have physical presence: the number of those locations
could be large, resulting in high volume of traffic, while covering the fulfilment cost reduces the
company’s margin. There is no reason to suspect that allocating capacity to one channel should
have an effect on the demand in the other channel, as the two serve distinct markets.

Let N, be the cumulative number of arrivals from T to t. Since we are counting time backward,
Ny =0 and N, decreases in t. Given the properties of the Poisson process, we have that the
variation of N; in the infinitesimal interval [¢,¢ — dt] is equal to dN; = —1 with probability 6,, Adt,
and dN; = 0 otherwise.

As mentioned already, our focus in this paper is to examine the role of demand uncertainty,
and learning, on RM with limited capacity. For this purpose, we adopt a Bayesian framework and
assume that A is the realization of a random variable A, as well as that the seller starts with a
prior belief on A given by a Gamma distribution with a shape parameter ar, and a rate parameter

Br. Specifically,
Br(BrA)er—te=hrA
F(OéT) ’

We choose a Gamma-distributed prior for analytical tractability, because it is the conjugate to

fAT(A|aT75T): )\20

the Poisson distribution. As a result, A; remains Gamma-distributed as t decreases from T to zero.
To see why this is true, consider the distribution of A;_4, given that at ¢, A; is Gamma-distributed
with parameters (a4, 8;). If the arrival rate is O\, then the probability of one arrival in the interval
[t,t — dt] is equal to

o0 o0 ag—1,—BtA
IP’[—dNtzl]Z/ fAt()\atht)]P[_dNt:HAt:/\]d)\:/ ﬁt(mr) )e ONdte )
0 0 o
- T +1) Lt
=T (ﬁt+9dt)at+lc9dt.
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Within an interval of infinitesimal length dt, there can be 0 or 1 arrivals, hence P[dN; = 0] =
1 —P[-dN, =1]. We can apply Bayes’ rule, conditional on observing that dN; units were sold: the
posterior distribution of the market parameter A,_4 becomes a Gamma distribution with a shape
parameter equal to a; plus the number of units sold during [¢,t — dt], and a rate parameter that
equals to 5; plus the constant Adt. In other words, throughout the sales season, the seller’s belief
about the market condition will remain Gamma, but with parameters that are updated over time

as follows:
(v, Br) ifa; =0
(o, Br) = 3 (o — dNy, By + dt) ifa,=H
(g — dNy, By + 0rdt) if a, = L.

In other words, the shape parameter mimics the sales process (i.e., has jumps), and the rate
parameter grows in a continuous way, but faster in the high-volume channel.

Integrating the equation above, which is contingent on the policy employed and hence path-
dependent, leads to the following (implicit) description of the current state, while ¢, > 0 (so that

action a; = 0 is never employed):
ar=ar+ Ny and = pr+ (T —t)+ (0L — 1)A, (1)

where A = ftT 14,=rdt is the duration in which the firm has opted for the low margin-high volume
channel. The expected arrival intensity is E[A¢] = a;/B;, the standard deviation is o[A;] = \/a¢/fB:
and, consequently, the coefficient of variation of A, is equal to 1/,/a;. This implies that opting
for the high-volume channel has an advantage in terms of learning: it reduces the coefficient of
variation of A; by stochastically increasing N, and, thus, accelerates learning.

The objective of the seller is to maximize their expected revenue:

T
supE [/ Tatht] , (2)
at 0

with a, = 7m,(t,a, 5), where m,(-) is a mapping from the state to the action space that satisfies
mo(t, e, 5) =0 and 7,(0,, 3) =0, for all & and 8. This is an Optimal Control problem, with initial
conditions az, 87, and gr.

We denote by V,(t,«,3) the revenue-to-go in [t,0], at state o, = o, By = 3, ¢ = ¢, with bound-
ary conditions V,(0,c,8) =0 and V(¢,a,5) = 0. To derive the Hamilton-Jacobi-Bellman (HJB)

equation, we look at the infinitesimal decision in [t,t — dt], in state ay, s, q; > 0:

B 0uNidt (o + Voo (t —dt, a0+ 1, B+ 6,dt))
‘/;I(tyaa/B) *SngAt { _|_(1 —QaAtdt)V:I(t—dt,Oé,ﬁ—{—Hadt) .

