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Abstract

Problem definition: Omnichannel retailers interact with customers both online and offline. So
far, they have used the richer information available to optimize the sales process by designing the
right channel and supply chain structures, and by personalizing offer, pricing, and promotions.
We advance an additional dimension of omnichannel value: retailers can use online clickstreams
to better understand customer needs, and optimize store layouts to maximize webrooming con-
version, which we define as the ratio of sales to webrooming activity. Methodology/results:
We develop a model in which in-store purchases depend on the customer’s shopping list, and the
effort required to locate and reach the products within the store. Category location in the store
thus drives the likelihood of a sale. We then apply our model to a large home improvement re-
tailer and find that shoppers’ preferences are revealed by nearby online traffic, and hard-to-reach
locations lead to lower webrooming conversion. Finally, we optimize category-location assign-
ments using our demand model and find that putting higher-interest and higher-price items
in the most effective locations can increase revenues by about 2-5% in comparison to models
that ignore online clicks. Managerial implications: We show how using online clickstream
information for optimizing offline operations can create significant value. More fundamentally,
our results provide a word of caution that in some retailing segments like home improvement,
longer in-store paths might not necessarily be better.
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1. Introduction

In the last decade, omnichannel has become a dominating retail strategy in which retailers do

not see online and offline as independent channels, but manage them jointly (Gallino and Moreno

2019, Caro et al. 2020). Omnichannel delivers value on multiple dimensions, because it allows

customers to learn about the product in one channel, and fulfill the demand in another (Bell et al.

2014). This flexibility implies that retailers are no longer constrained to run a single-channel sales

process, and have more freedom to optimize the funnel from need to purchase (Wiesel et al. 2011).

The additional flexibility requires closer coordination of the operations and marketing functions

(Bijmolt et al. 2021), but has the potential to groom more effective interactions with the customer,

increasing their satisfaction and delivering higher profits to the retailer.

The literature has identified different ways to extract value from omnichannel. On the one

hand, traditional marketing actions can be refined with more precise customer histories, such as

targeted advertising or promotions (Goic and Olivares 2019). On the other hand, many decisions

in the operational realm have been improved. The design of channels can be optimized by better
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understanding how offline and online affect each other (Bell et al. 2020, Kumar et al. 2019, Bar-

Gill and Reichman 2020). Information provision can drive the channel choices of the consumers

(Gallino and Moreno 2014). Information from online sources can also help predict demand better

so inventory levels can be optimized (Huang and Van Mieghem 2014, Cui et al. 2018). Finally,

fulfillment flexibility allows firms to better run their supply networks (Hübner et al. 2019).

Most of the strategies described above are effective for firms that have a large online sales

channel, but it is less clear how offline-heavy retailers can take advantage of an omnichannel strategy.

Moreover, despite the increase of online shopping, retailers keep investing in stores as these remain

the primary instance to interact with consumers (Schaverien 2018, Dowsett 2019). According to Bell

et al. (2014), the value can be obtained by providing better information online, in a webrooming

model. In this paper, we intend to uncover one additional value creation strategy available to

omnichannel retailers, which is especially important under webrooming: one can leverage online

sessions to detect (true) customer needs at the category level and analyze the determinants of store

effectiveness. Namely, we are interested in what we call webrooming conversion, measured as the

number of sales in the category divided by the number of potential customers that showed interest

online in the store vicinity. Note that this definition is different from the common metric used by

retailers, who divide sales by footfall, which is problematic because footfall need not be made of

shoppers with an interest in the product. In contrast, our definition accounts for such interest,

while ignoring the actual number of store visitors.

The conversion process is complex, as visitors’ initial shopping intention must translate into

store visit first, then into exposure to the wanted products (and others), then into consideration

sets, and finally, into purchase. It involves time and effort from the consumers. As a result, a

well-thought layout can help them access their desired products quicker, and they might end up

buying with a higher probability (Underhill 2009). Indeed, convenience increases the chances that

customers buy: more formally, time pressure and higher search costs decrease sales (Hui et al.

2009b, Brynjolfsson et al. 2011). This is the reason why impulse items such as chocolates are often

located near the check-out line, and Amazon has patented the One-Click button to reduce cart

abandonment (Wagner and Jeitschko 2017). Unfortunately, the understanding of the relationship

between layouts and conversion is limited. While richer displays—i.e., displays with more products

on the shelves—are known to increase conversion (Boada-Collado and Mart́ınez-de-Albéniz 2020),

there is a lack of empirical evidence linking product position in the store with sales. Causal evidence

of this kind is hard to obtain, because retailers generally do not know the store visitor’s shopping

list, and hence they only observe sales performance of a particular store area but not how effective

it was in capturing potential purchase intentions.

A rare exception is Hui et al. (2013) who collected the planned shopping list of 275 shop-

pers across 99 categories, and subsequently showed that longer in-store paths increased unplanned

spending. However, this type of effort is hard to scale. As Goic and Olivares (2019) put it, “In
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contrast [to online channels], data regarding browsing behavior in retail stores have been, for the

most part, nonexistent. Studies that seek to measure the effect of changes in the layout and display

of a store have typically used aggregate store-level data to conduct causal analysis.” In this paper,

we provide one scalable novel way to assess the effects of layout on conversion, which can be used for

layout optimization. Our approach selects the subpopulations of consumers that showed interest in

a product category in the vicinity of a store, and then connects it to sales for that same category

in that store. Hence, it does not require individual-level data and should be applicable to many

retailers, even those that cannot track consumer behavior individually.

For this purpose, we first build a theoretical model in which conversion is affected by the physical

effort invested by the visitor to locate products in her shopping list. We then work with a large home

improvement retailer for which we observe, during seven months, all offline and online activities.

For 16 stores, we observe full transaction records, i.e., composition of individual receipts, category

details, and precise location within each store. For the online channel, we observe full clickstreams,

i.e., all the clicks with timestamps by distinct geolocated origins of internet traffic. For each store

and category, we are thus able to count how many different potential customers might be interested

in the category. This is a proxy for the number of store visitors genuinely interested in purchasing

the category, and we show that it is indeed a strong predictor of category sales. We are then in a

position to study how conversion is moderated by location in the store. After controlling for other

shopping funnel factors including store and category fixed effects, we find that the distance from

the store entrance is a critical determinant of conversion, and items easier to reach—i.e., closer

to the store entrance—exhibit significantly higher conversion. In contrast, we find that spillovers

from adjacent categories are not significant (recall that these are home improvement categories for

which there is little impulse shopping), which suggests that using store visits to create cross-selling

revenue may not always be possible or desirable, as also suggested by Gao and Su (2017a).

The empirical findings pave the way for optimizing store layout. We formulate this question

as an assignment optimization problem, and show that revenues can be increased by about 2-5%

when online information is used to decide category locations, in comparison to a model in which

only offline information about sales is used. This involves a one-time layout change.

We illustrate the value of our framework with an example. Suppose that the manager at one

of our data partner’s stores notices that a prime location of the store is underutilized because it is

being used by a category with meager sales, such as the smart-home connectivity category, which

consists of devices that connect remote sensors to monitor the status of a house. Then, the question

is what else to place in that prime location. If the manager only has access to store sales, then

she might consider placing a steady seller, such as the locks category. However, if she also had

access to clickstream data from shoppers living nearby, she would be able to detect categories that

are “punching below their weight”, such as laminated flooring in our case study. Optimizing the

location of these categories allows them to achieve their full conversion potential.
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Our work contributes to the growing literature on retail analytics in two ways. First, we

theoretically and empirically disentangle the sales impact of a store location, measured by its

distance from-entrance-to-exit, and the market potential of a category, measured by online clicks.

Second, we formulate and solve a layout optimization problem that exploits the dependence of

location on store revenues, which provides a blueprint for retailers on how to execute a data-driven

strategy to maximize the value of their real estate. Our results show that having access to product

preference lists—available in online interactions—as opposed to simply shopping baskets—typical

in store transaction records—is very valuable. Our approach is thus a simpler alternative to in-

store customer tracking (Hui et al. 2009a), and more importantly gives access to information about

which categories were browsed online in the vicinity of each physical store (see Chen et al. 1999

for a similar idea applied to advertising). Besides establishing the connection between store layout

and sales, we provide an integrative perspective where customer behavior is combined with layout

design decisions, which goes beyond minimization of average travel distance (De Koster et al.

2007) or consideration of category adjacencies (Ozgormus and Smith 2020). Finally, note that our

prescriptive results are applicable in retail settings where impulse purchases and cross-selling are

small, such as home improvement or auto parts stores, to name a few. In other contexts, reducing

in-store paths may have unintended consequences because it may reduce unplanned spending (Hui

et al. 2013).

The rest of the paper is organized as follows. Section 2 reviews the relevant literature. Section

3 formulates the model of a shopping visit and formulates the layout optimization problem. We

estimate the impact of layout on sales in Section 4. Section 5 includes a counterfactual analysis of

alternative store layouts. Section 6 concludes the paper.

2. Literature Review

Our work is mainly related to three streams of literature. First, we build on the operations and

marketing literature that has studied the shopping funnel. Second, we are connected to the works

about offline-online channel interactions. Third, we contribute to the literature on prescriptive

models for retail execution.

2.1 From shopping funnels to omnichannel

The concept of funnel is a natural approach to study the effects of different marketing strategies

on the customer. The funnel applies to both physical channels, where store visits are transformed

into units sold, and online channels, where leads become visits which in turn generate orders.

Wiesel et al. (2011) provides a framework to integrate both channels. Lemon and Verhoef (2016)

provide an excellent perspective on the customer journey that a potential shopper goes through, and

highlight pre-purchase stages—webrooming in our case, defined as “search online, buy in store”—as
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determinant of later purchasing decisions. They also review the rich marketing literature on these

interactions. In terms of modelling, hierarchical models are a convenient way to capture that only

a fraction of those showing an initial interest in shopping end up making a purchase (Arora et al.

1998, Mart́ınez-de Albéniz et al. 2020). Detailed decision processes have been developed, such as

the use of consideration sets (Wang and Sahin 2018) or product evaluation heuristics (Aouad et al.

2021). It is worth noting that one paper has theorized about the importance of order within the

basket. Chen et al. (1999) highlights that some categories are more important than others as they

are the reason behind a store visit. They develop the concept marketing profits to reflect that profit

should be attributed to the category that brought the customer to the store.

