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Abstract

In dynamic business environments, firms must make sequential decisions that account for
changes in consumer interests. As consumer interests gradually evolve, firms need to be aware
of available decision alternatives to identify promising options. This raises the question of how a
firm’s current knowledge allows it to make better decisions. To answer this question, we develop a
framework in three steps to describe the mechanism for knowledge creation and rule formation
when launching new products. First, we conceptualize the firm as an agent using a belief-
based decision algorithm based on statistical and psychological literature. Second, we formulate
hypothesis about the algorithm’s knowledge update and choice rules components and propose
a sleeping contextual bandit model of decision-making to solve the exploitation-exploration
problem. Third, we use Bayesian hypothesis testing to structurally describe the firm’s sequential
choice process. We validate our procedure with product decision histories and performance
data over 60 years from a leading toy product design firm. We find that a multinomial logit
model yields predictions equivalent to a no-belief update Softmax model. However, unlike UCB
and Greedy models, the multinomial logit model fails to accurately represent data generated
by a firm operating in a changing environment. Finally, we illustrate how one aspect of the
firm’s adaptation process to changing environment occurs through leveraging product category
heterogeneity and transferring knowledge across product features.
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1. Introduction

Most firms engage in the development and launch of new products in order to cater to evolving
consumer preferences. Consumer interests often exhibit gradual shifts, and firms strive to identify
the optimal combination of existing features to meet demand effectively. For instance, in 2017,
the Coca-Cola company introduced 500 new beverages and variants, representing a 25% increase
in product launches compared to the previous year (WSJ 2018a). This initiative was aimed at
revitalizing stagnant sales by addressing the growing consumer demand for healthier drink options.
As a result, sales experienced a 5% increase within a year (WSJ 2018b). Similarly, in 2015, following
a series of disappointing sales performances for Barbie, Mattel’s CEO was replaced (WSJ 2016a).
The new management swiftly responded by successfully releasing Barbie dolls in new body sizes and
colors (WSJ 2016b). For both Coca-Cola and Mattel, as well as numerous other firms, the ability
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to select and launch new product variants is a crucial adaptive capability to meet the ever-changing
preferences of consumers.

By developing and introducing more diverse and sophisticated product variants, firms engage
in the exploration of product spaces as a means to foster growth and thrive amidst competition.
This strategic approach can enable them to establish profitable market niches, affording them a
temporary monopoly position (Tirole 1988, Kim and Mauborgne 2014). In industries character-
ized by horizontal differentiation, particularly within mature product categories, the process of
exploration is often implicitly defined. Firms aim to uncover the elusive formula for effectively re-
combining existing features into successful new products. This entails a quest to better understand
the underlying principles and patterns of product performance.

In the academic literature, this understanding is often studied as an exploration-exploitation
problem. On the one hand, exploration involves trying new options and venturing into risky or
unexplored spaces. On the other hand, exploitation refers to the act of repeating choices that
have proven successful in the past (e.g. consistently betting on the winning team). Exploitation
decisions are driven by the pursuit of predictable high rewards in the short term. By favoring
what has already worked, decision-makers may benefit from immediate gains. However, this risk-
averse behavior can also lead to a trap where the decision-maker becomes confined within a low-
margin niche. Relying solely on exploitation can limit the potential for long-term growth and
hinder adaptation to changing circumstances. To avoid a decline in performance, decision-makers
often need to actively seek new opportunities while still capitalizing on their existing knowledge
and successes. This requires striking a balance between exploring new possibilities and exploiting
known ones. While the conquest of new and exciting regions can be enticing, it can also come with
unfavorable consequences, such as bitterness and the loss of valuable resources.

In the field of new product development, it is well-established that extensive search efforts
are undertaken when deciding to introduce new product categories that do not yet have a mental
representation (Terwiesch 2008). In order to gain insight into the relationship between a firm’s belief
process and its search efforts, we frame these search efforts as a problem of experiential learning,
where experiences are associations between tasks and their performance outcomes. While there
is evidence that past experience plays a role in selecting tasks with predictable performance, our
understanding of the factors driving ambiguous experiences, such as the launch of new products,
is limited. Furthermore, the traditional empirical approach, which relies on reduced form models,
does not offer a precise mechanism for understanding why unknown and novel tasks are often
chosen.

The multiarmed bandit literature also studies experiential learning problems by considering
task-related uncertainty. Several solution approaches exist, such as selecting the task with the high-
est expected performance while occasionally exploring randomly (e.g., Softmax Greedy algorithm)
or incorporating an exploration performance bonus into task performance (e.g., algorithms like the
Gittins Index, Upper Confidence Bound - UCB, Thompson Sampling). Although researchers have
studied bandit models using real-world data, their focus has primarily been on evaluating algorithm
performance (Li et al. 2010, Chapelle and Li 2011, Su et al. 2019) or comparing decision patterns
and outcomes generated by algorithms with those made by humans (Li et al. 2020), or they have
used experimental data (Ferecatu and De Bruyn 2022, Gans et al. 2007). However, we are not
aware of previous research that uses bandit policies to explain actual product decisions.

In this work, our objective is to gain insights into how firms make sequential decisions un-
der uncertainty by studying the exploration-exploitation problem in a real-world context. We
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aim to address the following question: how can we structurally describe a firm’s learning process
based on observed data? To answer this question, we adopt a Bayesian perspective, wherein the
decision-maker is conceptualized as a single macro-agent who learns through interactions with the
environment. We characterize this agent’s learning process by describing her environment, her
information structure as well as rules governing her knowledge management and choice processes.

The learning process is characterized by two main components: the knowledge management
structure, which describes how information is used and updated by the agent; and the choice policy,
which describes how product launches are decided given a certain knowledge state. On the one
hand, the knowledge management strategy specifies the variables that determine the performance of
a certain new product choice. We assume that the performance of any new item is parameterized by
a vector of item features, such as a category identifier or aggregate category descriptors that affect
the demand. Furthermore, the ‘state’ of knowledge may be updated after each product launch, by
updating the coefficients relative to each of the features in a Bayesian manner; it is also possible
that the state remains the same, when no update occurs. In other words, knowledge may (or may
not) accumulate from the observation of the performance of past product launches, but this will
depend on how the agent functions, i.e., what variables are considered and how they are updated.

On the other hand, launch choice rules describe, in probabilistic terms, how likely it is to launch
a certain new product. At any launch moment, the agent can either launch a variant of an existing
product – which we operationalize as them being in the same product category – or opt for a new-
to-the-world category. The agent starts making decision with knowing only one category, whose
number grows as she continues interacting and organizing her knowledge. Each category represents
a bandit arm. The choice rule crystallizes whether the agent is employing an active learning policy,
in which lower short-term rewards are selected more often, or follows a passive learning approach,
in which short-term rewards are the main driver of launch decisions. By observing actual launch
decisions together with product performance, we are able to infer what is the most likely knowledge
and choice policy structure. These two components can be separately identified, by studying the
effect of a successful performance in a certain category onto the likelihood of a next launch within
the same category. Specifically, we develop an inference approach to reverse-engineer the agent’s
decision model (knowledge and choice), including the starting values – priors and uncertainty levels
– of the model parameters.

To validate our methodology, we apply this novel inference approach with data from LEGO, a
prominent toy firm with a unique product identity. We collect product data on 12,861 products
released from 1949 to 2023. We classify products into LEGO categories, and measure how successful
each one was, in terms of secondary-market price and volume. We then implement our inference
approach to find which bandit policy best fits the data. This inference approach provides insights
on how LEGO solves the exploration-exploitation problem and its internal learning process, as
suggested by the revealed preference about launch decisions.