Note that, through a Taylor expansion, V,(t —dt,a, 5+ 6,dt) can be written as

Vilt.a )+ (- G00,8) + 0,52 1.0, ) de+ o)
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In the limit, and through the standard, formal derivation, we obtain the HJB equation:

%‘f(t,a,g) — gsgp{ea <7"a+Vq_1(t,a+1,B) ~Vy(t,a ﬁ)+68‘;( ,a,6)> } (3)
We define the value of learning as
AL{ta,8)= 5 T (t.0,8) +Vis(ta+1,6) ~ Vit ), (1
and the value of capacity as
AT, (t,0,8) = Vy{t,0,8) ~ Vyalt,0,8). o)

Clearly, the quantities above are defined for ¢ > 0; by convention, we assume their values to be
equal to zero for ¢ < 0. Note that the value of learning includes information both from selling and
from not selling the ¢'* unit of capacity (time elapsing without sales is informative too); while the
value of capacity can be interpreted as the marginal expected value of the ¢*"* unit of capacity,
similarly to Gallego and Van Ryzin (1994).

We have assumed, without loss of generality, that rg =607z = 1. Given that 6 > 1, Equation (3)
implies that it is optimal to choose the low margin, high volume channel if and only if the value
of learning minus the value of capacity exceeds a threshold that depends on the revenues and the

relative sizes of the different channels:

=L < AL,(t,o,B) — AL(t, o, B) > #
L —
Let us define
1—6rr
¢q(t>aaB)EALq(tva7B)_Alq(t7aaﬁ)_Tf1L7 (6)
which implies that
a; =L <= ¢,(t,a,3) > 0. (7)
Using this notation, we can re-write Equation (3) as follows:
v, 1—6.r
i (b0 8) =G {ea <ra+¢q(t,a,ﬁ>+&j5> } (8)

By taking the partial derivative with respect to ¢ in Equation (6), and substituting for Egs.
(4)-(5), we have that

St )= o { 2 Dt ) Vit 1)~ Vit )~ )
-
0 0 0
(86{5‘/ a,ﬂ)}—ia‘f(t,a,ﬁ> O Vilta+1,8)~Vy(t,0.0))
o (B, AV, 10V,
=3 {a g ten |+ Tt ar 10 - Gk )
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Let 0, and r, be the relative size of the channel and the revenue, respectively, corresponding to
the optimal allocation decision at state (¢, c, 8) with remaining capacity ¢; and similarly, 6,_; and

rq—1 at state (¢, +1, 3) with remaining capacity ¢ — 1. Substituting Equation (8) to Equation (9),

results in
094 _ g 9%
E(t,ayﬁ)—eq aﬁ (t,OZ,B)
Od+1 1—9LT'L
T {9q1 ( + gt a+1,8)+ 9_1>}
__01;1{eq<nf+¢qU¢nﬁ)+-a;f%zL>}- (10)

As we can see, Equation (10) is a partial differential equation (p.d.e.) on four dimensions: ¢, ¢, «
and 3. In reality, however, the difficulty stems from the partial derivative with respect to ¢ and 3.
For this reason, we can take ¢ and « as parameters and solve the p.d.e. for ¢ =1 and any «, then

for ¢ =2, etc.

4. Analytical Results and Insights

4.1. Tractable Special Case: a Single Unit of Capacity
In this section, we focus on a special case of the problem with a single unit of capacity. Somewhat
surprisingly relative to existing literature, we show that this case is analytically tractable, and we
provide a closed-form solution to it. Importantly, this special case coincides with the regime of
interest in our study, which is the regime of limited capacity. Later, we use this closed-form solution
to conduct a sensitivity analysis, and from that to derive managerial insights regarding the role of
uncertainty regarding the demand statistics in quantity-based RM with dynamic learning.