When pre-purchase and in-purchase stages take place in different channels, the term “om-

nichannel” has frequently been employed. The phenomenon has been extensively studied in the

last decade. Brynjolfsson et al. (2013) provides an early discussion of the potential of omnichannel

for retailers. Gao and Su (2017a,b) develop analytical models for channel choice under omnichannel

capabilities. As conceptualized in Bell et al. (2014), the benefits of omnichannel come from better

category information, and from better fulfillment possibilities. In other words, there are advantages

in showrooming, and in webrooming.

Physical interactions in the store allow retailers to engage with customers more effectively. Bell

et al. (2020) show how the convenience and the store experience can help pure online players sell

more. Kumar et al. (2019) identify the possibility of making in-store returns as another driver of

sales increases.

Webrooming can also be valuable. Gallino and Moreno (2014) study the effect of Buy Online

Pickup in Store (BOPS) on online and offline sales, and find that store traffic increases due to better

information about in-store category availability. Interestingly, the quality of the online experience

has an impact on offline sales and customers’ overall perception (Bar-Gill and Reichman 2020,

Flavián et al. 2020).

Our study reveals a different value driver of omnichannel. It can be used to anticipate demand

at the store level, and hence, study the impact of the store layout on the conversion process.

2.2 Path studies

An interesting variation of the study of shopping funnels is possible when interactions between

customer and firm occur multiple times, requiring us to consider the sequence in which they occur.

Sequential decisions have been considered in the marketing and economics literature across visits

(Chintagunta et al. 2012) or within a single visit (Larson et al. 2005, Hui et al. 2009a,b, 2013, Ruiz

et al. 2020). Hui et al. (2009a) provides a review of marketing research that considers paths of

consumers in store settings. Ruiz et al. (2020) include memory effects as well as one-step forward

considerations. This literature suggests that consumers rarely shop the entire store, and quite
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possibly come with a plan in mind on how to traverse the store.

Closer to our context is Hui et al. (2009b), who model the path between supermarket categories,

using a conditional model in which transitions from category to category are driven by destination

characteristics and path history, which they validate with path data in one store. The data is

obtained from individuals moving through the store, tracked by RFID tags, and the model is

calibrated using the actual transitions that took place. Interestingly, store layout is included in

the decision process through the distance between store regions. We use a similar approach, with

some differences. First, we do not have individual path data, but have access to category-level

aggregates. Second, we focus on conversion from needs to purchases, so our consideration of cross-

category interactions is operationalized in conversion spill-overs, between needs for one category

and sales for another, which is moderated by the location of categories in the store. Third, we

see variation of category locations across different stores, which allows us to control for category

characteristics and separately measure the impact of category location.

Also very close to our approach is Hui et al. (2013), who document that in-store path length

strongly increases unplanned purchases, in a grocery retail setting. In this case, RFID tracking

was complemented by an entry survey that elicited the customer’s shopping list, which allowed the

authors to instrument the endogenous in-store path length. In addition to this study, a field exper-

iment using in-store promotions was conducted to validate that longer paths increased unplanned

spending. In comparison, we do not find evidence of any strong cross-category spill-over effects,

which may be due that our context is home improvement in which impulse shopping is less salient.

This suggests that our prescriptions, which seek to reduce in-store distance to increase conversion,

may need to be revisited in other retail contexts in which impulse shopping is important.

Finally, while there is a lack empirical evidence linking store layouts with sales, extensive work

has been done to connect the position on a shelf with sales. Chandon et al. (2009) is a classic

study on how in-store marketing decisions shape consumer behavior. More recently, Jalali et al.

(2023) partner with a convenience store chain to conduct a field experiment that allows them to

empirically estimate the effect of vertical product location on sales. They find that, on average,

the eye-level position generates higher sales relative to the bottom- and top-shelves, with the

magnitude of this effect depending on product characteristics and how other products are laid out

vertically. Based on these insights, they write and solve a planogram optimization problem for

their retail partner, in the spirit of Corstjens and Doyle (1981). Hübner et al. (2019) tackle the

joint challenges of limited shelf space and in-store replenishment constraints, combining shelf space

allocation, assortment and replenishment decisions. The shelf space allocation problem also has

implications on the supply chain and supplier pricing, as shown by Mart́ınez-de Albéniz and Roels

(2011) or Heese and Mart́ınez-de Albéniz (2018).
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2.3 Optimization for retail execution

Our work is also connected to works that develop models to improve retail execution. Interventions

have focused on different dimensions, which we briefly review. Perdikaki et al. (2012), and Mani

et al. (2015) measure the impact of staffing levels on sales, which Chuang et al. (2016) use to

develop a labor planning methodology. Caro and Gallien (2010) study inventory distribution across

stores and combine demand forecasting and inventory allocation optimization to improve sales

at Zara; Gallien et al. (2015) apply a similar approach to new product distribution. Inventory

inaccuracy is another cause of suboptimal retail performance. DeHoratius et al. (2008) measure

the extent of inaccuracies and DeHoratius and Raman (2008) use inventory replenishment and

audits to mitigate their effects. Montoya and Gonzalez (2019) develop a hidden Markov chain

model to predict phantom stock-outs based on sales time-series. The effect of store congestion has

also been explored: Lu et al. (2013) measure how queues reduce sales conversion.

We discuss here an understudied aspect of retail execution. Indeed, we are not aware of existing

work that studies the role of store layout in generating sales. In particular, Larson et al. (2005),

Hui et al. (2009b), and Hui et al. (2013) do not investigate store design because they only have data

on one store and hence cannot disentangle the effect of category location from the category itself.

In contrast, we study layout decisions. The design of a store layout resembles that of designing

a warehouse. There exists a broad literature on warehouse layout optimization, see De Koster

et al. (2007) for an excellent review. Usually, the design problem is formulated as a large integer

program that is solved with heuristic techniques. The methods have also been applied to store

layout design, e.g., Mowrey et al. (2018). In these models, customer behavior is integrated through

simplified customer behavior assumptions such as considering penalties for categories that are not

adjacent (Ozgormus and Smith 2020). In contrast, we use the moderating effect of location on

conversion to propose improved layouts.

3. Model

3.1 The Shopping Process

In the same vein as the shopping funnel discussed in Section 2, we make the following assumptions

for the shoppers in our model:

1. Store choice: consumers prefer buying at a store that is closest to where they live. Hence,

each store has a “natural catchment area” that consists of all the households within a certain

radius.

2. Shopping lists: a significant fraction of consumers start their purchasing process with a prior-

itized list of items in mind that they would like to buy or are considering buying. A list can
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have multiple categories—e.g., paint, indoor lamps, and curtains—or just a single one, e.g.,

exhaust fans. Categories that are more important to the consumer are held higher in the list.

3. Webrooming: a significant fraction of consumers does research online about the products of

interest on the retailer’s website, and then follow through by visiting the store to purchase

(some of) the items they researched online. A consumer’s (mental) shopping list dictates the

order in which they search the items on the retailer’s website. The first item on the shopping

list can be understood as the “lead category” for that given consumer (Chen et al. 1999).

4. Store sales moderated by effort: once at the store, consumers try to purchase all the items

on their shopping list but might give up on some if they run out of time or if they are not

willing to exert the necessary effort to find and fetch the item.

This sequential funnel makes some assumptions regarding customer behavior. First, it requires,

implicitly, that consumers highly value their time, so they make their store choice based on prox-

imity, and limit their willingness to shop to fill functional needs, thereby disregarding potential

impulse purchases that would require extra effort for a small additional utility. This assumption is

reasonable in many retail settings, including home improvement, in which all stores are alike and

that carry most of the categories offered online.

Second, we ignore competing stores. Note that we are not assuming that consumers are captive

to a particular store, but rather that households are representative of the demand faced by the

neighboring stores, even if they do not necessarily shop there.

Third, the shopping list assumption can be justified in retail settings where choices are made

before entering the store. Hence, there is prior choice set that is mostly unaffected by the layout.

This assumption is consistent with choice models where each customer has a preference list. In

the literature, these categories are substitutes and the customer ends up buying a single, preferred

category out of the available ones. In our context, we extend this view to consider a preference list

of complementary categories, so this can be interpreted as a shopping list.

Fourth, the webrooming assumption is based on a common pattern observed in omnichannel

retailing. In fact, industry reports show that the percentage of shoppers doing online research prior

to visiting the store can range from 69% to 88% (Accenture 2013, Harris 2013, Deloitte 2017).

Finally, the moderation effect that effort has on sales is justified by the value of time premise.

This assumption is consistent with behavioral models in which consumers have a time budget for in-

store purchases (such as groceries as shown in Hui et al. 2009b), and is more amenable to functional

categories such as home improvement, for which the time spent enjoying the store experience is

not a major driver of conversion. In addition, and relatedly, we assume that shoppers know where

items are located in the store and walk the shortest path. Based on the assumption that consumers

value their time, they will try to find the shortest path to fetch the items they want, and in that

spirit we use the shortest path as a proxy for the distance they traverse in the stores.
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Note that in our context, basket sizes are actually smaller during week-ends, when time budgets

should be more generous, thus consistent with consumers highly valuing their time. This pattern is

also consistent with professional home-builders making high-ticket purchases during the week and

amateur DIY-ers making smaller purchases on weekends. This may not be the case in other retail

contexts where impulse spending is high, such as fashion retailing. This provides the boundary

conditions for our model and empirical findings: we expect them to carry over to retail contexts

in which the priority is facilitating the conversion from explicit potential needs into purchases,

regardless of the geographical location (our study uses data from Chile but the results should be

applicable to the US or any other country). This includes home improvement of course, but also

electronics and white goods. On the contrary, it probably does not hold for retailing with a higher

impulse content such as fashion or groceries.

3.2 Empirical Approach

Our empirical approach is based on the assumptions presented in the previous section. Conceptually

at a high level, it has the following form:

salesist = αmis + αt + f
(
online visitsist, effortis

)
+ eist, (1)

where mi denotes the macro category that contains category i. In our context, the macro category

mi corresponds to level 0 in the product hierarchy—to be introduced in Section 4.1—which is

typically a product family such as lighting, and it includes multiple (level-1) categories like indoor

lamps, outdoor lamps, light bulbs, etc., that are indexed by i.

The dependent variable salesist should be considered in log form, so as to justify an additive

structure of independent drivers and to better fit the empirical distribution which is Bell-shaped

(this is not the case without applying the log-transformation). The terms αmis and αt correspond

to macro category-store (mis) and time (t) fixed effects, which represent the baseline demand.