In addition to our novel methodological framework, our work yields two main empirical findings.
Firstly, we provide compelling evidence that the predictions derived from a multinomial logit model
are equivalent to those of a no-belief update model. This finding underscores the limitations of
reduced-form models in illuminating the underlying process of knowledge update and fails to offer
an explanation for the decision-maker’s goals driving their choices. Consequently, in dynamic
environments, reduced-form models prove inadequate in capturing the acquisition of new insights
and the adaptation to evolving consumer preferences. Secondly, our analysis reveals that LEGO, as
a case study, does not rely on simple, reduced-form heuristics for launching new products. Instead,
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our findings suggest that LEGO likely employs bandit learning policies, specifically active learning
(UCB) or passive learning (Greedy) models, guided by performance-based rewards, such as revenue.
The UCB model demonstrates better data fit over a short-term horizon (training period from year
1949 to 1968), while the Greedy model appears more plausible over longer horizons, as evidenced
by our out-of-sample results.

Our paper makes significant contributions both in terms of methodology and managerial im-
plications. Firstly, we bridge the gap between theoretical frameworks and data-driven research by
developing Bayesian bandit models and leveraging real-world data to infer both the beliefs and
decision-making behavior of agents. This approach challenges traditional modeling approaches and
provides valuable insights into how firms adapt their decision-making processes in response to chang-
ing market conditions. By highlighting the use of bandit learning policies in real-world settings,
we shed light on how firms navigate uncertainty and adjust their strategies based on performance
feedback. Specifically, our research illustrates how a firm’s adaptation process to a non-stationary
environment occurs through product category heterogeneity and the transfer of learning across dif-
ferent product features. Our modeling framework enables us to quantify and assess the importance
of various elements within this adaptation process, offering a comprehensive understanding of the
dynamics at play. Furthermore, our contribution to proposing cognitive models that better explain
agents’ adaptive behavior aligns with the broader goal of developing explainable and safe artificial
agents capable of making decisions in non-stationary environments (Da Costa et al. 2022).

Secondly, from a managerial perspective, our work offers practical implications that can help
managers enhance the quality of their decision-making processes. For example, while System 1
thinking is known for its speed, adopting a practice within a firm that involves pausing and explicitly
formulating hypotheses to reverse-engineer beliefs and models in sequential decision-making can be
a valuable practice to reduce noise of decisions made by various agents within an organization
(Daniel 2017, Kahneman et al. 2021). Hence, our work can help managers in better understanding
and organizing how knowledge is created, applied, and maintained within their organization.

The rest of this paper is organized as follows. In §2 we review the literature. We then present
in §3 theoretical framework. Section 4 describes the setting and the data used as an application to
our proposed inference process. In §5 we present the results. We conclude in §6.

2. Literature Review

2.1 Innovation and Dynamic Learning Models

In the innovation literature, the exploration-exploitation problem is often studied by focusing on
how risks, complexity, and uncertainty in the environment relate to the search process for better
product decisions. For example, Chao and Kavadias (2008) define risk as the probability that a
product launch decision will achieve its expected performance. They argue that a decision is con-
sidered less risky when managers possess knowledge about which product launch will yield quick
rewards, and such decisions are more likely to be made in less complex environments. Furthermore,
environmental complexity can hinder the ability to infer how interactions among product decisions
may affect performance. To measure environmental complexity, Sommer and Loch (2004) propose
an autocorrelation matrix of neighboring product decisions and suggest that lower correlation im-
plies higher complexity, as it complicates the prediction of product performance based on these
decisions. They emphasize the importance for managers to recognize and articulate the relevant
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variables and their functional relationships to assess the level of unforeseeable uncertainty and make
well-informed decisions. Consequently, traditional risk management techniques can only be imple-
mented when both environmental complexity and uncertainty are low. In other cases, managers
must acquire information through trial and error learning or a parallel search approach (Sommer
and Loch 2004, Sommer et al. 2009). In our work, instead of framing the problem solely in terms
of risk and complex environments, we focus on the agent’s behavior in relation to her perception of
a noisy and non-stationary environment. We employ the multi-armed bandit framework to model
the exploration-exploitation problem.

In the operations research literature, the use of bandit problems to analyze the exploration-
exploitation problem is prevalent. Gittins (1979) provided the first computable optimal solution
to a general Markovian formulation of this problem, where a firm facing an infinite period has
access to a prior Bayesian distribution of beliefs over opportunities and updates the distribution
after each period. The solution consists of indices that incorporate immediate reward (value of
exploitation) and a measure of the reduction in uncertainty (value of exploration), with the option
having the highest index selected (Gittins et al. 2011). However, the assumptions made by the
Gittins index are hard to sustain in a real-world changing environment. Caro and Gallien (2007)
provide a reformulation of the Gittins allocation rule for dynamic assortment decisions by studying
the multiarmed bandit problem (see Cesa-Bianchi and Lugosi 2006 or Slivkins 2019 for a review
on bandit). They derive a heuristic policy comparable to policies for restless bandits. Loch and
Kavadias (2002) study dynamic budget allocation policies for product lines and find that the optimal
policy is that of a restless bandit, for which there is no optimal policy. Rusmevichientong et al.
(2010) address a dynamic assortment problem with capacity constraints and propose a multinomial
logit (MNL) bandit approach to design a policy by modeling customer preferences. Similarly,
Sauré and Zeevi (2013) use Bayesian learning of demand to design an MNL bandit policy. In
contrast to these papers that assume known demand, Besbes et al. (2014) provide regret bounds
for several policies in non-stationary environments, and Keskin and Zeevi (2017) design a dynamic
pricing policy for such environments. Despite the availability of various algorithms for specific
bandit problems, the literature focuses on providing performance guarantees in terms of regret
minimization. However, little is known about the policies’ sampling behavior, which is crucial to
understanding the decision patterns recommended by these algorithms and to undertaking ex-post
causal inference. Recently, Kalvit and Zeevi (2021) have shown that the UCB policy satisfies
an asymptotically balanced sample split among arms, regardless of the problem complexity. In
contrast, Thompson Sampling does not, particularly when the gap between the top two arms is
small (Kalvit and Zeevi 2021). Our work uses bandit policies to reverse engineer a decision-maker’s
sampling behavior and her cognitive representation of the environment.

There are various formulations of bandit problems that correspond to different settings. When
the environment is non-stationary, one can assume that the decision-maker observes contexts in
each period, resulting in a stationary environment (Lattimore and Szepesvári 2018). Another
scenario involves bandit problems where the number of arms is finite but can vary over time
(Kanade et al. 2009, Huang et al. 2020). A more general formulation is found in restless bandits,
where the state of each arm evolves independently of the chosen action, and the learner can only
perceive a limited number of arms at a time (Ortner et al. 2014). Bayesian approaches are often
employed to study restless bandit problems. For instance, Speekenbrink and Konstantinidis (2015)
use this framework with a four-arm bandit in an experimental setting and find that humans reduce
uncertainty through exploration decisions. In our work, we focus on describing the structure of
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decision-making behavior by considering a bandit problem with an increasing number of arms.
In a similar vein, Gans et al. (2007) utilize a two-arm Bernoulli bandit to examine whether it
is a reasonable representation of consumer choices in an experimental setting. In contrast, we
concentrate on studying firm decisions where multiple options are available. Moreover, we estimate
decision models with or without Bayesian belief updates using real-world data. Finally, our work
also relates to the off-policy learning literature, as we replay various policies from logged data
(Levine et al. 2020). However, we do not aim to conduct a counterfactual analysis of policies by
comparing their empirical performance, as done in studies such as Li et al. (2010), Chapelle and Li
(2011), or by benchmarking them against human decisions (Li et al. 2020, Anderson et al. 2017).
Instead, our focus is on delineating the structural dynamics of the decision-maker’s learning process.
In this regard, our paper casts decision-making as an inference problem, wherein one can derive
the decision-maker’s beliefs and cognitive model from her actual decision data (Friston et al. 2013,
Smith et al. 2022).