Let us assume that ¢ = 1. Recall that 6, = 0, and there is neither value of learning nor value
of capacity that does not exist. Hence, the second term of the right-hand side of Equation (10)

disappears, and we have that

01 01 1 1-6
%(taaaﬂ) :918%(2&7047/8) - a;_ {91 <r1+¢1(taaa6)+9L_quﬂL>}' (11)

We note that, in the equation above, « is fixed to the value dictated by the prior Gamma distribu-
tion: as the a parameter is updated with sales and in this case there is only one unit of capacity,
as long as that unit is not sold, « is not updated. On the other hand, as soon as the unit is sold,
there are no more decisions to make.

We distinguish between two cases in our analysis. First, let us consider the case where 6;r; > 1.

In that case,
1-— HLTL

>0,
0, — 1

¢1(07a76) =
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which, by Equation (7), implies that aj = L. Consider some ¢t > 0 in the vicinity of 0, for which
a; = L. (Such t exists from the continuity of ¢; at t =0.) Equation (11) implies that this point in

time must satisfy the p.d.e. in t and § (recall that « is constant in this special case of the problem):

01 01 1 1-46
i(tvaaﬁ)zeL(;%(t7avﬁ)_Oé;_{eL <TL+¢1(taaaﬁ)+9L_L:L>}' (12)

Using as a boundary condition ¢;(0,c,8) =—(1—6.r.)/(0, —1), the solution to Equation (12) in

this regime can be obtained in closed form:

o ot TL—l
¢1(t,a7ﬂ)—TL <ﬁ—{—t0L) +9L_1 (13)

This solution is valid as long as ¢; <0.
On the other hand, let us consider the case where 6;7r; < 1. In that case,

Bl 2 A

¢1(07a7/8): 0[/71 >~

which, by Equation (7), implies that aj = H. Again, let us consider some ¢ > 0 in the vicinity of 0,
for which af = H, i.e., ¢; > 0. Equation (11) implies that this point in time must satisfy the p.d.e.
in ¢t and 8 (recall that 0y =ry =1, without loss of generality):

o) _8¢1 1-0prp

Using as a boundary condition ¢4(0,«,3) =—(1—60Lr.)/(0, — 1), the solution to Equation (14)

(taaaﬂ) _a+1

can be obtained in closed form:

5 )04 +0L(7‘L_1)' (15)

¢1(t7a7/8):</8+t0L HL_I

Again, this solution remains valid while ¢; > 0.

PROPOSITION 1. Consider the capacity allocation problem in Section 8 with Q =1 unit, and
fix o and . There exists a unique t1(a, 3) € [0,T] such that it is optimal for the firm to allocate

the unit of capacity to the low margin, high volume channel for all t <t,(a, ). In other words,

¢1(t, v, 8) 2 0 if and only if t <t,(c, B).

Proof. Following the line of analysis above, we distinguish between two cases in the proof. If

eLT‘L > 1, then

5 )Oé+1+rL_1

(bl(taavﬁ):rL (M QL—l
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Note that ¢, (¢, «, 3) is continuous and monotonically decreasing in t. Given that ¢;(0,a,3) > 0,
¢1(+,a, B) either crosses zero at a single point, or it never crosses it. In both cases there is a unique
t1(a, ) such that a; = L, for all t <t;(a, 3); in the former case, that point is the (unique) root of
¢1(t,a, ) = 0; in the latter case, t;(a, 5) =T.

Similarly, if 0,r; <1, then

B a+1+ GL(T‘L—l)
B+1tor O, —1 °
Given that ¢;(t,«,3) is continuous and monotonically decreasing in ¢ and ¢;(0,«,3) <0, this

implies that ¢, (¢, a, 8) <0, and hence af = H, for all ¢. In that case, the unique t;(«, 3) is 0. O

¢i(t, o, B) = (

A consequence of this result is that, in the extreme case where t;(«,3) =0, it is optimal for
the firm to keep the unit of capacity in the high margin, low volume channel throughout the
selling season. In contrast if ¢; («, B) =T, selling through the low margin, high volume channel from
the beginning of the season is optimal for the firm. Our main analytical result, presented below,
provides a closed-form expression for ¢ (a, §) for different regions of the parameter space and, thus,

a complete solution for the special case of the problem with a single unit of capacity.