Note that the interaction of macro category and store will capture any specificity that the local

market may have with respect to a product family. The next term amplifies demand as a function

of webrooming moderated by effort, through a generic function f(·) that increases with online

visits and decreases with effort. Here, online visitsist represents a vector of relevant metrics that

characterize online traffic, and effortis should capture the time (disutility) involved in finding

category i at store s, based on the store layout. Note that the latter excludes the fixed time/cost

it takes to arrive to the store, which would be captured by the macro category-store fixed effect.

Finally, eist is the usual error term.

A few more remarks are noteworthy. We consider two amplification components in Equation

(1). Namely, (i) primary demand: people that came to the store with the intention of buying, and

exerted the effort to find the category; and (ii) secondary demand: people that came to the store
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searching for something else, but got exposed to the category and ended up buying (spillover in path,

spillover nearby, spillover within aisle). Both components should be captured by online visitsist.

We can observe that there are no substitution effects included in Equation (1). This formu-

lation is appropriate when different categories are solutions to non-overlapping functional needs.

Our empirical analysis is performed at the category level, with 165 different ones. At this level,

substitution effects across categories should be negligible.

The effect of store execution is captured mainly by the macro category-store fixed effects. This

includes the impact of assortments, which are quite stable over time, staff intervention, which are

limited because these are large stores with emphasis on self-service, and display—also stable because

there are no changes in layout within a store. In particular, all stores may have different assortment

breadths, but service level is extremely high, meaning that there is always at least one product with

available stock within each category, i.e., there is large variety every day during the entire period.

Moreover, all the results are unchanged when restricting our attention to categories in which the

service level is 100%. In other settings, such as apparel or groceries, it may be necessary to include

inventory levels in Equation (1) to control for potential demand censoring when there are stockouts

(Boada-Collado and Mart́ınez-de-Albéniz 2020), but in our case it is not needed.

Finally, promotional activities may be an important control to include, but these tend to be the

same in all stores, and hence, the effect of promotions is absorbed by the fixed effects and cannot

be identified.

4. Application to Home Improvement Retailing

4.1 Context

We collaborated with a South American chain of home improvement stores, a leader in this industry,

which operated 60 stores across Chile and an online channel at the time of the collaboration. We

obtained a comprehensive proprietary dataset providing information about stores, categories and

customer interactions, which we describe below.

The retailer sells a variety of home improvement categories, such as tools or materials. For the

sake of illustration, the items in the assortment belong to categories such as paint, sawn timber,

gardening tools, roofing, electric extension cords, or interior car accessories, to name a few. The

same assortment is sold in stores and online. In the categories available in the data, we list

82,178 SKUs that are categorized in different hierarchical levels in the following manner: 5 level-D

clusters, 21 level-0 clusters (our macro categories denoted mi), 168 level-1 clusters (our category

focus indexed by i), 787 level-2 clusters, and finally other more fine-grained clusters. We select for

our analysis 165 level-1 categories, after removing 3 legacy categories with zero sales.

At this retailer, the weight of the online channel is small, as it is responsible for only 2.63% and
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6.20% of total receipts and revenues, respectively. At the same time, in this industry webrooming

is known to be an important factor affecting the shopping process; for instance, Home Depot states

that it influences about 60% of store purchases even though the online channel only contributes to

6% of sales (Digital Commerce 360 2017). Because categories are functional and product research

is typically done in advance, this seems to be the ideal setting to assume that customers build a

shopping list before entering the store, and to empirically connect online browsing to purchases.

Three types of data are available to us, which reflect customer behavior in online and offline

channels:

• Transaction data. It describes the subset of the assortment’s categories that are purchased

together. Each product bought belongs to a receipt, which is assigned to a physical store and

a date. We refer to the purchase data as shopping-cart or shopping-basket data hereafter.

From the raw information, we compute how many receipts issued by a certain store in a

certain date included products of each category.

• Clickstream data. It describes the online journey that potential customers navigate when

visiting the retailer’s website. It consists of time-stamped observations of category-level vis-

its, with an IP address identifier (totalling 3,691,442 different identifiers). We refer to the

clickstream data as shopping-list data or webrooming data hereafter. To process clickstream

data, we first define a session as the web journey that a potential customer (given by an IP

identifier) navigates in one day, i.e., at any time within a given date. One session is formed

by a list of ranked categories, represented in a ranked vector. IP identifiers are geolocated, so

we are able to associate each session with stores nearby. Specifically, the catchment area of a

given store is a 5km radius for stores in the Santiago Metropolitan area and 20km elsewhere.

There are two main reasons why we use different catchment areas. First, because Santiago

is more densely populated than other regions in Chile, one could expect the concentration of

home improvement stores to be higher there, what makes it unlikely that someone in Santiago

will not find a home-improvement store within a few kilometers and will need to travel longer

distances. In contrast, home improvement stores will not be as numerous in more sparsely

populated areas of Chile, so potential consumers will need to travel further to their nearest

store. Second, the cost of travel is higher in densely populated areas like Santiago as opposed

to other areas in the country, what will make the people that live in Santiago less willing to

travel a longer distance to a home improvement store.

There is one special IP identifier that is worth mentioning: it corresponds to a gateway

assigned to all wireless connections from mobile networks. Despite this point being geolocated

in Santiago, it comprises all the mobile connections that originate in Chile. For this reason,

mobile traffic cannot reliably be assigned to a nearby store, so it is left out of our analysis. This

traffic represents only 0.158% of all clicks (we replicate the analysis allocating mobile visits to
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the stores proportionally, and results remain unchanged). Furthermore, we do not consider

web visits that are thought to be generated by bots through web-scraping. To remove those

visits, we filter the visits by those IP identifiers that either visit one category more than 40

times or visit more than 300 products in a given day (we also replicate the analysis including

these visits, and results again remain unchanged).

• Store layout data. It describes the layout of the store, i.e., it details each level-1 category’s

location in each store. The layouts of 16 brick-and-mortar stores are available in pdf files.

We process these files automatically and we obtain the locations of the category labels within

the layouts. These locations are described in (x, y) coordinates, and measured in pixels,

but for each file, the scale conversion is available, through the width of checkout corridors

which measures 1.65 meters. Hence, we can compute the distance in meters that a potential

customer has to walk in the retailer’s store, so as to buy from a category. From this map, we

can thus compute the distance between categories and between a category, the store entrance

and the checkout lanes. We use Manhattan distances in meters, so as to reflect the true

walking distance given the existence of horizontal and vertical aisles in the stores.

Given the information about layouts, we focus our study on 16 of the retailer’s brick-and-

mortar stores (26.6% of the total), and its online channel. From these stores, nine are located in

the Santiago Metropolitan area, while the remaining stores belong to other regions. We use daily

data from December 1st, 2018 to June 30th, 2019, with the exception of 19 days that were removed

from the analysis due to missing values. The total study period is thus 30 weeks long (we replicate

the analysis excluding holiday dates, and again results remain unchanged).

Tables 1 and 2 compare stores and category metrics for these 16 stores compared to the entire

network. We observe that stores included in our subsample are slightly larger in scale (number of

receipts, size, assortment) but similar to the rest regarding basket composition (price, basket size),

hence suggesting that no bias is introduced by focusing on our chosen store subset. Thus, the 16

in-sample stores are representative of the average store of our retail partner.

4.2 Descriptive Statistics

In this section we operationalize the variables from our conceptual Model (see Section 3). The data

is aggregated weekly to avoid within-week fluctuations: each observation corresponds to a week t,

a level-1 category i (which we call category for simplicity), and a store s. Hence, we define the

following variables of interest:

• Nist: Number of receipts that include category i issued at store s during week t.

• Nst: Total number of receipts issued at store s during week t. Note that Nst ≤
∑

iNist

because a receipt may include multiple categories.
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Table 1: Store descriptive statistics, 30 week sample.

In-sample stores Out-of-sample stores

Statistic N Mean St. Dev. Min Median Max N Mean St. Dev. Min Median Max

General

Total revenue (mn. Chilean Pesos) 16 17,581 6,230 6,133 17,861 31,099 44 12,863 5,405 5,034 11,474 29,020

Total number of receipts 16 437,020 131,293 181,833 456,678 653,842 44 319,913 107,947 101,343 315,076 559,126

Total number of online sessions (mn.) 16 1.115 3.604 0.048 0.235 14.620 44 0.945 3.106 0.009 0.178 14.837

Average basket value (Chilean Pesos) 16 39,977 6,007 26,674 38,988 49,203 44 39,971 7,550 26,058 39,173 62,756

Average basket size 16 3.25 0.34 2.76 3.25 4.14 44 3.18 0.25 2.68 3.21 3.61

Layout

Store size (square meters) 16 11,825 3,012 7,040 11,796 18,461 44 9,792 2,506 5,000 9,363 15,080

Number of aisles 16 79.6 19.0 50 81.5 123 – – – – – –

Number of checkout lanes 16 17.3 4.7 8 17 27 – – – – – –

Average distance on avenue (meters) 16 29.75 8.99 15.08 31.65 52.55 – – – – – –

Average distance on aisle (meters) 16 18.63 4.57 11.32 19.46 25.65 – – – – – –

Inventory

Number of distinct SKUs carried 16 31,258 4,236 23,892 32,273 36,024 44 25,864 5,012 13,306 24,830 38,093

Number of distinct SKUs sold 16 27,860 4,232 20,437 28,838 33,400 44 22,755 4,676 11,238 21,807 33,640

Number of distinct categories carried 16 163.6 1.0 162 164 165 44 161.5 6.3 122 162.5 165

Number of distinct categories sold 16 161.5 1.3 159 162 165 44 161.8 5.9 125 163 165

Prices

Average SKU price (Chilean Pesos) 16 4,534 1,180 2,154 4,668 6,765 44 4,653 1,472 2,667 4,619 12,899

Table 2: Category descriptive statistics, 30 week sample.