2.2 Experiential and Organizational Learning

There is a significant body of empirical research focused on quantifying the average behavioral
response resulting from the acquisition of new information through past experience. These studies
provide evidence that experience generally improves performance. For example, Kc and Staats
(2012) demonstrate that a surgeon’s focal experience has a greater impact on performance compared
to experience in other related tasks. Staats et al. (2015) show that individuals learn not only from
their own successes but also from others’ failures. Staats et al. (2018) provide nuances to these
findings by highlighting that learning may not occur consistently in response to new information
and may be influenced by factors such as the attribute of experience, which can lead decision-
makers to discount negative news over time. However, recent methodological contributions have
identified limitations in past model specifications, particularly in addressing issues related to unit
root tests and self-selection bias (Bennett and Snyder 2017, Anand et al. 2016). Furthermore,
there is limited research on learning in the context of ambiguous experiences or experiences where
performance cannot be immediately evaluated as success or failure. Musaji et al. (2020) propose
a reduced-form model to analyze how learning occurs with respect to recent information and task
ambiguity. They find that tasks with higher variance reduce the cost of learning. However, their
study is based on cross-sectional data, limiting their ability to study the dynamics of the learning
process. Overall, these empirical studies contribute to our understanding of how individuals learn
and improve their performance through experience. However, methodological innovations, such as
the one we present in this paper, can enable researchers to study learning processes in settings
characterized by ambiguous experiences

Finally, our work is also connected to the literature on organizational learning, which explores
the learning processes within organizations in relation to various contextual factors (Argote et al.
2020). Some studies investigate how innovative capabilities are influenced by factors such as the
pace of change in the industry (Teodoridis et al. 2019), firm performance (Chao et al. 2012), or goal-
related tasks (Clark et al. 2018). Others highlight the importance of managers’ foreign experience
(Godart et al. 2015) or the potential benefits of being a generalist for fostering innovation (Custódio
et al. 2019). While these works provide valuable insights into the factors that shape organizations’
engagement with innovative tasks, they often lack a comprehensive framework that fully accounts
for knowledge creation processes within organizations.
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There is an emerging body of literature that adopts a process-oriented perspective on learning
tasks and emphasizes the significance of cognitive skills and knowledge representation in decision-
making (Posen et al. 2018). This line of research builds upon the tradition of the Carnegie School,
which challenges the notion of the firm as a rational economic agent and highlights the role of
performance feedback in the firm’s adaptive processes. It advocates for opening the ”black box” of
decision-making to observe and measure the internal mechanisms at work. For instance, Csaszar and
Levinthal (2016) investigate the interaction between mental representations and search strategies.
They underscore the importance of the decision context, which includes factors such as available
choices, firm performance, and profit. Another psychological model proposed by Csaszar (2018)
draws upon the lens model framework developed by Brunswik (1952) in psychology, which describes
how representations are formed in response to environmental cues. Our modeling framework shares
similarities with the work of Denrell et al. (2004), who propose a reinforcement learning model to
describe knowledge acquisition. However, their findings are based on simulation studies and do
not explicitly address how uncertainty reduction leads to improved decision-making or the specific
processes that drive high-quality information acquisition. In a similar vein, our work, like that
of Keil et al. (2022), presents a belief-based model of decision-making. However, we propose a
different modeling approach, which we compare against their multinomial choice model specifica-
tion. Furthermore, our work aligns with the perspective of organizations as artificial intelligences
(Csaszar and Steinberger 2022). We conceptualize decision-making as the outcome of computa-
tional processes carried out by individual decision-makers, referred to as agents, whose decisions
and performance can be observed.

3. Theoretical Framework

In this study, we consider a firm that sequentially launches new products. We observe launched
products and their performance. At the organizational level, there is a decision-making structure,
embodied into a macro agent. Our aim is to infer this agent’s beliefs and cognitive model that
guides her action. In this section, we provide a theoretical framework in four steps: (i) the agent’s
setting and environment, (ii) her knowledge management model, (iii) her choice model, and (iv) an
approach to infer her model structure from observable outcomes.

3.1 Agent’s Environment

Launch decision. The agent’s task is to select which new product to launch in the market.
Making this decision is akin to select the features that go into a new product. Features known
to the agent are both observable functions (e.g., shape, color or themes) and subjective elements
(e.g., an abstract concept). We consider discrete periods t = 1, . . . , T , and assume without loss
of generality that only one product is launched in each period. We do not need to specify the
calendar behind these periods, and can hence accommodate various launch schedules in a flexible
way, including simultaneous launches (although this implicitly requires that information revelation
occurs instantaneously). For instance, in the toy industry –the context from which we apply our
theory later–, periods can have a shorter duration prior to the holiday season, and a longer one
during the rest of the year. In other words, we just needs to specify T , which corresponds to the
total ‘budget’ that the firm can spend on new product launches.
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Partially observable and stochastic environment. The agent cannot accurately predict the
outcome of her decisions. She must learn about her environment by launching products and ob-
serving performance. At inception, the firm’s environment is unknown. As the firm acquires
experience, she may better identify market trends, seasonality, competition dynamics and progress
on her learning curve. She may encode her knowledge about the environment with feature variables.
Product category as the unit of action. We consider a product within a category i as a
potential item to launch. We thus assume that agent’s product knowledge organization occurs
at the category level (Russell 2010). Specifically, products within one category share the same
knowledge representation (product features and performance). It is characterized by the agent’s
knowledge structure K, which defines it by a feature vector Xit. This vector may capture aggregate
measures of the category, such as the amount of products launched so far, or their average price. We
consider that the launch can be made either from a finite set of existing categories It := {1, . . . , It},
where It denotes the number of categories launched up to t; or from a new category i = 0, for which
this will be the first experience. When the agent chooses to launch a new category, It+1 = It + 1;
otherwise It+1 = It.
Information structure and performance. The agent makes its launch decision using C, a
choice policy. This choice is driven by comparing the potential performance of each option, given
product features Xit for different existing options i ∈ {1, . . . , It} or a new category. For every
potential choice i, performance Rit is a random variable characterized as a function of the agent’s
current knowledge and a random shock. We assume that performance Rit follows a distribution
that depends on Ωt, which includes all beliefs about the potential of each category, in the form of
a vector θ̃, that follows a normal distribution with mean effect µt and variance-covariance matrix
Σt. In other words, Ωt := (µt,Σt). If category i ∈ It is selected, then product performance follows
a normal distribution with average θ̃TXit (T to transpose vector θ̃) and a Gaussian shock εit with
standard deviation σε ≥ 0. Formally, product performance is written as

Rit = θ̃TXit + εit (1)