THEOREM 1. Consider the capacity allocation problem in Section 8 with QQ =1 unit, and firx o
a+1
and B. If Opr;, <1, then t;(c, B) =0, for all a and B; else if (% + 1) <m, then t;(o,B) =T},

otherwise,

n(ef) = 5 (et —1); (16)
where © )
_rp\vp — 1

Proof. The claim that, if 6,7, <1, then ¢,(«, ) =0, for all & and g, is established in the proof
of Proposition 1. Consequently, henceforth, we assume that 6,r; > 1. Equation (13) implies that
the (unique) root of ¢;(-,a, 3) is equal to

B
3

If the above root is greater than or equal to T, which is the case if

TO ot
(L + 1) <m,

(mﬁf —1).

B
then t;(«a, 8) = T'; otherwise,

n(ef) =5 (mer—1),

as the statement of the theorem suggests. [
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4.2. Comparative Statics and Managerial Insights

As discussed in the previous section, if 0,77 <1, then t;(«a, 3) =0, i.e., it is never optimal for the
firm to employ the low margin, high volume channel. For that reason, in our analysis henceforth, we
focus on the more interesting case where 0,7, > 1, particularly on scenarios where t;(«, 3) € (0,T).
We perform comparative statics on the optimal time to switch sales channels with respect to the
uncertainty regarding the demand statistics, which in our model translates in the parameters o
and g of the Gamma prior distribution.

Recall that the mean of the Gamma distribution is equal to E[A] = a;/3. To make the results and
insights that follow more intuitive, we re-parameterize the optimal switching time in terms of the
expected value of the distribution, E[A], and the 8 parameter which then captures the uncertainty
around it: the variance of the Gamma distribution is equal to o?[A] = a/3? = E[A]/S. Hence, for a
given E[A], the higher the 3, the lower the uncertainty around E[A]. With this parameterization,
Theorem 1 implies that

1 (BN B) = o (m 1)), (18)

L

We note that 6,7, > 1 implies that the constant m is strictly greater than 1, so that In(m) > 0.
Figures 1 and 2 illustrate the optimal switching time in Equation (18) as a function of f,
for different combinations of 6, and r; values, for a relatively low and a relatively high E[A],
respectively. A note may be worthwhile making regarding the right-most plot in Figure 1, which is
the only case where the optimal switching time is capped at T, according to the condition provided
in Theorem 1. Pertaining to the dependence of ¢;(-) on the two main quantities of interest, E[A]
and 3, in these figures we observe that: (i) for given [, higher E[A] implies switching later to the
low-margin, high-volume channel; (ii) for given E[A], higher 3, i.e., lower uncertainty around E[A],
may imply switching earlier or later to the low-margin, high-volume channel. The corollaries below

formalize and quantify these observations.

9L=4, rL=0.6 91_=50,rL=0.6 91_=4, I"[_=0.95
5.0
-2 1
= 2.5
oL : : 0L : — 0.0 : .
0 10 20 0 10 20 0 10 20

B B B

Figure 1 ¢, as a function of § for low demand, E[A] =0.1, T =6.
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6,=4,r=0.6 6,=50,r,=0.6 6,=4,r,=0.95
0.50; 0.2 N
0.25; 01
0.00: 0
0 10 20 0 10 20 0 10 20
B B B

Figure 2 ¢ as a function of j for high demand, E[A] =0.6, T =6.

COROLLARY 1. Consider the capacity allocation problem in Section 8 with Q =1 unit, Opry > 1,
and fix B. The optimal switching time t,(-) is monotonically decreasing in E(A), i.e., higher expected

value of the Poisson rate implies switching to the low margin, high volume channel later.

Proof. By taking the partial derivative in Equation (18) with respect to E[A], we have that

ot (E[A), 6) 1
T[A] = —In(m)m T+l ]BEW <0.