In-sample stores Out-of-sample stores

Statistic N Mean St. Dev. Min Median Max N Mean St. Dev. Min Median Max

General

Average revenue, per store (Chilean Pesos) 165 953,587 2,119,414 5,110 454,995 24,727,340 165 890,978 2,487,860 8,772 367,424 30,012,816

Average number of receipts, per store 165 5,721 6,889 1.3 3,128 43,929 165 4,163 5,097 3.2 2,206 32,031

Average number of online visits, per store 165 561.24 623.62 0.03 367.66 4,337.30 165 456.91 506.75 0.03 300.63 3,520.34

Inventory

Average number of distinct SKUs carried, per store 165 187.28 223.92 1.36 107.63 1,295.5 165 155.37 183.52 1.486 93.16 1,078.5

Average number of distinct SKUs sold, per store 165 165.76 209.37 0.25 89.69 1,418.81 165 135.50 171.61 1.00 75.25 1,223.39

Prices

Average SKU price (Chilean Pesos) 165 17,621 28,389 296 7,783 203,485 165 17,089 26,773 291 7,485 151,007

Note: In some categories, there are SKUs that are sold without presenting a positive stock in the inventory data.
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• V1,ist: Number of online sessions in which category i is viewed as the first item, within the

catchment area of store s during week t.

• V2−4,ist: Number of online sessions in which category i is viewed as the second, third, or

fourth item, within the catchment area of store s during week t.

• V5+,ist: Number of online sessions in which category i is viewed as the fifth item or further,

within the catchment area of store s during week t.

• Vist: Number of online sessions in which category i is viewed in any order, within the catch-

ment area of store s during week t. It follows that Vist = V1,ist + V2−4,ist + V5+,ist.

• Vst: Total number of online sessions within the catchment area of store s during week t. It

follows that Vst =
∑

i V1,ist. Note that Vst ≤
∑

i Vist because a session may include multiple

categories.

• Vit: Total number of online sessions in which category i is viewed in any order during week

t. It follows that Vit =
∑

s Vist.

• Dis: Distance to pick item i in store s measured in meters, i.e., the distance between the

store entrance and category i plus the distance between category i and the checkout lanes.

Note that there are no changes in layout during the time window of study, so this variable is

independent of time.

In our study, we use all variables except distance in log form for ease of interpretation of the

coefficients and to remove skewness, i.e., we transform variableX into x := log(1+X) (we add one to

avoid problems with zero values of X). With this notation, the variable nist is our proxy for salesist,

and Dis is our proxy for effortis. Our proxy for online visitsist includes vist, v1,ist, v2−4,ist, v5+,ist,

and might also include these same variables for other categories j whose traffic is relevant to the

sales of category i.

Table 3 contains the descriptive statistics of the logged variables, and Table 4 their correlations.

One can observe that the amount of generic online traffic vst has a small correlation with sales

indicators nst or nist. However, category-specific online traffic vit, vist, v1,ist, v2−4,ist and v5+,ist

has a high positive correlation with category-specific sales nist. This indicates that indeed online

activity can be used as a key input for store demand forecasting, and this insight is a promising

starting point to develop a more sophisticated model as discussed in Section 3.

To further illustrate the available data, Figure 1 shows the joint evolution of Vist and Nist for two

stores and two categories. We can see that both series tend to move together, although their relative

values (i.e., their ratio) changes across stores and categories, which is natural given that some

categories may require relatively more browsing to achieve a certain level of sales, and the customers
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Table 3: Descriptive statistics of the main model variables.

Statistic N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

nist 78,750 4.13 1.85 0.00 3.18 4.43 5.51 8.71

nst 78,750 9.28 1.55 0.00 9.23 9.52 9.82 10.45

v1,ist 78,750 2.96 1.41 0.00 1.95 3.00 3.95 7.77

v2−4,ist 78,750 2.76 1.34 0.00 1.79 2.77 3.71 7.59

v5+,ist 78,750 1.85 1.25 0.00 0.69 1.79 2.71 6.63

vist 78,750 3.73 1.41 0.00 2.83 3.78 4.72 8.42

vst 78,750 8.66 0.84 6.74 8.01 8.78 9.31 10.24

vit 78,750 5.88 1.37 0.00 5.17 5.98 6.78 9.79

Dis 78,750 119.09 51.80 28.55 77.77 114.13 151.40 377.37

Table 4: Correlation matrix between the variables of interest.

nist nst v1,ist v2−4,ist v5+,ist vist vst vit

nist 1

nst 0.4018 ∗∗∗ 1

v1,ist 0.3999 ∗∗∗ −0.0386 ∗∗∗ 1

v2−4,ist 0.3015 ∗∗∗ −0.0590 ∗∗∗ 0.8798 ∗∗∗ 1

v5+,ist 0.2209 ∗∗∗ −0.0672 ∗∗∗ 0.7434 ∗∗∗ 0.8793 ∗∗∗ 1

vist 0.3534 ∗∗∗ −0.0527 ∗∗∗ 0.9499 ∗∗∗ 0.9669 ∗∗∗ 0.8700 ∗∗∗ 1

vst −0.0074 ∗∗ −0.0618 ∗∗∗ 0.5400 ∗∗∗ 0.6277 ∗∗∗ 0.6227 ∗∗∗ 0.6178 ∗∗∗ 1

vit 0.4902 ∗∗∗ −0.0234 ∗∗∗ 0.8165 ∗∗∗ 0.7036 ∗∗∗ 0.5616 ∗∗∗ 0.7746 ∗∗∗ 0.0773 ∗∗∗ 1

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

around some stores may have higher natural conversion between browsing and purchasing, compared

to others. These structural, static differences will be captured by the macro category-store fixed

effects in our model.
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Figure 1: Evolution of clickstream and sales figures, for two categories and two stores.
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As shown in Table 4, nist and vist are highly correlated. Hence, clickstream activity seems a

useful lead indicator of category i’s performance. Taking into account this relationship, we can

further study the impact of the store layout on conversion. Figure 2 plots conversion for a given

store, measured as nist−vist = log ((1 +Nist)/(1 + Vist)) ≈ log (Nist/Vist), averaged over 30 weeks.

We observe that, while conversion fluctuates, we see a clear trend showing that the conversion of

distant categories is lower than those near the entrance or center. This model-free evidence suggests

that a category’s location in the store strongly affects the conversion from category interest to actual

sales.

Figure 2: Model-free representation, with sales (left) and webrooming conversion (right) in quintiles.

The arrows correspond to store entrances and exit. The layout on the left also shows the current

and proposed location for the laminated flooring category that is discussed in Section 5.2.

4.3 Model Specification

Based on the variables of interest defined above, we write Equation (1) as the following regression

model:

nist = αmis + αt + βvist + γDis + eist. (2)

Since the data does not contain any changes in store layouts, our main analysis aggregates over

time to make it clear that identification comes from cross-sectional variation (i.e., variation across

stores). In Section 4.6 we report the time-dependent analysis and show that the results remain the

same. Hence, we aggregate Equation (2) across time and obtain

nis = αmis + βvis + γDis + ϵis, (3)

where nis =
1
T

∑T
t=1 nist, and vis =

1
T

∑T
t=1 vist. This equation preserves the logic of Equation (2)

and represents our main empirical specification. We also consider variations of this specification, in
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which we incorporate quality-segregated online visits, via v1,is, v2−4,is, v5+,is instead of vis, where

these metrics are computed as averages of the corresponding time-varying variable.

Furthermore, this equation captures the direct influence where sales are simply the consequence

of a true demand need existing prior to a store visit. Beyond this direct influence, the literature has

identified other indirect influences, namely spill-over effects between categories. In other words, if

there is a flow of shoppers interested in buying a certain category, these visitors will be exposed to

other categories on their way to their primary shopping objective. For instance, Hui et al. (2013)

documents a significant positive spill-over in a grocery context.

To study these cross-category interactions, we consider three potential drivers of sales arising

from spill-over effects. First, for a certain category i, we consider the primary demand associated

with categories j that require the shopper to walk by i in their path to j. For this purpose, we

define the binary variable INPATHijs, which is equal to one if the shortest path from entrance to

j and then to exit coincides with either the shortest path from entrance to i to j to exit, or from

entrance to j to i to exit. Otherwise, it equals zero. For the paths to coincide, they must have the

same Manhattan distance with up to a 10% deviation. We then define PATHist as the number of

online sessions within the catchment area of the store that include any category j ̸= i such that

INPATHijs = 1:

PATHist =
∑
j ̸=i

INPATHijs × Vjst, (4)

and let pathist = log(1+PATHist), and pathis =
1
T

∑T
t=1 pathist. This variable should thus capture

spill-overs into items that are in central locations within the store, that see a high amount of traffic

for primary items that are further inside the store. It results in the following specification:

nis = αmis + βvis + γDis + δpathis + ϵis. (5)

One may note that visitor flows in the store might not necessarily coincide with the shortest

path, since it is common that visitors prioritize the main ‘avenues’ within the store to move faster.

Moreover, as visitors move faster, it is possible that they will pay less attention to other products,

in contrast to when they move slower in the smaller aisles closer to the product that they are

looking for. Hence, we should focus on more localized traffic. For this reason, we consider a second

potential spill-over effect, with two specific forms. We consider the primary demand of categories

j in the vicinity of i, defined through the binary variable NEARBYijs which is equal to one if

the distance between i and j is less than 20 meters. We then define NEARist as the number of

online sessions within the catchment area of the store that include any category j ̸= i such that

NEARBYijs = 1:

NEARist =
∑
j ̸=i

NEARBYijs × Vjst, (6)
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and let nearist = log(1 +NEARist), and nearis =
1
T

∑T
t=1 nearist.

Alternatively, we define the binary variable SAMEAISLEijs which is equal to one if categories i

and j are located in the same aisle in store s. We then let AISLEist as the number of online sessions

within the catchment area of the store that include any category j ̸= i such that SAMEAISLEijs =

1:

AISLEist =
∑
j ̸=i

SAMEAISLEijs × Vjst, (7)

and let aisleist = log(1 +AISLEist), and aisleis =
1
T

∑T
t=1 aisleist.

Both nearis and aisleis variables capture spill-overs related to proximity to store hot spots,

and lead to model specifications similar to Equation (5) in which the pathis variable is replaced by

either nearis or aisleis.

4.4 Estimation

The distance variable Dis exhibits cross-sectional variation because stores have different sizes and

shapes. We could estimate Equation (3) using ordinary least squares (OLS), but one may be

concerned about the endogeneity of the distance variable Dis. Namely, it is possible that the store

manager, knowing that category i is popular in the region of store s, decides to place the category

in a more accessible store location. If this is the case, then the number of receipts nis might be

negatively associated with Dis, though this would not be a causal relationship but rather a link due

to the latent sales expectation. Because of the potential endogeneity problem, we proceed using a

standard two-stage least squares (2SLS) approach with a Hausman-type instrumental variable.