Note that these sufficient statistics Xit may overlap across categories. Xit could include general
features such as average price of products launched so far, as well as category-specific identifiers.
For example, if the first two entries are generic and the rest are category-specific, category 1 could
be represented by X1t = (1.5, 5.2; 0, 1, 0)T , while in category 2 by X2t = (3.1, 2.6; 0, 0, 1)T . Category
0 would then be represented as X0t = (0, 0; 1, 0, 0)T .
Sequence of events. The agent seeks to maximize her long-term performance. Since the agent
sequentially makes decision under uncertainty, she faces the classical exploration-exploitation trade-
off. She behaves in an iterative manner, starting with her knowledge vector Ωt. This allows her
to simulate tuples (i, Rit)i=0,...,It , then choose one category to launch, which we denote by Yt (a
random variable at this point), which realizes into an observed value yt. Finally, the realized reward
ryt,t is observed and the agent can learn from it to form a new Ωt+1. The agent’s model M is thus
made of a knowledge rule K and a choice rule C, i.e., M = (K,C). Formally, the agent’s learning
process for t ≥ 1, starting from a given Ω1, is illustrated in Figure 1 and can be structured as
follows:

Yt ∼ Choice(C,Ωt) (2a)

Ωt+1 = Update(K,Ωt, yt, ryt,t) (2b)
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First, Equation (2a) reveals the chosen outcome. Note that the choice mechanism is driven by
Equation (1), which depends on the information structure Ωt which affects the distribution of θ̃t,
but also on the choice rule C with which the agent selects out of the options i = 0 or i ∈ It. Second,
in Equation (2b), the agent uses her knowledge management policy K to update her former belief
Ωt into Ωt+1. She leverages both the outcome of her choice yt and performance ryt,t to compute a
posterior belief Ωt+1.

Figure 1: The agent’s learning process is represented as a loop in which variables are updated.

3.2 Knowledge Management Rules: Representation and Belief Update

The agent’s information structure Ωt contains information about the belief vector θ̃ which deter-
mines the potential for each category. We model the agent’s perception of her environment with a
sleeping linear bandit and describe various methods through which belief update may occur.
Knowledge parameterization with a bandit model. We choose the multi-armed bandit
framework to model the agent’s knowledge primitives. In each period, the agent’s task consists in
pulling a category, the bandit arm, from which a new product will be selected for launch. Bandit
problems traditionally work under the assumption of a finite known number of independent arms.
In a context of new product introductions, the assumption is not valid since the agent does not
know ex ante the number and type of categories available.
Product categories in a sleeping linear bandit model. To overcome the aforementioned
shortcoming, we recall the assumption stated in §3.1: product performance is driven by features
Xit and the agent faces a linear bandit. Furthermore, we allow a growing number of categories
as the agent acquires more experience. Some arms are thus in a sleeping state and are revealed
after a product has been launched within that category. Namely, the contextual variable Xit is
revealed and the specific arm ‘awakens’. In other words, the agent faces a sleeping linear bandit
model, illustrated in Figure 2. In each period t, the agent can choose from existing categories,
which are already awake, and hence have well-defined covariates Xit. It can also choose to launch
a product from category i = 0, which is a placeholder for all developed products not yet launched.
The performance of this category is driven by a generic θ̃tX0t, and results in Yt = 0 if launched.
However, after the product is launched, it opens up category It+1 = It + 1, which now has its
own covariates. Since there is no existing categorical parameter for the new category It+1, we
assume that it inherits its value (mean and variance-covariance) from category i = 0’s posterior, as
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suggested by Gilboa and Marinacci (2016) or Harsanyi (1967). In the meantime, ‘unborn’ categories
stay in a sleeping state.

Figure 2: Representation of the sleeping bandit model for 6 decision-periods.

Knowledge dynamics: posterior update. The agent manages her knowledge update K either
through a Bayesian update, or no update at all.
Bayesian update. This method provides the normative way according to probability theory to
update the agent’s beliefs sequentially. The agent’s prior is her starting point about the true effect
of the environment’s performance factor associated with a product features and it shapes the agent’s
data generating process. This prior must be learnt from observed data generated by the agent’s
behavior in real-world setting (Gelman et al. 2017). Since we assume a normally-distributed prior,
the posterior update is a tractable equation (Powell and Ryzhov 2012). It is written as follows:

µt+1 = µt +
Σt ·Xytt

σ2
ε +XT

ytt · Σt ·Xytt
(rytt − µTt Xytt) (3a)

Σt+1 = Σt −
ΣtXytt(Xytt)

TΣt

σ2
ε +XT

ytt · Σt ·Xytt
(3b)

In Equation (3a), µt+1 denotes the posterior update of the mean belief µt. (rytt−µTt Xytt) is the
prediction error and describes the amount of surprise about observed performance. A big surprise
leads to a large mean posterior update and reveals a big uncertainty about µt. The weight for
the prediction error is tuned by an uncertainty ratio. A lower weight will discount the value of
information surprise, implies a lower learning rate and occurs either when variance values are low
or when Gaussian shock is high.

In Equation (3b), Σt+1 is the posterior update of the variance-covariance of agent’s belief.
The posterior variance equation is driven by an uncertainty ratio. A higher observation noise σε
impedes making progress into updating the state of knowledge. Note that it is possible to include a
memory factor to ‘forget’ learning from the distant past data Powell and Ryzhov (2012). However,
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in our empirical study such memory factor did not improve results much, so we retain the simpler
formulation for simplicity.

For example, imagine there are two existing categories, i.e., It = {1, 2} withX1t = (1.5, 0.2; 0, 1, 0)T ,
and X2t = (3.1, 2.6; 0, 0, 1)T , while the new category is X0t = (0, 0; 1, 0, 0)T . At the current state of
information µt = (1.2,−3.0; 0.4,−0.2, 1.4)T and Σt = diag(2, 2; 0.8, 0.6, 1.0), and σε = 1. In period
t, the product launched is in category 1, i.e., yt = 1, and a reward of r1t = 4 is obtained. Since
µTt X1t = 1.8− 0.6 + 0− 0.2 + 0 = 1.0, applying Equations (3a)-(3b), we obtain

µt+1 =


1.2
−3.0
0.4
−0.2
1.4

+


3.0
0.4
0

0.6
0

 3

1 + 6.75 + 0.016 + 0 + 0.6 + 0
=


2.27
−2.85

0.4
0.02
1.4


and

Σt+1 =


0.92 −0.14 0 −0.22 0
−0.14 1.98 0 −0.03 0

0 0 0.8 0 0
−0.22 −0.03 0 0.56 0

0 0 0 0 1

 .

As we can see, experimenting with category 1 allows the agent to update the value of the parameters
that affect that category (entries 1, 2 and 4 in the vector µt), while nothing is learnt in the other
parameters (entries 3 and 5 which correspond to the category-specific shifts for category 0 and 2).
Similarly, the variance-covariance matrix is adjusted, and in particular the variance for the first
dimension is strongly reduced from 2 to 0.92, while the rest does not change much. Note that
while Σt is a diagonal matrix, Σt+1 is not, meaning that we can generally learn from the correlation
structure too.
Model-free and heuristic updates. Several empirical studies suggest that the Bayesian update rule
does not apply in real-world settings (Benjamin 2019). The learning literature provides many
simpler rules to compute posterior update for mean belief parameter, such as the Delta learning rule
(also known as Rescorla-Wagner, see Gronau et al. 2017), or the Decay learning rule (Speekenbrink
and Konstantinidis 2015). In our study, we do not consider these rules and focus two extreme cases:
standard Bayesian updating and no updating (discussed next). It would nevertheless be possible
to extend the model by considering these alternative updating rules.
No belief update. In contrast with the above heuristics, we consider a more extreme update, in
which the belief remains constant: the agent maintains her prior over every decision period.