COROLLARY 2. Consider the capacity allocation problem in Section 8 with Q =1 unit, Opry > 1,
and fixr E[A]. The optimal switching time t1(+) is monotonically decreasing in (3, i.e., less uncertainty
around the expected value of the Poisson rate implies switching to the low margin, high volume

channel later, if and only if

o (1 BB
m []5(1 (1+E[A]B)2l( )><1. (19)

Proof. By taking the partial derivative in Equation (18) with respect to 3, we have that

ot (E[A], TR ] TR -
1(3[5] B3) _m 5 _GBLln(m)mum[AmE[A](l+IE[A]5) .

Using the equation above, it can be verified that

ot (E[A], B) S E[A]B
T<O &> mFEAR (1_(1+E[A]B)21n(0)> <1

O

The results above lead to crisp managerial insights regarding the practice of quantity-based RM
with limited capacity, in the presence of (Bayesian) demand learning. The first insight suggests
that, for a given level of uncertainty regarding the demand statistics, the higher the anticipated

demand rate, the later the seller should switch to the low margin-high volume channel. This finding
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is quite intuitive because, if the seller believes that demand will be strong enough in the high-margin
channel, it can sustain high prices longer and just introduce discounts through the low-margin
channel later in the season, all else being equal.

Our second insight is somewhat less intuitive at first sight: for a given level of anticipated demand
rate, one would expect that higher uncertainty around that rate would imply allocating the capacity
to the low margin, high volume channel earlier. That way, true demand rate could be learned faster,
leading, in turn, to a “better” solution to the optimal control problem for the remainder of the
selling period. This intuition should certainly hold if the seller had enough capacity, so that they
could spare some of it just to learn the demand; along the lines of the “estimate, then optimize”
principle. In the regime of limited capacity though, the opportunity cost of every unit of capacity
is high, to the extent that once learning materializes (one sale), then there is no more inventory to
sell, and as a result there is no possibility of extracting value from such learning. This causes the
aforementioned intuition to be reversed on occasions. Specifically, if the anticipated demand rate is
relatively low, then, as conventional wisdom suggests, higher uncertainty regarding that rate leads
indeed to switching to the low margin, high volume channel earlier. However, if the anticipated
demand rate is relatively high, then higher uncertainty regarding that rate leads to switching later.

We liken the mechanism that generates the latter insight to a lottery ticket: unlikely as winning
the lottery may be, given that the reward is very high, even a small increase in the chances of
winning may make a lottery ticket worth buying in expectation. In our problem, the very high
reward stems from the very high opportunity cost of the single unit of capacity. Now, higher ex
ante demand rate means higher «, all else being equal. As a result, E[A] decreases more slowly as
time passes, which implies that time is slowed down, effectively increasing the chances to “win the
lottery.”

The implications of this result on RM practice become clear if one envisions the dynamical
system of Equation (12) evolving in time, with 5 updated according to Equation (1); recall that
the parameter o remains constant in the special case (Q = 1. The non-monotonicity of the optimal
switching time with respect to 8 can lead to the following sequence of events: early in the sales
season, the optimal capacity allocation is to the high margin, low volume channel, as Proposition
1 dictates. Let us assume that the initial value of § is small, so that we are in the regime where
the optimal time to switch is monotonically increasing in §; see Figures 1 and 2. This implies that
there will be a point in time ¢ € (0,7, with 8;, where t;(«, 8;) =, so that the seller should switch
to the low margin, high volume channel. From that point, 8 starts growing very quickly, meaning
that there is now a lot more certainty regarding the value of the Poisson rate. This may imply,
depending on the values of 87 and rr, that the optimal time to switch is monotonically decreasing

in (3 in this regime. Hence, there may exist a £ < £, with 3;, where t,(c, 8;) = £, so the seller switches
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back to the high margin, low volume channel. Figure 3 illustrates the fact that the optimal solution
may involve multiple switches between the two channels, depending on the parameter values of the
problem.

The fact that this sample path is feasible in RM problems with limited capacity and significant
uncertainty regarding the demand statistics, suggests that a markdown strategy with progressive
price/margin reductions, quite popular in retailing, is inappropriate in these problems because
it may be optimal for the seller to reverse a mark-down with a subsequent mark-up on certain

occasions.