The Hausman instrument can be used to address the endogeneity issue under the (standard)

assumption that, once we control for macro category-store, local demand becomes independent

across stores. This is needed to satisfy the exogeneity condition. Following Cachon et al. (2019),

we select stores that are further than 150 km away from the focal store in order to make the local

demand independence assumption more likely to be satisfied.

In addition, in-store logistics to replenish items is a costly activity that can add up to somewhere

between 38% and 48% of retail logistics costs (Hübner and Kuhn 2012). For that reason, a proper

store layout must take replenishment into account. For instance, Reiner et al. (2013) argue that

“store design should not only consider customer needs but also logistics requirements so as to enable

the trouble-free replenishment of products”. Our retail partner is aware of the implications of store

layout on replenishment cost, and therefore, provides guidelines that store managers must adhere

to, e.g., bulky and tall items should be placed in locations that can be easily accessed by a forklift,

so they tend to be closer to the unloading dock. These guidelines are shared across stores, implying

that the Hausman instrument satisfies the relevance condition once we control for local demand by

means of the fixed effects.
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Based on this reasoning, we instrument the distance of a category in a given store with the

average of the distance measures of that category in the two closest stores that are beyond 150

km from the focal store. Specifically, in the first stage of the 2SLS procedure, we instrument Dis

with DH
is :=

(∑
s′∈Ss

Dis′
)
/|Ss|, where Ss is the set that contains the two closest stores to s that

are at least 150 km apart from s. Then, we regress Dis with DH
is as well as all other covariates

in Equation (3), and we use D̂is to denote the predicted value. We expect DH
is to be positively

correlated with Dis due to the replenishment cost considerations that are similar across stores,

which is confirmed by the first-stage results reported in Section 4.5. Furthermore, because we

control for macro category-store fixed effects and only take stores that are far apart, we argue

that the predicted value D̂is is exogenous. In the second stage, the distance Dis in Equation (3) is

replaced by the first-stage predicted value D̂is. We thus obtain an unbiased estimate of the distance

coefficient γ. In our results, we report both the OLS and the 2SLS estimates, and we discuss below

their differences.

4.5 Results

We first study the use of nearby online interactions as determinants of store sales. For that purpose,

we set γ = 0 in Equation (5). The results are reported in Table 5. Model (1) presents a benchmark

model that only incorporates macro category-store fixed effects. As we can see, fixed effects alone

lead to an R2 of 0.37, which suggests that cross-category and cross-store heterogeneity are high

in our context. Model (2) incorporates the total online traffic for each store, in the same way

Gallino and Moreno (2014) used online interactions as a driver of store sales. In comparison to

them, we find that general online traffic is not significant and does not help predict category-level

sales, suggesting that accounting for store variation through fixed effects is sufficient and store-level

online traffic simply contains redundant information. In contrast, when we consider category-level

online interactions in Models (3) and (4), the model fit improves steeply, to R2 = 0.66− 0.67. This

implies that category-level clicks provide a strong signal about sales. Moreover, the coefficient in

Model (3) is equal to 1.1857 and is highly significant, which suggests that the relationship between

(logged) clicks and sales is approximately proportional. In other words, if online clicks increase by

10%, sales also increase by a similar amount. Model (4) breaks down clicks into different ‘quality

grades’, by considering separately clicks in which the focal category was the first one in the session

(the sequence of categories viewed by the consumer; the first one should be the most important

to the consumer), and the clicks in which the focal category was in positions 2 to 4, or 5+. We

can observe that indeed clicks in the first position have the highest coefficient 1.0142, whereas later

clicks had lower coefficients and lower statistical significance. This supports our interpretation

that online interactions are a proxy for true consumer interest, and it is revealed especially when

it appears early in the online search sequence of the consumer. Namely, a 10% increase in first-
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position of clicks leads to an increase of about 10% of store sales, while a 10% increase in clicks in

the fifth position increases sales by about 3%.

We next incorporate the three spill-over variables from Section 4.3 in Models (5)-(8). We can

see that primary demand vis remains significant and with a coefficient similar to that in Model

(3). In contrast, nearis is insignificant, whereas pathis and aisleis are positive and significant

but very small in magnitude. The coefficient of aisleis is in fact the largest among the spill-over

variables considered, indicating that an increase in interest (online clicks) for neighboring items

within an aisle slightly increases sales. This suggests that spill-over effects are positive but of

second-order importance, which is understandable given the functional, non-impulse nature of the

categories sold in our home improvement context. Another possible interpretation of this result is

that webrooming informs a more focused consumer that will spend less time roaming at the store,

and therefore, opportunities for cross-selling are diminished. Other authors have discussed similar

effects of webrooming, see for instance Gao and Su (2017a).

The previous models establish that online clicks are a valuable determinant of store sales. We

can now study the impact of category location on sales, corresponding to Equation (3) with γ ̸= 0.

As described earlier, we operationalize ease of access to the category in the store via the distance

from entrance to the category and then to exit. Table 6 shows the result of the estimation. The

table first provides the results without instrumenting the distance variable, in a standard OLS

estimation, in Models (9) and (10), without and with online clicks respectively.

We first observe in Models (9) and (10), that distance is significant but only marginally improves

the result of Models (1) and (3). The coefficient for vis in Model (10) compared to Model (3) remains

almost the same, which means that the role of distance, driver of conversion, seems orthogonal to

that of online interactions, a proxy for true consumer needs.

Similar to the models in Table 5, we observe that adding online visits improves the accuracy

of the model significantly, as shown by the R2 which increases from 0.37 to 0.66. This implies

that a model that ignores online visits will confound the attribution of sales potential to categories,

measured exclusively by their fixed effect αmis in Model (9). Specifically, Models (9) and (10)

differ in how they attribute sales potential to categories after accounting for the effect of distance.

Namely, Model (9) without online visits cannot distinguish between actual product potential and

being at a good location: higher online visits might be explaining a higher performance, which leads

to a confounded estimate of sales potential. Similarly, some categories with a high level of online

visits but low conversion will be attributed a sales potential that is lower than their real potential,

which can represent a missed opportunity. In other words, the more refined Model (10) ‘cleans

up’ errors in attribution of sales potential to categories. As a result, optimizing the store layout

without a proxy for product interest (or demand) will likely identify the wrong product-location

assignments, as we show later in Section 5.2 where we discuss the case of the laminated flooring

category highlighted in Figure 2.
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Table 5: Models using online interactions.

Dependent variable:

nis

(1) (2) (3) (4) (5) (6) (7) (8)

vs −0.6418

(0.4284)

vis 1.1857∗∗∗ 1.1863∗∗∗ 1.1883∗∗∗ 1.1491∗∗∗ 1.1503∗∗∗

(0.0409) (0.0409) (0.0409) (0.0402) (0.0402)

v1,is 1.0142∗∗∗

(0.0666)

v2−4,is −0.1279

(0.1588)

v5+,is 0.3083∗

(0.1341)

pathis 0.0006∗ 0.0006∗

(0.0004) (0.0004)

nearis 0.0028∗∗ 0.0028∗

(0.0014) (0.0014)

aisleis 0.0533∗∗∗ 0.0562∗∗∗

(0.0111) (0.0111)

Fixed effects MacroCat-Store MacroCat-Store MacroCat-Store MacroCat-Store MacroCat-Store MacroCat-Store MacroCat-Store MacroCat-Store

Observations 2,625 2,625 2,625 2,625 2,625 2,625 2,625 2,625

R2 0.3651 0.3651 0.6568 0.6696 0.6574 0.6575 0.6612 0.6626

Adjusted R2 0.2725 0.2725 0.6066 0.6209 0.6070 0.6072 0.6115 0.6128

Residual Std. Error 1.4570 1.4570 1.0714 1.0518 1.0708 1.0706 1.0648 1.0630

(df = 2290) (df = 2290) (df = 2289) (df = 2287) (df = 2288) (df = 2288) (df = 2288) (df = 2286)

F Statistic 3.9426∗∗∗ 3.9426∗∗∗ 13.0776∗∗∗ 13.7514∗∗∗ 13.0636∗∗∗ 13.0715∗∗∗ 13.2911∗∗∗ 13.2842∗∗∗

(df = 334; 2290) (df = 334; 2290) (df = 335; 2289) (df = 337; 2287) (df = 336; 2288) (df = 336; 2288) (df = 336; 2288) (df = 338; 2286)

Note: Robust standard errors in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 6 then reports the results of the 2SLS procedure, which controls for potential endogeneity

of in-store distance, see Section 4.4. First, we observe that the first stage in Models (11) and

(12) is working correctly: in-store distance is indeed significantly correlated with the instrument

(relevance criterion). Second, the results show a strong effect of distance, with a coefficient of

−0.0176 in Model (12). The coefficient is about seven times higher than the estimate coming out

of OLS in Models (9) and (10), suggesting that the distance Dis exhibits some level of endogeneity.

Surprisingly, the retailer is not necessarily placing higher selling items in locations with easier

access. In fact, the opposite is happening, e.g., higher selling categories are placed at the back of

the store. For example in the right image of Figure 2, we see that some high-conversion categories

(in orange) are placed in locations far from the entrance. This was perhaps done with the hope

of generating cross-selling—despite our analysis not uncovering strong cross-selling patterns. As

a result, OLS underestimates the effect of distance, and it becomes necessary to pursue a 2SLS

analysis. Moreover, the coefficient γ has a relatively high value: distance within the store roughly

varies between 50 and 250 meters, which implies that the difference in sales between the closest and

furthest categories is about −0.0176× (250− 50) = −3.52, a 97% decrease (since e−3.52 = 0.029).

4.6 Robustness

While our main models in Tables 5 and 6 are kept simple to focus on the direct impact of online

visits and effort, we run several robustness checks to confirm that our empirical results hold across

a variety of empirical specifications and instrumental variable configurations. We discuss below the

findings and include details in the Appendix.