3.3 Agent’s Choice Rules and Models

Of course, the quality of the learning, in the form of knowledge refinement, depends on the agent’s
choices over time. This is determined by the choice model (C), which we describe here. An agent
seeking to improve her knowledge about the environment would actively experiment to reduce
uncertainty, while a exploitation-oriented agent would select actions maximizing her belief of correct
action. We can organize these policies into two groups: (i) passive learning and (ii) active learning.
We present them next and include their pseudo-code in Appendix A.
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Passive learning policies (greedy). A passive learning policy selects actions greedily with
respect to mean belief parameters. The randomized choice rule is operationalized by a Softmax
function, which determines the probability that the new product launch falls in category i. Using
γ ≥ 0, it can be written as follows:

pit = Softmaxγ(µt) =
eγµ

T
t ·Xit∑It

k=0
eγµ

T
t ·Xkt

(4)

The probability of selecting an action pit is always between zero and one, leading to a finite
log-likelihood, as opposed to possibly −∞ likelihood when the policy does not randomize over all
possible choices. Unlike another passive learning policies, the Softmax policy explores arms in a
directed fashion. Instead of randomly exploring an arm with ε probability and making greedy
choices otherwise (as in ε-greedy), Softmax selects arms in descending preference order, tuned by
parameter γ. A value γ = 0 yields a uniform probability of selecting each available actions whereas
a positive γ leads agent to select only high performance actions.

Interestingly, as we discuss below, our inference is set to maximize the likelihood of the observed
launch patterns. Due to this choice, it is not possible to separately identify γ and µt. In other
words, our inference problem has one degree of freedom due to the structure of the choice probability
(adding to one by construction), so we can set γ = 1 without loss of generality. Having said that,
if one chooses to also consider the likelihood of the observed rewards, which depend on µt but not
γ, then we can identify it.
Active learning policies. With active learning rules, the agent attempts to balance exploration-
exploitation decisions. There are two classes of policies: randomized policies (Thompson sampling
- TS) and non-randomized policies which are again smoothed with a Softmax layer to make them
randomize over the entire choice set (Upper Confidence Bound - UCB, Gittins Index - GI). Note
that there are other active learning policies such as Knowledge Gradient or Value of Information
Ratio, but we focus on the former two policies in our study.
Randomized Upper Confidence Bound. With a UCB policy, the agent selects action with the
highest upper confident bound performance, which is computed by taking into account the mean
performance and adding an additional value for the uncertainty bound, which is tuned with a
parameter β. A higher value of β indicates a higher exploration rate. We implement the randomized
UCB by applying the Softmax function on the product performance with exploration bonus.
Randomized Gittins. The agent uses the optimal solution to the exploration-exploitation problem
formulated as a Markov Decision Process (MDP), formulated in a setting of infinite horizon, with
a known prior about a finite number of categories and a known state-transition probability matrix
p(θ′|θ,Xi). With this solution, the agent selects category i, whose performance makes her indifferent
between exploring and exploiting. In other words, for each category, a threshold is computed so
that the arm should be pulled when the expected reward plus an exploration bonus is higher than
the threshold value (Chick et al. 2010, Han and Powell 2020). Again, to generate a randomized
policy, we also augment the Gittins index with the Softmax rule.
Thompson-sampling. The agent selects her choice through a simplified Bayesian optimization mech-
anism, that picks the option with the highest predicted performance from a single draw of her belief
posterior distribution, instead of maximizing with respect to the full distribution. Exploration oc-
curs through the non-zero probability of selecting every actions, even unknown ones. Unknown
actions with high mean and higher variance would be explored often, and belief update would lead
to reduce uncertainty. Unknown actions with lower mean than other actions but higher variance
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would also be explored occasionally and beliefs would be updated to learn their parameters. Recall
that since rewards across arms are correlated through product features, uncertainty reduction will
still take place by improving the precision of beliefs associated with these features. We compute the
choice rule probability pit by running n = 1, 000 simulations of the agent’s decision and measuring
the frequency in which arm i delivers that highest simulated outcome Rit.
A Reduced-Form Benchmark. In addition to passive and active learning models, we specify a
multinomial logit (MNL) model to account for the fact that available categories are time-variant
(Cameron and Trivedi 2010). The MNL model controls for the number of alternatives available in
each decision period. It sets the attractiveness of a category as µXit, where µ is a static parameter
that can be estimated from actual launch decisions yit with standard econometric packages (The
inference of the multinomial logit is undertaken with the cox proportional hazard package in R).

Once choice policies are defined, the agent’s strategy is shaped by the interaction of her knowl-
edge and choice rules. We provide a description of each of several candidate models and take an
engineering perspective on her launch decisions to retrieve both her prior and data generating pro-
cess. We benchmark a reduced-form model against other models summarized in Table 1. Next, we
describe the inference procedure.

Table 1: Agent’s candidate models

Model number Class Knowledge update Choice rule

0 Reduced form
1 No belief update None Greedy, Softmax
2 Passive learning Bayesian Greedy, Softmax
3 Active learning Bayesian UCB, Softmax
4 Active learning Bayesian Gittins, Softmax
5 Active learning Bayesian Thompson sampling

3.4 Inference Procedure

In this section, we describe our method to retrieve the decision model best supported by the
agent behavior data. We undertake a Bayesian inference that takes place in two steps: parameter
estimation first for a given model in Table 1, i.e., estimate the starting values for the prior and
compute the highest likelihood; and then model selection among the five options.

Parameter Estimation. Unlike most Bayesian analysis that specifies a default prior, the under-
standing of agent’s behavior in real-world setting requires to set her prior in the context of the
likelihood function (Gelman et al. 2017). Indeed, agent’s prior is associated with her data gener-
ating process (Kruschke and Liddell 2018). Hence, the prior distribution must be selected from
the most likely model (Vanpaemel and Lee 2012). To estimate parameters from bandit models, we
simulate the agent decision with each available policy and the logged data. Then, in each period,
we can compute the one-period log-likelihood as follows:

LLHt = ln
(
p(yt|M,X·t, µt,Σt, σ

2
ε )
)

(5)
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which yields the model log-likelihood LLH =
∑T

t=1 LLHt. Finally, we search for agent’s belief
parameters contained in information structure Ω1 by using a grid-search approach to solve the
following optimization problem:

max
µ1
Σ1

σ2
ε

T∑
t=1

ln
(
p(yt|M,X·t, µt,Σt, σ

2
ε )
)

(6)

Model comparison. The likelihood value p(yt|M) is an initial starting point to compare models.
However, it would favor complex models that would overfit the data and fail at predicting new data.
Thus, we evaluate model strength with the Watanabe-Akaike Information Criteria (WAIC), a fully
Bayesian information criteria that measures the goodness-of fit as well as the model complexity.

The lower the WAIC, the better the data supports the model. In addition, we compute the
WAIC variance and the Akaike weight to validate the model selection decision. The higher the
WAIC variance, the lower the confidence in the WAIC estimates and the lower the confidence in
the estimation decision. Finally, the Akaike weight puts the WAIC value for each models on a
probability scale and provides evidence for model plausibility. It is computed as follows:

wMk
=

exp(−1
2dWAICMk

)∑K
q=1 exp(−

1
2dWAICMq)

(7)

where dWAIC is the difference between the WAIC value for model Mk and that of the model
with the lowest WAIC. The exponential factor is the WAIC value transformed on a probability
scale.

Note that WAIC metric has been shown to be asymptotically equal to Bayesian leave-one-out
cross-validation. However, cross-validation requires data to be conditionally independent, whereas
the agent’s data is a time series. Thus, the WAIC metric may have its limitations. To alleviate
this problem, we partition the dataset in two samples (in-sample and out-of-sample), we estimate
parameters from the first sample and evaluate predictions from the out-of-sample dataset. We use
both log-likelihood and WAIC as accuracy metrics to compare models.