8 —— B evolution
t; curve

-0.5 0.0 0.5 1.0 1.5 2.0
T—-t

Figure 3 This figure shows the evolution in time of the parameter 5 of the Gamma distribution, which
determines the uncertainty around the expected value, for ¢=1, T'=2.1, r =0.95, 1 =4, E[A7] = 0.6, and
Br = 1. One can distinguish two periods where the rate of increase is larger, corresponding to the low margin, high
volume channel, as well as a period where the rate of increase is smaller, corresponding to the high margin, low

volume channel. This illustrates that the optimal policy can involve multiple switches between the two channels.

4.3. A Computational Approach for the Exact Solution in the General Case
Up to this point, our analysis has been focused to a tractable special case of the problem with
@ = 1. Here, we discuss the solution in the general case. Equation (10) provides a recursive way for
solving the Optimal Control problem: having obtained ¢,_1(:), one can compute ¢,(-) by solving
the aforementioned p.d.e. in ¢ and 3, for any given a. The recursion is initiated with ¢;(-), which
we have obtained in closed form; see Equation (13) for the case where 6pr; > 1. In turn, for any
fixed a and (8, one can obtain the optimal time to switch to the low margin, high volume channel,
ty,(c, B), as the root of ¢,(-,a, 3) =0.

Let us illustrate this recursive approach by attempting to derive the optimal policy for Q = 2.
Starting again from Equation (10) and assuming that 6,r; > 1, we have that aj = L for ¢ >0 in

the vicinity of zero. Then, ¢,(¢,a, ) can be written as a solution to the p.d.e., provided in the
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Appendix. Unfortunately, the ten-line expression includes the Beta function and is intractable. To
obtain the optimal time to switch from the high-margin to the low-margin channel, ¢5(c, 3), one
has to find the root ¢s(-, a, 5) =0, which this time does not admit a closed-form expression.

A glance at the expression in the Appendix, which concerns the case of only two units of capacity,
makes the point that the recursive approach becomes analytically intractable very quickly, so it
has to be pursued via numerical methods. While the latter is possible for small instances of the
problem, which can be solved to optimality in a reasonable amount of time, the recursive approach
is impractical for larger instances. For this reason, in the following section, we develop a heuristic
policy that is very easy to implement and, while suboptimal, it performs very well in our numerical

experiments.

4.4. A Heuristic Policy for the General Case

Given the analytical and computational challenges in deriving the optimal capacity allocation
policy exactly, we propose an efficient heuristic for the general case of the problem that leverages
the fact that the solution for the special case (Q =1 is available in closed form. The main premise
on which our heuristic is based is that the optimal switching time of the ¢** unit of capacity can be
approximated reasonably well by employing the closed-form expression for the optimal switching

time of the first unit, with appropriately re-scaled shape and rate parameters:

tq(a’ﬁ) ~ tl (aqmjﬁqy)’

for some = and y.
We expect the heuristic policy to maintain a constant ratio of (expected) demand to supply
throughout the selling season. For that to be the case at the optimal switching time for the ¢**

and first unit, we need to have that

(a/B)/a=aq"/Bg",

which implies that z =y — 1.

We determine the values of x and y numerically: for different values of «, 5, 0, and rp, we solve
exactly for t,(c, ), for various ¢’s. Then, we estimate the values of x and y by minimizing the Sum
of Squared Errors between the exact values, t,(«, ), and our approximations, tl(aq‘”, qu). The
estimates of x that we get range between .40 and .45. The estimates of y range between 1.62 and
1.89. The estimation with the least minimized error satisfies y — x = 1.17, which suggests that the
condition of y — z = 1 mentioned before seems reasonable. As representative values we then choose

x=0.5 and y =1.5.
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Summarizing, our heuristic policy boils down to the approximation:

to(a, B) =t (ag"?, Bg*?).

As a sanity check for the proposed heuristic policy, we note that, by solving the p.d.e. numerically
as explained in the previous section (for small instances of the problem), we observe that ¢,(«, 3)
is monotonically increasing in ¢, for fixed o and 3. The fact that the expression for ¢ (aq'/?, B¢*/?)

is available in closed form, implies that we can verify analytically that the heuristic policy satisfies:

ot1(aq/?, B¢*/?)
dq

In Figures 4 and 5 we contrast the exact optimal switching time to its approximation through

> 0.

our heuristic, for different values of ¢, 0, and r;. While not perfect, the approximation seems to

be varying between good and very good, depending on the parameter values.