First, as we have explained in Section 4.4, we build the instrument for our the endogenous

distance variable Dis by averaging the distance of category i in the two closest stores that are at

least 150 km apart from the focal store s. Tables 7 and 8 in the Appendix replicate the models

in Table 6 and show the corresponding estimates using different instrumental variables. Table 7

reports the robustness for the models without online visits, where Model (9) corresponds to the

OLS estimate without instrumentation, and the rest correspond to 2SLS estimates using different

Hausman instruments: Model (11a) selects the two furthest stores; Model (11b) selects the two

closest stores beyond 150 km, which is our Model (11) in Table 6; Model (11c) selects two random

stores beyond 150 km; Model (11d) selects the two stores immediately to the South and the two

immediately to the North of the focal store; and Model (11e) also selects four stores—two immedi-

ately to the South and two immediately to the North of the focal store—but they must be beyond

150 km. Table 8 follows the same logic and pertains to the models with online visits, where Model

(10) corresponds to the OLS estimate without instrumentation, and Models (12a)-(12e) use the

same instrument as their counterpart in Table 7. As one can see, the coefficient of the distance

variable Dis is very stable across different variations of the Hausman instrument. It ranges between
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Table 6: Models using online interactions and category location, time-aggregated data.

Dependent variable:

nis

OLS 2SLS

(9) (10) (11) (12)

vis 1.1861∗∗∗ 1.1888∗∗∗

(0.0409) (0.0414)

Dis −0.0020 −0.0024∗∗ −0.0145∗ −0.0176∗∗∗

(0.0012) (0.0010) (0.0088) (0.0070)

First stage, IV (Dis) 0.2248∗∗∗ 0.2247∗∗∗

R2 = 0.8695 (0.0465) (0.0465)

Fixed effects MacroCat-Store MacroCat-Store MacroCat-Store MacroCat-Store

Observations 2,625 2,625 2,625 2,625

R2 0.3656 0.6575 0.3465 0.6290

Adjusted R2 0.2728 0.6072 0.2509 0.5746

Residual Std. Error 1.4567 1.0706 1.4785 1.1142

(df = 2289) (df = 2288) (df = 2289) (df = 2288)

F Statistic 3.94∗∗∗ 13.07∗∗∗

(df = 335; 2289) (df = 336; 2288)

Wald test 3.83∗∗∗ 12.08∗∗∗

(df = 335; 2289) (df = 336; 2288)

Note: Robust standard errors in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

−0.0145 and −0.0212 in Models (11a) through (11e), and between −0.0155 and −0.0215 in Models

(12a) through (12e). In all cases the magnitude and statistical significance of the 2SLS estimates

is larger and stronger than the OLS estimates.

Second, even though we do have cross-store layout variation, one may think that, if stores are

far apart, then customers may be intrinsically different so in reality separate estimations should

be conducted for each of the stores. To remedy this, we focus on the nine stores located in the

Santiago Metropolitan area, which serve a common pool of customers living in the same city who

arguably have more homogeneous tastes than across cities. We replicate the estimation of Models

(9) through (12) with the data from these nine stores, see Table 9 in the Appendix. Again, we

observe that the main findings are preserved.

Third, although we have used time-aggregated variables (across the 30 weeks that the data

spans) in our main empirical specification—namely nis and vis—the original transaction and click-

stream data are timestamped, which allows for a more granular analysis that leverages the panel
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structure of the original data, in the vein of Equation (2). Tables 10 and 11 in the Appendix present

the time-disaggregated version of the models in Tables 5 and 6 respectively. We note that the key

insights are preserved and the estimates for visits and in-store distance remain stable.

Finally, the granular data also allows us to explore a possible lag between webrooming and store

visits. We thus expand the model in Equation (2) by including vis,t−1, i.e., the amount of online

visits in the prior week. Since vist and vis,t−1 are highly correlated, we may introduce colinearity in

this new model, thereby introducing noise in the coefficients of these variables. We find that indeed

the coefficient of vist drops from 1.0386 down to 0.5377 when lagged online visits are introduced—

see Models (28) and (31) in Tables 11 and 12 respectively—while the lagged variable itself vis,t−1

has a coefficient of 0.5517. Most importantly, the coefficient of distance remains at −0.0175, hence

nearly identical to that of Model (28) without lagged online visits.

5. Store Layout Optimization

5.1 A Category-Position Assignment Problem

Our model assumes and empirically demonstrates that a category’s location within the store has a

significant impact on the conversion it generates. In this section, we are interested in prescribing

improved layouts that increase total sales, taking consumer true needs as fixed captured via their

online interactions.

Product location optimization is a relatively well-studied area of research, mainly in warehouse

settings, see De Koster et al. (2007) for a review. In these contexts, one usually minimizes picking

costs, which results in placing high-rotation items in easily accessible locations, while slow-movers

are sent to more remote locations. In a store, the costs to bring items to the shelf are relatively

small and insensitive to location within the store. As a consequence, we focus on the main driver

of profits coming from the impact of category location on sales conversion.

We can formulate the layout design problem as the following assignment problem. Let xisp be

a binary variable that equals one when category i ∈ I is located in position p ∈ P, in store s. One

category can go into one position, and one position can only take one category.

Let dp be the distance a consumer must travel from the entrance when a category is located

in position p (at a given store s, subindex removed for simplicity). Then, the location-dependent

demand of category i can be written as risp = ri × disp, where ri is the average revenue from

the category per receipt in which the category is present, and disp = exp
(
αmis + βvis + γdp

)
, as
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predicted by Model (12). We then formulate the layout design problem as:

Js := max
x

∑
i∈I

∑
p∈P

rispxisp (8)

s.t.
∑
i∈I

xisp ≤ 1 ∀p ∈ P (9)

∑
p∈P

xisp ≤ 1 ∀i ∈ I (10)

xisp ∈ {0, 1}. (11)

The formulation Js only includes constraints pertaining to the impossibility of placing two cat-

egories in the same location, or one category being sent to two locations. It is easy to incorporate

additional linear constraints reflecting business conditions for the category in the store. For exam-

ple, if a category can only be located in a particular part of the store, then we can set xisp = 0 for

infeasible locations. If categories i and j must be adjacent, then we can set xisp ≤
∑

p′ App′xjsp′

with App′ = 1 if p and p′ are adjacent and zero otherwise; in other words, if xisp = 1, then one

adjacent p′ (with App′ = 1) is such that xjsp′ = 1. In the absence of additional constraints, Equa-

tions (9)-(10) make a Totally-Unimodular Matrix (TUM), and hence constraint xisp ∈ {0, 1} can

be replaced with 0 ≤ xisp ≤ 1 without changing the optimal solution of (8). In other words, Js can

be obtained by solving a linear program. Otherwise, we solve an integer program.

Note that we can write risp = risup, with up = exp(γdp) and ris = ri × exp(αmis + βvis), which

will allow us to find the optimal assignment in closed form. Indeed, we can write the objective

as
∑

i∈I
∑

p∈P risupxisp. This is maximized by assigning the location p with the largest up to the

category i with the largest ris: assign the best in-store position (highest up) to the best-selling

category (highest ris).

Finally, observe that the objective function in problem (8) has a separable structure. In other

words, the sales of category i are independent of the location of other categories. This formulation

is thus applicable to settings in which cross-selling is small. It requires a more complex, non-linear

objective function when there are cross-category interactions, such as unplanned spending effects

(Hui et al. 2013).

5.2 Improving on Existing Layouts

We can now apply the method of Section 5.1 to reengineer the actual layouts observed in our data.

We first provide an in-depth analysis for one store and then provide results for the complete set of

stores.

We define positions p in the same way as categories, i.e., we let P = I and p ∈ P denotes the

(current) location of category p. We compute ri to be equal to the average spending per receipt

that contains category i over the season of 30 weeks. To limit the number of changes, we formulate
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the following decision problem:

Js(z) := max
x

∑
i∈I

∑
p∈P

rispxisp (12)

s.t.
∑
i∈I

xisp ≤ 1 ∀p ∈ P (13)

∑
p∈P

xisp ≤ 1 ∀i ∈ I (14)

∑
p∈P

xpsp ≥ |P| − z (15)

xisp ∈ {0, 1} (16)

In contrast to Js, the problem formulation Js(z) includes the additional parametric constraint

(15), where z is an integer variable. This constraint limits the number of actual category assignment

changes to be z at the most. For example, if z = 0, the only feasible solution is to set xpsp = 1

for all p ∈ P. If z = |P|, then the constraint is innocuous. When z takes intermediate values, it

provides us with interventions with varying degrees of complexity. Note, however, that constraint

(15) breaks the TUM structure of the constraint matrix, and thus requires us to solve a set of

integer programs. In addition, we consider two versions of the decision set P: one that includes

all categories, and another one that excludes construction categories that are typically bulkier and

located at the side of the store, and hence, are difficult to place in any other store position. Our

formulation ignores all other business constraints, e.g., adjacencies, space limitations, etc. but

still our results are useful to understand the potential of layout optimization as suggested by our

empirical findings.

Consider store 51, depicted in Figure 2. In this store, we have 165 different categories assigned

to 165 positions shown in the map. As z increases, Js(z) increases from Js(0) (current layout).

Of course, this improvement is due to the ability to optimize product locations compared to the

status quo. This can be achieved with our Model (12) or with simpler models that also identify

distance as a driver of sales, such as Model (11). To capture the value of our empirical findings, it

is thus more appropriate to compare the incremental gain of using online information and a more

sophisticated and accurate model, vs. that of the simpler model without such online information.

As discussed in Section 4.5, Models (11) and (12) differ in how they attribute sales potential

to categories. Given this difference in demand estimation, the optimization program Js(z) may

propose different product swaps in the layout to maximize impact. The difference is driven by

ris, since the estimates of γ (and hence up) are almost identical for Models (11) and (12). If

the ranking of ris is the same for Models (11) and (12), then the recommended layout will be

the same. In contrast, if the estimates ris vary, the recommended swaps might be different and

the more sophisticated model will lead to higher performance. We thus solve Js(z) with risp

determined by Models (11) and (12) separately, and then evaluate the performance obtained by
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the recommended layout using Model (12), which is taken as the ground truth because of its better

accuracy. Let REV full info
s (z) = Js(z) be the performance achieved with risp from Model (12),

and let REV no online info
s (z) be the objective value of the optimal layout under Model (11), but

evaluated with risp coming from Model (12), implying REV no online info
s (z) ≤ Js(z).

Figure 3 shows the incremental value of using Model (12) vs. (11) in store 51, measured by

100×REV full info
s (z)/REV no online info

s (z) and as a function of the number of changes allowed z.