4. Empirical Setting

In this section, we present an application of our framework on data from LEGO products. First,
we provide background on the setting, then present some descriptive statistics and finally describe
how we operationalize the inference procedure.

4.1 The Agent: LEGO

LEGO, a renowned toy company, introduced its first plastic construction product in 1949. As of
2022, the global revenue of the toy industry reached 9.27 billion USD, exhibiting a remarkable
compound annual growth rate (CAGR) of 16% over the past four years (LEGO Group 2022). The
industry’s expansion has been primarily propelled by the rise of video and computer games in the
last three decades. Among the toy companies, LEGO holds the leading position, surpassing the
top four industry leaders that generate 25% of the industry’s total revenue. The remaining 75%
market share is fragmented among various players. LEGO stands out with its unique product
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concept, which has effectively prevented the emergence of similar competitive products. This
characteristic of LEGO’s offerings makes it an intriguing context for studying new product launch
decisions, without the need to account for competitive responses. In recent years, the company has
experienced remarkable growth rates surpassing the industry’s average. However, LEGO’s journey
began as a small family-owned firm and encountered several existential challenges over the past
three decades. Adapting to changes in the industry and facing various contingencies, the company
ventured into different product decisions to foster growth. For this study, our focus is on LEGO’s
mainstream construction brick products. We do not consider other new product segments such as
movies, theme parks or electronic games.

4.2 Data

We collected 20,908 products data from Rebrickable, a platform that provides building instructions
both for LEGO and user-generated products. We also gathered 17,000 product-performance data
from Bricklink3, the largest online community and marketplace for adult fans of LEGO, with
about 1.1 million members in 70 countries, 600 million items for sale (new and second-hand) and
10,000 resellers. The data contains information about products available at resellers, offering newly
launched and antique LEGO products in high demand. We verify the accuracy of product category
data with information from LEGO website and BrickInsights, a website that offers analysis on
LEGO products.

After cleaning the data, we were left with 12,861 observations at product-level, from year 1949
to year 2023. Table 2 displays an overview of the raw data. Each year has at least one product
launch, except years 1950 to 1953, for which we do not observe product launches in our dataset.
Moreover, we do not observe the exact date in which a product was first launched, but we do know
the year. This means that we may miscalculate the order of launches within one year. Fortunately,
we do have a product number ID that grows in time, so, within each year, we sort launches by their
product ID. In our robustness section, we replicate the analysis with a random order within each
year, and results are extremely similar (cf Appendix E.1).

Figure 3 illustrates the growth trend of category launches over the years. The number of
category launches experienced growth from 1960 to 1970, remained stable for a decade, then saw a
resurgence in the 1980s, and finally exhibited exponential growth after year 1990. In Figure 4, we
can observe the growth of the top hexadecile categories, which refers to those categories with the
top 5% of total products launched over multiple years. Notably, categories such as LEGO Duplo
and Universal Building set have maintained their status as best-selling categories for over 50 years
since their initial launch. Other categories like Educational and Dacta (including Mindstorms and
NXT products), Town, and Technic have also consistently dominated the product category launch
pattern since their inception. More recently, LEGO Ninjago emerged as a top-performing category
in the 2010s. However, LEGO Starwars has only achieved top-category status in this current
decade. Finally, categories such as Marvel and Harry Potter fall into hexadecile 2 and hexadecile
3, respectively, and are grouped under the category Other Hex.

We aggregate data at the category level to have a finite set of product groups from which new
products are selected, thereby transforming the raw data set into a pseudo-panel (Cameron and
Trivedi 2010). This panel has 1,074,281 observations, many for each of the 12,861 launch events,

3LEGO acquired Bricklink in 2019 and justify this purchase by its willingness to consolidate its engagement with
its adult fan community.
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Table 2: A sample of raw data

Year Category Product Name Product ID Volume Mean Price

1969 System Lighting Device 050-2 1 35.00
1969 System Two Garage Door 065-1 4 30.95
1969 Universal Building Super Set 088-1 3 1220.96
1969 Legoland Super Value 102-3 2 247.22
1969 Universal Building Set 4.5V Motor with Tracks 103-1 16 50.05

Figure 3: Products and Categories Growth Curve
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which we call periods (fewer in the 1950s and many more in the 2010s). For each category-period,
category features are computed. Categories selected for launch are observed in each period and
the outside option of unobserved never launched categories are lumped under the Category0 label.
Before partitioning the dataset, we have 150 unique categories, with 149 launched categories and
Category0. After a category is launched for the first time, it is labelled with the actual name of
that category, as discussed in §3.

To undertake our work, we focus on task selection variable, as well as its theoretical predictors,
which are past experience and performance. Variable Selectedit = 1yt=i denotes whether category
i is observed for product launch. Experience is the cumulative count of products launched with a
category. This metric is transformed into MarketShareit, by dividing the count by the number of
periods since a category is first launched. Variables V olumeit, Priceit and Revenueit are proxies
for product performance. V olumeit is the wholesale volume of units available for each product at
resellers around the world, plus total units sold over the past 6 months, measured at the time of
data collection – averaged across all products launched within the category up to period t−1. This
is measured in units available for sale in secondary markets. (We replicate the study using only
available units or only sold units, and obtain nearly identical results, cf. Appendix E.2 and E.3.)
Priceit is the average quoted unit product price in Euros, again averaged across all products in the
category up to t − 1. Finally, Revenueit is equal to Priceit multiplied by V olumeit. Finally, we
use the variable Novelit = 1yt=0 to indicate whether Category0 is selected for launch. Note that
we need both variables in the model to separate the effect of the first launch vs. the later ones,
captured by Novel, and the effect of the difference between a new category and the rest, through
the inheritance process by which the new category takes the value of Category0 (these two distinct
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Figure 4: Total Products Launched in Top Hexadecile Categories in each year.
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roles are apparent when comparing Tables 19 and 20 in the Appendix).

Table 3: A sample of the pseudo panel data

Period Category It Selectedit Novelit Market Shareit V olumeit Priceit Revenueit
289 Category0 0 1 1 0.00 0.00 0.00 0.00
289 System 1 0 0 0.92 19.70 105.44 888.69
289 Samsonite 2 0 0 0.01 11.50 40.35 362.28
289 Train 3 0 0 0.08 34.23 127.39 1339.87
290 Category0 0 1 1 0.00 0.00 0.00 0.00
290 System 1 0 0 0.91 19.70 105.44 888.69
290 Samsonite 2 0 0 0.01 11.50 40.35 362.28
290 Train 3 0 0 0.08 34.23 127.39 1339.87
290 Universal Building Set 4 0 0 0.00 3.00 1220.96 3662.88
291 Category0 0 0 1 0.00 0.00 0.00 0.00
291 System 1 0 0 0.91 19.70 105.44 888.69
291 Samsonite 2 0 0 0.01 11.50 40.35 362.28
291 Train 3 0 0 0.08 34.23 127.39 1339.87
291 Universal Building Set 4 1 0 0.00 3.00 1220.96 3662.88
291 Legoland 5 0 0 0.00 2.00 247.22 494.45

Table 3 provides a sample of data with four categories from periods 289 to 291, corresponding
to year 1969. In Period = 289, Category0 is selected for launch. Thus variable Selectedit = 1.
For this new category, Novelit = 1 and the rest of covariates (market share, volume, price and
revenue) are set to zero, by construction. Category System has the highest market share value
of 0.92. Products in this category sells at an average of 19.7 units and an average price of 105.44
EUR, which yields a category revenue of 888.69 EUR. In Period = 290, it is revealed that the
new category launched in the previous period is named UniversalBuildingSet. Thus, the number
of available categories grows from It = {0, 1, 2, 3} to It = {0, 1, 2, 3, 4}. In addition, Category0
is selected for launch for a second consecutive time. We observe in period 291 that new category
launched the previous period is named Legoland. Hence, we have a total of 6 categories in this
period.
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4.3 Descriptive Statistics

To undertake our analysis, since variables are highly skewed, we apply a log-transformation so that
its distribution is bell-shaped, i.e., we transform them with log(1 + ·) to avoid problems with zeros.
We report the descriptive statistics for the log-transformed variables in Table 4. Note that each
variable has a minimum value of zero because of Category0. The variable log MarketShareit has
a slight positive skewness, and further analysis regarding its distribution can be found in Appendix
B. A visualization of the density of variables and their correlation matrix can be found in Appendix
C.