15 6.=4,r.=0.6 6 6.=2,r=06 6 6,=4,r=0.3
= t4(q) - DP
tl(a1q1/2’ﬁ1q3/2)
8 4 4
“U
4 2 2
071 2 3 4 5 07 2 3 4 5 01 2 3 4 5
q q q

Figure 4  t, as a function of ¢ for low demand, E[A] =0.1. Comparison between exact solution and heuristic

policy in terms of the optimal switching time.

5. On the Value of (Bayesian) Demand Learning

Our final set of results pertains to quantifying the value of (Bayesian) demand learning, and the
ability of the heuristic policy, introduced in the previous section, to capture the bigger part of that
value. To that end, we compare the total expected revenue resulting from the following policies:

A. “Optimal Learning”: The exact solution to the Optimal Control problem;

B. “No Learning”: The exact solution to a special case of the Optimal Control problem, where
there is no uncertainty around the ex ante mean demand, and hence no updating of the shape
and rate parameters of the Gamma distribution. Mathematically, this corresponds to the solution
to Equation (10) with ar = Ak and Br =k, for fixed A and k — oo; effectively, in the absence of
the partial derivative with respect to . Equivalently, this is the solution to the Optimal Control
problem in the benchmark model of Martinez-de Albéniz et al. (2022);
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6 9L=4,FL=O.6 6 9L=2,FL=0.6 6 6L=4,FL=0.3

= t4(q) - DP
(g2, B1g*?)

4 4 4
5

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
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Figure 5 tq as a function of ¢ for high demand, E[A] = 0.6. Comparison between exact solution and heuristic

policy in terms of the optimal switching time.

C. “No Sharing”: t,(c, ) =0, for all ¢, v, and 3, i.e., the seller never employs the low margin,
high volume channel;

D. “Heuristic Policy”: the heuristic policy presented in Section 4.4.

Figures 6 and 7 present the performance of those policies for T=6; Q@ =1 and Q = 5; E[Ar] =
0.5Q/T and E[Ar] =1.5Q/T; and (3 ranging from 0.01 to 10 on a logarithmic scale. The performance
of these policies is normalized by the total expected revenue of the optimal policy with demand
learning (curve A) which, by definition, is the highest.

The difference between curves A and B quantifies the value of (Bayesian) demand learning,
because we compare the optimal allocation policy with dynamic learning to the optimal allocation
policy without it. On the other hand, the difference between curves B and C quantifies the value
of (optimal) sharing — essentially, the value of the practice of RM — because we have the optimal
allocation policy without demand learning against the static allocation policy. We observe that,
across all the scenarios considered, the value of learning is of the same order of magnitude as the
value of the practice of RM; and actually, much larger than the latter in the regime of high ex ante
uncertainty regarding the demand. Hence, for the firms and industries where RM is a first-order
consideration, demand learning could very well be too.

Moreover, by comparing curves A and D, we observe that the heuristic policy captures a sig-
nificant amount of the total expected revenue of the optimal policy for moderate and low levels
of demand uncertainty, despite the fact that it is conceptually very simple and computationally
extremely fast. Note also that it outperforms the practice of RM without demand learning (curve
B) in all scenarios, which reinforces the main message of this section: the benefit from demand

learning may outweigh the cost of suboptimal capacity allocation.
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Finally, in the regime of high ex ante uncertainty regarding the demand, i.e., small values of
B, curves B, C, and D exhibit big gaps from optimality. It is in those situations that we recom-
mend practitioners to lean towards the exact Optimal Control formulation, or to develop more

sophisticated heuristic policies.
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Figure 6  The performance of the no-learning policy, of the no-sharing policy, and of the heuristic policy against
the optimal learning policy with Bayesian demand learning; for high and low E[A], high and low Q, r = 0.6,
0 =4, T=6.

6. Discussion
We conclude the paper with a broader discussion of the approach followed and the results and
insights obtained, in an attempt to put them in perspective.