Interestingly, the revenue lift originating from using the full data when re-disigning store layouts

(as opposed to not accounting for online interactions) is greatest when the number of changes z is

small. This means that the discrepancy in how the models with and without online interactions

assign sales potential to the categories, and the economic implications that come with it, are most

salient when the number of allowed changes are small. As we budget for more changes (e.g., after

about 10 changes allowed if construction categories are included, and 50 if they are not), we see that

the model with full information generates about 5% higher revenues. At the othe extreme, when

the number of changes is unlimited (z = 165), the lift in revenue comes from errors in attribution

leading to changes in the ranking, which is 2-5%, depending on whether we exclude construction

items from the layout optimization program. Note that a lift of 2% is very significant for a home

improvement retailer, where margins are thin and increasing the top line typically has a very strong

effect on net margins.
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Number of category changes allowed
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All categories

Construction excluded

Figure 3: Improvement in store 51 due to the layout optimization using our model with online

clicks, compared to the layout optimized using the model without online information, assuming

that the true model is given by the former. Optimizing with full information suggests swaps that

have a higher impact and results in a 2-5% revenue lift when the number of changes is unlimited.

When examining in more detail the type of changes recommended in this scenario, we see that

top-selling categories located towards the back of the store are moved to the front, and some minor

ones in front positions are relegated to the back of the store. As a more concrete example, consider

27



the laminated flooring category highlighted in Figure 2. This category is a high seller (as shown

in the left image of Figure 2), but exhibits moderate conversion with respect to its online visits

(as seen in the right image). Its current location p has a distance dp = 104.4 meters, which is

just slightly above the average distance in the store (98.7 meters). We solve Js(z) allowing for 10

changes (or 5 swaps), which is a realistic number of changes that could be implemented at a store,

and excluding the construction categories (so there are 150 categories in total).

We first use Model (12) to estimate the sales potentials ris. Under this model, the laminated

flooring category ranks 6th in terms of sales potential, but the top two categories—paint and

ceramic tiles—are already located in positions with a short distance, so they do not need to be

moved. Hence, the laminated flooring category becomes a candidate to be relocated. The optimized

layout suggests putting it in the location currently used by the smart-home connectivity category,

which has a sales potential that ranks 138th out of 150, and a distance of 46.2 meters (see the left

image in Figure 2). This change means a 178% sales uplift for the laminated flooring category, since

e−0.0176×(46.4−104.4) = 2.78. The optimized layout using Model (11) also identifies the smart-home

connectivity category as a prime location that could be better used. However, Model (11) misses

the opportunity of the laminated flooring category because it is unaware of its high level of online

visits and moderate conversion. Indeed, under Model (11), the sales potential of the laminated

flooring category ranks 21st. Instead, under Model (11) the smart-home connectivity location is

used to place the locks category, which is not the best choice because the locks category already

sells quite well relative to its online visits (i.e., it has high webrooming conversion). In fact, the

sales potential of the the locks category under Model (12) ranks 15th, so it would only be relocated

if at least 30 changes (or 15 swaps) were allowed at store 51.

Finally, we can extend the optimization to our subsample of 16 stores for which we can reengi-

neer the layout. Figure 4 shows the distribution of the revenue improvements achieved with an

unconstrained layout change and one limited excluding construction categories, again comparing

the performance of the optimized layout using Model (12) vs. Model (11). As we can see, the rev-

enue lift of using the more sophisticated Model (12) can be significant, with some stores achieving

improvements of more than 8%.

6. Conclusion

In this paper, we have provided a new perspective on how omnichannel, via webrooming customer

interactions, can help retailers manage their physical stores better. Specifically, we have posited

that, when sales are preceded by a need that crystallizes into a shopping list and pre-purchase

category search, then store sales are driven by both the amount of nearby online visits and the

effort that it takes to fetch the category in the store. We validate our conceptual model with

data from a home improvement chain, over multiple categories and locations. The data provides
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Figure 4: Distribution of 100× (REV full info
s (∞)/REV no online info

s (∞)−1) across 16 stores. Each

point corresponds to a store.

variation of category interest and in-store location, and allow us to identify the effect of online visits

and effort on sales. We find that sales grow proportionally with online visits, and that easy-to-reach

store positions lead to significantly higher conversion. In addition, we show that there is a small,

second-order cross-selling effect in this context, although this is not the focus of our research.

Our results have important implications for the management of physical stores. First, they

suggest that layout reengineering using the information provided by online visits can provide a

tempting lift in revenues, of around 2-5% compared to that obtained when online information is

ignored. Second, they imply that the efforts to generate store visits, in the hope that they will

generate unplanned purchases, may not be fruitful. In other words, it may be better that stores

do not accept new roles as delivery points (Faithfull 2018, Jones 2019), if the categories on sale

are related to a functional need that requires previous research. Third, our results identify the

effort to find categories in the store as a hindrance to conversion. In other words, actions to

make in-store category search simpler may lead to increased sales. One such action could be to

provide category ‘addresses’ to consumers when they prepare their shopping lists, as Target does,

see Figure 5. Finally, our results have been demonstrated for home improvement retailing. When

impulse purchases are important, it may be advisable to pursue a different strategy with longer

in-store paths, to sustain unplanned spending (Hui et al. 2013).

This study highlights the importance of better understanding the role of store design on cus-

tomer experiences. This is a promising direction for future research. Indeed, the adoption of Inter-

net Of Things technologies in stores provides new data sources for a more granular understanding

of the trajectories of customers over time (the funnel view) and space (transitions between home,

work and shopping destinations). This requires the full digitalization of the store conditions, and

precise category locations, a piece of information that to date is rarely available, with the exception
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of supermarket planograms, common in grocery retailing, or RFID sources, installed by Walmart

or Zara among others. It can potentially reveal the causal impact of different interventions such

as category viewing, staff advice or fitting (Musalem et al. 2021), environmental stimuli such as

music or temperature (Mart́ınez-de Albéniz and Belkaid 2021), as well as category information

provision—to differentiate the effect of reducing cognitive load from search vs. that of physical

movement to reach an item. Furthermore, if both online and offline activities could be connected

at the customer level, one may be able to separate primary demand—from those that searched

online before visiting the store—versus secondary demand made of spill-overs from entering an

aisle. Indeed, combining on-premise data with online interactions is particularly interesting, so

that conceptual frameworks such as Bell et al. (2014) can be operationalized and translated into

prescriptive advice for retailers.

Figure 5: Standard category page on target.com, where the address of the category in the store of

your choice is indicated.
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Hübner, A. H., and H. Kuhn. 2012. Retail category management: State-of-the-art review of quantitative

research and software applications in assortment and shelf space management. Omega 40 (2): 199–209.

Hui, S. K., P. S. Fader, and E. T. Bradlow. 2009a. Path data in marketing: An integrative framework and

prospectus for model building. Marketing Science 28 (2): 320–335.

Hui, S. K., P. S. Fader, and E. T. Bradlow. 2009b. Testing behavioral hypotheses using an integrated model

of grocery store shopping path and purchase behavior. Journal of consumer research 36 (3): 478–493.

Hui, S. K., J. J. Inman, Y. Huang, and J. Suher. 2013. The effect of in-store travel distance on unplanned

spending: Applications to mobile promotion strategies. Journal of Marketing 77 (2): 1–16.

Jalali, Z., M. C. Cohen, N. Ertekin, and M. Gumus. 2023. Vertical Product Location Effect on Sales: A

Field Experiment in Convenience Stores. Available at SSRN 4476326 .

Jones, C. 2019. Can’t wait for that delivery? Amazon, Rite Aid team up to make it easier to get packages.

USA Today June 27:online.

Kumar, A., A. Mehra, and S. Kumar. 2019. Why do stores drive online sales? Evidence of underlying

mechanisms from a multichannel retailer. Information Systems Research 30 (1): 319–338.

Larson, J. S., E. T. Bradlow, and P. S. Fader. 2005. An exploratory look at supermarket shopping paths.

International Journal of research in Marketing 22 (4): 395–414.

Lemon, K. N., and P. C. Verhoef. 2016. Understanding customer experience throughout the customer journey.

Journal of marketing 80 (6): 69–96.

Lu, Y., A. Musalem, M. Olivares, and A. Schilkrut. 2013. Measuring the effect of queues on customer

purchases. Management Science 59 (8): 1743–1763.

Mani, V., S. Kesavan, and J. M. Swaminathan. 2015. Estimating the impact of understaffing on sales and

profitability in retail stores. Production and Operations Management 24 (2): 201–218.

Mart́ınez-de Albéniz, V., and A. Belkaid. 2021. Here comes the sun: Fashion goods retailing under weather

fluctuations. European Journal of Operational Research 294 (3): 820–830.

Mart́ınez-de Albéniz, V., A. Planas, and S. Nasini. 2020. Using clickstream data to improve flash sales

effectiveness. Production and Operations Management 29 (11): 2508–2531.

Mart́ınez-de Albéniz, V., and G. Roels. 2011. Competing for shelf space. Production and Operations Man-

agement 20 (1): 32–46.

Montoya, R., and C. Gonzalez. 2019. A hidden Markov model to detect on-shelf out-of-stocks using point-

of-sale data. Manufacturing & Service Operations Management 21 (4): 932–948.

Mowrey, C. H., P. J. Parikh, and K. R. Gue. 2018. A model to optimize rack layout in a retail store. European

Journal of Operational Research 271 (3): 1100–1112.

Musalem, A., M. Olivares, and A. Schilkrut. 2021. Retail in high definition: Monitoring customer assistance

through video analytics. Manufacturing & Service Operations Management 23 (5): 1025–1042.

Ozgormus, E., and A. E. Smith. 2020. A data-driven approach to grocery store block layout. Computers &

Industrial Engineering 139:105562.

Perdikaki, O., S. Kesavan, and J. M. Swaminathan. 2012. Effect of traffic on sales and conversion rates of

retail stores. Manufacturing & Service Operations Management 14 (1): 145–162.

33



Reiner, G., C. Teller, and H. Kotzab. 2013. Analyzing the efficient execution of in-store logistics processes

in grocery retailing—The case of dairy products. Production and Operations Management 22 (4):

924–939.

Ruiz, F. J., S. Athey, D. M. Blei et al. 2020. Shopper: A probabilistic model of consumer choice with

substitutes and complements. Annals of Applied Statistics 14 (1): 1–27.

Schaverien, A. 2018. Five Reasons Why Amazon Is Moving Into Bricks-And-Mortar Retail. Forbes December

2018:online.