Table 4: Descriptive Statistics

Mean Std Dev. Minimum pc25 Median pc75 Max

log MarketShareit 0.012 0.026 0 0.00088 0.0028 0.0096 0.69
log V olumeit 3.757 1.068 0 3.12888 3.6376 4.2790 8.76
log Priceit 4.112 0.916 0 3.50288 4.0835 4.6936 8.22

log Revenueit 7.869 1.508 0 6.96864 7.7993 8.7043 12.17

4.4 Structural model estimation

We undertake the parameter estimation with the same specification as above, by simulating candi-
date models in Table 1. Maximum Likelihood Estimation is undertaken with a differential evolution
algorithm (Mullen et al. 2011), in which we look for improvements on the likelihood until conver-
gence. Hyperparameters values are constrained as follows: mean µ ∈ [−5, 5]; variance σθ ∈ [0, 326],
observation noise σε ∈ [0, 326]; β ∈ [0, 2]. Models are trained in-sample over 0 ≤ t ≤ 350 launch
periods from the beginning. We chose 350 periods because the ground truth search is computa-
tionally intensive, with several thousands of points evaluated. In the robustness section, we train
the model over 1,000 periods and obtain similar results.

The simulation requires to specify a product performance function, which is the function the
agent seeks to maximize. We chose Revenuet as the dependent variable for product performance.
Indeed, the agent is most likely to seek to increase both price and inventory sold than price or
inventory only. Note that each simulation starts with its prior being one of the point in the grid.
When simulation for each model is completed, we select parameters from the best model to compute
predictions both in-sample and out-of-sample for period 351 to T = 12, 861. We compare models all
candidate models against our benchmark Model 0, the MNL model with the same covariates. Our
main model incorporates past experience and performance variables, with current revenue serving as
the predicted performance variable. Next, we present the estimation results of the various models.

5. Analysis

5.1 Estimation results

Our inference results are shown in Table 5. Note that the variable log Revenue is dropped from
the models because it is just the sum of log V olume and log Price. Instead, log Revenue is used
as the objective to maximize when evaluating decisions in all Bayesian models.
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Table 5: Inference results. Training sample includes product launches in periods 1-350

Model 0 Model 1 Model 2 Model 3 Model 4 Model 5

MNL Softmax Softmax Softmax Softmax Thompson
Non-Bayesian Greedy UCB GI Sampling

log MarketShare 3.17 3.17 4.87 -3.93 4.95 4.94
(0.29) [3.17, 3.17] [3.85, 5.83] [-40.10, 30.98] [4.71, 5.20] [4.51, 5.39]

log Volume 0.29 0.29 -0.07 -0.84 0.17 0.37
(0.15) [0.29, 0.29] [-2.50, 2.41] [-3.26, 1.72] [-0.02, 0.37] [-0.29, 1.05]

log Price 0.7 0.71 2.96 4.89 2.04 2.37
(0.17) [0.71, 0.71] [-34.76, 37.42] [-2.60, 12.90] [-31.07, 33.20] [-9.93, 15.63]

Novel 2.74 2.74 -0.82 4.85 -2.43 -4.68
(1.15) [2.74, 2.74] [-16.37, 14.10] [-4.18, 13.93] [-8.68, 3.82] [-13.65, 4.44]

Noise (σε) 18.91 7.68 13.72 18.12
Bonus (βUCB) 0.31

Logtest 458.5
McFadden pseudo-R2 0.3
Wald Test 215.28
Log-likelihood -186.43 -186.43 -181.94 -175.95 -183.09 -186.43
AIC 380.86 371.88 361.9 376.18 382.86
Observations 1290 1290 1290 1290 1290 1290
Simulations per period 1,000

Our first observation is that, in sample, Bayesian models provide a slightly better fit, and hence
are more plausible than reduced-form and no-belief-update models, as shown by the lower Akaike
Information Criterion (AIC), except for Thompson Sampling; we discuss later goodness of fit out
of sample. Two of the models perform particularly well: Greedy (model 2) and UCB (model 3)
provide the two highest likelihoods in the training sample (periods from 1 to 350).

5.2 Parameter estimates

Static predictions (models 0/1). Interestingly, the reduced-form model (model 0) and the no-
belief update model (model 1) result in identical parameter estimates and log-likelihood values. This
implies that a non-Bayesian Softmax model keeps the same preference structure for the different
arms over time, and is hence equivalent to the MNL in terms of choice probabilities. Note that
while the MNL is able to provide confidence intervals for the estimated coefficients, which are
obtained from the Fisher Information matrix, in the Bayesian approach, the uncertainty about the
parameter is set to zero because we force the parameters to stay the same given that there are no
belief updates. Moreover, model 1’s fit remains unaffected by the choice of predicted performance
variable (revenue in this case), which is never used in this model. This observation implies a crucial
insight: the MNL model only estimates static parameter values, thereby ignoring the underlying
mechanisms driving the decision-making process and hence limiting its effectiveness in capturing
actual launch patterns. This cannot be mitigated by including temporal trends or interactions, as
discussed in Appendix D.5.

Regarding estimates, first, we observe a strong and positive parameter estimate for past expe-
rience log MarketShare. Specifically, a 1 percentage point increase in the category market share
leads to about an increase of 3% (3.17 × [log(1 + ms + 0.01) − log(1 + ms)] ≈ 0.0286 when ms is
small) in the category attractiveness, hence approximately 3% in the probability of being selected
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for launch; the effect is smaller for larger categories, i.e., when ms is large. In other words, there is
a strong path dependency where past launches are an indicator of future launches. This finding is
consistent with prior research, which has highlighted the importance of past experience as a critical
determinant of performance.

Second, both volumes and past prices are also good predictors of category selection, albeit with
a smaller effect size. The findings indicate that higher volume or price are associated with a greater
likelihood of category selection. Since these are products launched before 1970, this suggests that
in the early days, LEGO was increasing variety in categories that had shown potential to generate
higher profits, via volume or contribution margin.

Third, the coefficient of Novel shows that category novelty is a significant predictor of category
launch, with a new category being 15 times (e2.73 = 15.48) more attractive than an existing
category with a small market share, volume and price (so that log MarketShare = log V olume =
log Price = 0).

If this model was correct, this finding would imply that, in the early days, there was a premium
associated with introducing new categories, which is intuitive given that the toy industry rewards
differentiation in general, and uniquely positioned firms like LEGO in particular. Overall, our
results for models 0 and 1 indicate that past experience, performance, and category novelty are
reliable predictors for category launch.