Rapid advances in Information Technology during the last decades have generated an abundance
of data in a variety of firms and industries. This has stimulated intense research activity on dynamic

learning problems, whether in the supply or in the demand management side of things, combining
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Figure 7 The performance of the no-learning policy, of the no-sharing policy, and of the heuristic policy against

the optimal learning policy with Bayesian demand learning; for high and low E[A], high and low Q, r =0.3,
0r =8, T =6.

tools from Operations Research with concepts from Economics and methods from Statistics and

Machine Learning. RM is one of the academic fields where this interdisciplinary effort has been

particularly fruitful. Characteristic of many approaches in this thread of literature is the principle

of “estimate, then optimize” whereby the exploration and exploitation phases that the solution to

every dynamic learning problem must include, are largely decoupled. While these approaches have

been quite successful in different business settings, their applicability to RM problems with limited

capacity, which are the ones that motivate our work, is questionable: the opportunity cost of each

unit of capacity is very high which, in turn, makes phases of “pure exploration” very costly.

We argue that an exact analysis via a Dynamic Programming/Optimal Control formulation,

coupled with Bayesian demand learning, is the correct approach for RM problems where there

is limited capacity, limited sales season, and high uncertainty regarding the demand statistics.

Capacity allocation problems, e.g., in luxury apparel and resort hotels, have these characteristics.
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From an academic standpoint, an argument against the approach that we favor is that Bayesian
formulations of dynamic learning problems are typically intractable analytically, and rarely give
rise to efficient computational methods. Consequently, we consider among the main contributions
of this paper the fact that we identify a special case of the problem, in our regime of interest
(limited capacity), where we can provide a closed-form solution to the dynamic learning problem
at hand. We leverage this analytical result in three ways: by deriving managerial insights through
comparative statics on the optimal solution obtained; by building on it an efficient heuristic policy
for the general case, which performs very well in our numerical experiments; and by studying the
monetary value of demand learning.

One of our main findings, counterintuitive at first sight, has to do with the fact that the optimal
time to switch from the high-margin channel to the low-margin one is non-monotonic with respect
to the uncertainty regarding the demand statistics. In other words, higher uncertainty regarding
the mean demand may imply switching to the low margin, high volume channel earlier or later.
This phenomenon may seem like a mere mathematical curiosity, but has important implications in
quantity-based RM with demand learning: conventional wisdom suggests that, under high demand
uncertainty, the seller should switch early to the low margin, high volume channel in order to boost
sales and learn the demand faster; along the lines of the “estimate, then optimize” principle. This
line of reasoning would give rise, in a more realistic setting, to progressive price/margin reductions,
akin to the practice of markdowns, prevalent in retailing. Our result implies that a markdown
strategy is inappropriate in our setting, because it may be optimal for the seller to reverse a
mark-down with a subsequent mark-up on certain occasions.

The final question that we aim to provide an answer for in this work is whether demand learning,
if done properly, brings significant monetary value to the firm, or if it should be a second-order
consideration from a practical standpoint, and mostly of academic interest. As learning and revenue
optimization are intertwined in RM problems with active/dynamic demand learning, the challenge
is how to disentangle the value added by the practice of price- or quantity-based RM from the value
added by learning. To that end, we leverage the stylized nature of our model and the closed-form
solution that we obtain for the special case of (extremely) limited capacity, to answer this question
in the affirmative: the monetary value of Bayesian demand learning can be of the same order of
magnitude as the practice of RM itself — the tactical optimization of capacity allocation, in our
case — if the demand statistics were assumed to be known. We argue, thus, that demand learning

could be a first-order consideration for certain firms and industries.
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Appendix

Exact Solution for the Special Case () =2

Given that ¢, (¢, a, ) is available in closed-form, Equation (10) for ¢ =2 can be written as follows:
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Using the boundary condition ¢5(0,«,5) = —(1 —0.r)/(0, — 1), we obtain the solution to the

above p.d.e. in closed form:
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where B(a,b) is the beta function. The root of ¢5(-, «, 5) = 0 that determines the optimal switching

time is not tractable analytically though.