Underhill, P. 2009. Why we buy: The science of shopping–updated and revised for the internet, the global

consumer, and beyond. Simon and Schuster.

Wagner, R. P., and T. Jeitschko. 2017. Why Amazon’s 1-Click Ordering Was A Game Changer. Knowledge@

Wharton.

Wang, R., and O. Sahin. 2018. The impact of consumer search cost on assortment planning and pricing.

Management Science 64 (8): 3649–3666.

Wiesel, T., K. Pauwels, and J. Arts. 2011. Practice Prize Paper-Marketing’s Profit Impact: Quantifying

Online and Off-line Funnel Progression. Marketing Science 30 (4): 604–611.

34



Appendix: Supporting Tables for Robustness

Table 7: Models (9) and (11), with multiple instrumental variable configurations.

Dependent variable:

nis

OLS 2SLS

(9) (11a) (11b) (11c) (11d) (11e)

Dis −0.0020 −0.0170∗∗∗ −0.0145∗ −0.0174∗∗ −0.0156∗∗ −0.0212∗∗

(0.0012) (0.0054) (0.0088) (0.0068) (0.0074) (0.0070)

First stage, IV (Dis) 0.3373∗∗∗ 0.2248∗∗∗ 0.2713∗∗∗ 0.2876∗∗∗ 0.2940∗∗∗

(0.0550) (0.0465) (0.0507) (0.0615) (0.0526)

First stage, R2 0.8749 0.8695 0.8714 0.8698 0.8713

Fixed effects MacroCat-Store MacroCat-Store MacroCat-Store MacroCat-Store MacroCat-Store MacroCat-Store

Observations 2,625 2,625 2,625 2,625 2,625 2,625

R2 0.3656 0.3379 0.3465 0.3366 0.3428 0.3200

Adjusted R2 0.2728 0.2410 0.2509 0.2395 0.2466 0.2204

Residual Std. Error 1.4567 1.4882 1.4785 1.4897 1.4827 1.5082

(df = 2289) (df = 2289) (df = 2289) (df = 2289) (df = 2289) (df = 2289)

F Statistic 3.94∗∗∗

(df = 335; 2289)

Wald test 3.79∗∗∗ 3.83∗∗∗ 3.78∗∗∗ 3.81∗∗∗ 3.69∗∗∗

(df = 335; 2289) (df = 335; 2289) (df = 335; 2289) (df = 335; 2289) (df = 335; 2289)

Note: Robust standard errors in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 8: Models (10) and (12), with multiple instrumental variable configurations.

Dependent variable:

nis

OLS 2SLS

(10) (12a) (12b) (12c) (12d) (12e)

vis 1.1861∗∗∗ 1.1884∗∗∗ 1.1888∗∗∗ 1.1889∗∗∗ 1.1895∗∗∗ 1.1893∗∗∗

(0.0409) (0.0413) (0.0414) (0.0415) (0.0417) (0.0416)

Dis −0.0024∗∗ −0.0155∗∗∗ −0.0176∗∗∗ −0.0185∗∗∗ −0.0215∗∗∗ −0.0203∗∗∗

(0.0010) (0.0041) (0.0070) (0.0060) (0.0072) (0.0061)

First stage, IV (Dis) 0.3374∗∗∗ 0.2247∗∗∗ 0.2712∗∗∗ 0.2875∗∗∗ 0.2940∗∗∗

(0.0551) (0.0465) (0.0507) (0.0612) (0.0526)

First stage, R2 0.8749 0.8695 0.8714 0.8698 0.8713

Fixed effects MacroCat-Store MacroCat-Store MacroCat-Store MacroCat-Store MacroCat-Store MacroCat-Store

Observations 2,625 2,625 2,625 2,625 2,625 2,625

R2 0.6575 0.6364 0.6290 0.6254 0.6125 0.6177

Adjusted R2 0.6072 0.5830 0.5746 0.5704 0.5556 0.5616

Residual Std. Error 1.0706 1.1031 1.1142 1.1196 1.1388 1.1311

(df = 2288) (df = 2288) (df = 2288) (df = 2288) (df = 2288) (df = 2288)

F Statistic 13.07∗∗∗

(df = 336; 2288)

Wald test 12.34∗∗∗ 12.08∗∗∗ 11.97∗∗∗ 11.57∗∗∗ 11.73∗∗∗

(df = 336; 2288) (df = 336; 2288) (df = 336; 2288) (df = 336; 2288) (df = 336; 2288)

Note: Robust standard errors in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 9: Models (9) through (12) estimated with the subset of stores within the Santiago Metropoli-

tan area.

Dependent variable:

nis

OLS 2SLS

(13) (14) (15) (16)

vis 1.1763∗∗∗ 1.1841∗∗∗

(0.0549) (0.0560)

Dis −0.0018 −0.0027∗ −0.0153 −0.0217∗∗

(0.0018) (0.0016) (0.0098) (0.0092)

First stage, IV (Dis) 0.2539∗∗∗ 0.2535∗∗∗

R2 = 0.8894 (0.0342) (0.0342)

Fixed effects MacroCat-Store MacroCat-Store MacroCat-Store MacroCat-Store

Observations 1,470 1,470 1,470 1,470

R2 0.4072 0.6762 0.3890 0.6402

Adjusted R2 0.3202 0.6284 0.2993 0.5871

Residual Std. Error 1.4334 1.0599 1.4553 1.1172

(df = 1281) (df = 1280) (df = 1281) (df = 1280)

F Statistic 4.68∗∗∗ 14.14∗∗∗

(df = 188; 1281) (df = 189; 1280)

Wald test 4.55∗∗∗ 12.75∗∗∗

(df = 188; 1281) (df = 189; 1280)

Note: Robust standard errors in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 10: Models in (1) through (8) from Table 5, granular data (without time-aggregation).

Dependent variable:

nist

(17) (18) (19) (20) (21) (22) (23) (24)

vst −0.0762

(0.0726)

vist 1.0363∗∗∗ 1.0367∗∗∗ 1.0372∗∗∗ 1.0019∗∗∗ 1.0017∗∗∗

(0.0061) (0.0061) (0.0061) (0.0061) (0.0061)

v1,ist 0.7492∗∗∗

(0.0079)

v2−4,ist 0.2372∗∗∗

(0.0108)

v5+,ist 0.0658∗∗∗

(0.0089)

pathist 0.0007∗∗∗ 0.0007∗∗∗

(0.0001) (0.0001)

nearist 0.0023∗∗∗ 0.0022∗∗∗

(0.0002) (0.0002)

aisleist 0.0613∗∗∗ 0.0640∗∗∗

(0.0021) (0.0021)

Fixed effects Week Week Week Week Week Week Week Week

MacroCat-Store MacroCat-Store MacroCat-Store MacroCat-Store MacroCat-Store MacroCat-Store MacroCat-Store MacroCat-Store

Observations 78,750 78,750 78,750 78,750 78,750 78,750 78,750 78,750

R2 0.3303 0.3303 0.5690 0.5809 0.5695 0.5694 0.5740 0.5752

Adjusted R2 0.3272 0.3272 0.5670 0.5789 0.5675 0.5674 0.5720 0.5732

Residual Std. Error 1.5208 1.5208 1.2201 1.2032 1.2193 1.2195 1.2129 1.2112

(df = 78386) (df = 78385) (df = 78385) (df = 78383) (df = 78384) (df = 78384) (df = 78384) (df = 78382)

F Statistic 106.5128∗∗∗ 106.2232∗∗∗ 284.2384∗∗∗ 296.7827∗∗∗ 284.0855∗∗∗ 283.9372∗∗∗ 289.3962∗∗∗ 289.2072∗∗∗

(df = 363; 78386) (df = 364; 78385) (df = 364; 78385) (df = 366; 78383) (df = 365; 78384) (df = 365; 78384) (df = 365; 78384) (df = 367; 78382)

Note: Robust standard errors in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 11: Models (9) through (12) from Table 6, granular data (without time-aggregation).

Dependent variable:

nist

OLS 2SLS

(25) (26) (27) (28)

vist 1.0366∗∗∗ 1.0386∗∗∗

(0.0061) (0.0062)

Dis −0.0020∗∗∗ −0.0023∗∗∗ −0.0145∗∗∗ −0.0172∗∗∗

(0.0002) (0.0002) (0.0014) (0.0013)

First stage, IV (Dist) 0.2248∗∗∗ 0.2247∗∗∗

R2 = 0.8695 (0.0078) (0.0077)

Fixed effects Week Week Week Week

MacroCat-Store MacroCat-Store MacroCat-Store MacroCat-Store

Observations 78,750 78,750 78,750 78,750

R2 0.3308 0.5695 0.3146 0.5465

Adjusted R2 0.3277 0.5675 0.3114 0.5443

Residual Std. Error 1.5203 1.2193 1.5386 1.2515

(df = 78385) (df = 78384) (df = 78385) (df = 78384)

F Statistic 106.4∗∗∗ 284.1∗∗∗

(df = 364; 78385) (df = 365; 78384)

Wald test 104.0∗∗∗ 269.8∗∗∗

(df = 364; 78385) (df = 365; 78384)

Note: Robust standard errors in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 12: Models (19), (26) and (28) including one-week lagged online visits.

Dependent variable:

nist

OLS 2SLS

(29) (30) (31)

vist 0.5358∗∗∗ 0.5360∗∗∗ 0.5377∗∗∗

(0.0134) (0.0134) (0.0135)

vis,t−1 0.5510∗∗∗ 0.5511∗∗∗ 0.5517∗∗∗

(0.0136) (0.0135) (0.0137)

Dis −0.0024∗∗∗ −0.0175∗∗∗

(0.0002) (0.0013)

First stage, IV (Dist) 0.2247∗∗∗

R2 = 0.8695 (0.0046)

Fixed effects Week Week Week

MacroCat-Store MacroCat-Store MacroCat-Store

Observations 76,125 76,125 76,125

R2 0.5802 0.5808 0.5565

Adjusted R2 0.5782 0.5788 0.5543

Residual Std. Error 1.1997 1.1988 1.2331

(df = 75760) (df = 75759) (df = 75759)

F Statistic 287.7∗∗∗ 287.6∗∗∗

(df = 364; 75760) (df = 365; 75759)

Wald test 272.0∗∗∗

(df = 365; 75759)

Note: Robust standard errors in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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