Greedy (model 2). Model 2 ranks as the second best model in terms of in-sample fit. This
is coherent with recent theoretical results (Bayati et al. 2020 show that greedy algorithms can
be asymptotically optimal). In comparison with static models, the Greedy model has similarly
large parameter estimate for log MarketShare, but puts much more weight on price. This result
underscores that greedy actions occur through variables such as log MarketShare and log Price.
Moreover, the model penalizes categories with high volume sales (log V olume) and novelty. Large
volumes imply that a category is no more niche and is less likely to carry a performance bonus.
A penalty for novelty means that it is costly not to be greedy. Most importantly, prior values
for log Price and Novel carry a lot of uncertainty, in the form of a large variance in the Bayesian
hyperparameters, especially for price (starting standard deviation of about 35). In other words, the
model recognizes that parameters are highly uncertain initially, and will wait for more experiments
to refine the parameter value. As a matter of fact, when simulating the model, we see that the
mean value for log Price decreases, moving from 2.96 in period t = 1 to 0.55 in period t = 350,
while that of Novel increases from −0.82 to 2.46, see Figures 5. Therefore, though log Price seems
to pay off immediately, its contribution to performance wears off rapidly. Similarly, albeit it is
costly to create new categories, this decision is also rewarded in the future. Furthermore, though
Category0 fixed effect seems to start high at value 1.14 (given that the effect of Novel is negative),
it receives a positive boost, with a value of 1.45, after new categories reveal that novelty generates
a positive reaction from the market. Since the greedy model has a better fit than the static ones,
passive learning seems to be capturing the changing preferences of LEGO for new products prior
to year 1970.

UCB (model 3). UCB provides the best fit for interpreting the LEGO launch patterns prior
to year 1970. This suggests that LEGO is more likely to use a Bayesian knowledge management
rule and a choice rule guided by the active learning policy UCB. In other words, it operates on
the principle of optimism under uncertainty. We find that βUCB, the exploration bonus, has a
value of 0.31, meaning that increasing hyperparameter’s standard deviation by one is equivalent
to increasing its average by about 1/3. This is especially important given that model uncertainty
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Figure 5: Evolution of average belief value
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is quite high for log MarketShare, and results in having LEGO explore categories with higher
uncertainty. These include all those with few launches, because the starting category fixed effect
uncertainty is very high σCategory0,t = 18.93 and σNovel,t = 4.52 at t = 1. Note that parameter
estimates for log MarketShare and log V olume are lower than Static and Greedy models, but one
should keep in mind that an exploration bonus is added to these average parameters when predicting
launch probabilities, e.g., at t = 1, while the average belief for Novel is 4.84, in the prediction we use
4.85+0.31×4.85 = 6.35. In other words, in the early days, LEGO experimented in ‘young’ categories
more than what a Greedy approach would suggest, thereby launching products in categories with
lower expected revenue, for the sake of gaining knowledge on the revenue distribution.

We can also observe that parameter uncertainty is much larger than that of the Greedy model
for only log MarketShare, hence revealing the ambiguous value of past experience. In contrast,
the noise standard deviation σε is lower, showing that under UCB, LEGO attributes variability in
revenue to hyperparameter uncertainty, which can be reduced via experimentation and learning.
Unexplained uncertainty is then captured in σε. In contrast, greedy has less ‘faith’ in the model,
i.e., it starts with high model uncertainty for several variables, and admits a larger uncontrollable
uncertainty.

Gittins Index (Model 4). This model returns estimates close to the Greedy model, with
the same coefficient signs and a slightly worse fit. In addition, it also has lower hyperparameter
uncertainty for all coefficients but for log Price. As a result, the model has the second lowest value
for noise variance σ2

ε , after UCB. Finally, fit values and coefficients for Gittins Index and UCB are
different. However, Russo (2021) shows that there is an asymptotic equivalence between the Gittins
Index and Bayesian UCB. We find that fit values for both models are approximately the same in
models without context-dependent covariates (cf. table 19 and 20). Nonetheless, parameter values
are never the same. Note that the Gittins Index has been computed with a discount factor close
to 1 (cf. Appendix A), thus assuming a sufficiently patient agent. This implies that LEGO is far
from being a sufficiently patient agent.
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Thompson Sampling (Model 5). Finally, Thompson Sampling is the worst-performing of
the Bayesian models. Parameter estimates uncertainty are of the same magnitude as those of the
Gittins Index model, except for the Novel covariate, whose parameter value is strongly negative.
Kalvit and Zeevi (2021) shows that Thompson Sampling exhibits an “incomplete learning” effect,
in which it continues to sample suboptimal performing arms and fails to generate an asymptotic
normal sampling distribution, especially in settings where the rewards of the arms are not very
different (non-separated arms). This result raises question on the possibility of doing inferential
work with Thompson Sampling (Kalvit and Zeevi 2021). Furthermore, it is worth mentioning re-
cent theoretical analyses showing that settings with context-dependent information require better
algorithms than Thompson Sampling or UCB (Van Parys and Golrezaei 2020). Our results pro-
vide evidence that, unlike UCB, Thompson Sampling is less likely to use structural information
effectively. Finally, (Qin and Russo 2022) show that the performance of Thompson Sampling is
negatively impacted in settings where the sequence of context influences arm performance. These
results support our evidence that Thompson Sampling has the worst goodness of fit.

5.3 Model Comparison

We next evaluate the models with out-of-sample predictions and discuss model selection using the
Watanabe information criterion (WAIC).

Out of sample predictions. We use the evaluation dataset, covering the launching period
from 351 to 12,861, to simulate models with priors from the UCB model since this is the most likely
learning model of LEGO; in the robustness section, we replicate the results with priors obtained
with Greedy (model 2) and Static (models 0/1) and obtain similar results.

Figure 6 illustrates the dynamics of log-likelihood of model predictions. We report cumulative
log-likelihood, defined as total log-likelihood between 1 and t, divided by the number of periods t.
We observe that the Greedy and UCB models provide superior fit, with Greedy outperforming UCB.
The Static model ranks third in terms of prediction accuracy. On the other hand, the Gittins Index
model shows a very poor out-of-sample fit. Finally, Thompson Sampling initially demonstrates
competitive predictive performance compared to all other models except Greedy. However, its
performance rapidly deteriorates, and the model eventually performs worst among all models.

To better understand the behavior of these out-of-sample fit performance, we consider the
number of existing categories in different periods and compare the summary statistics of model
probability predictions to LEGO’s. Tables 6 and 7 provide details of this comparison by focusing
on periods 351 to 1,000 (where there are 22 or fewer categories) and periods 12,000 to the last
period (where there are up to 150 categories), respectively. The minimum and 25-percentile prob-
abilities show the predicted frequency of least likely options, whose values are close to zero. As
more categories are available, these frequencies decrease further. The 50-percentile and maximum
probabilities on the other hand are larger, up to 97% (for model 1) in the early periods, and also
decrease as more options become available (see Table 7). Mean and median predictions reflect the
equi-probable prediction over the existing choices (1/n probability: 0.111 when there are 9 cate-
gories in period 351, 0.045 when there are 22 categories in period 1000, and 0.0066 when there are
150 in the last period).

We can make the following observations based on the information presented in the tables.
Firstly, the maximum probability and standard deviation for the Static (model 0/1) closely match
LEGO’s actual choices summary statistics. This indicates that the Static model attempts to repli-
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cate the decisions made, although it does not accurately represent the underlying probability distri-
bution generating those choices. Secondly, the summary statistics for Greedy and UCB probabilities
are the most similar. This is another way of saying that predictions from both models are close, as
displayed in Figure 6. Thirdly, both the Gittins Index and Thompson Sampling exhibit very low
probability values below the 50th percentile. These values decrease to zero as the number of arms
increases, as shown in Table 7. Consequently, both policies, compared to UCB and Greedy models,
seem inadequate in settings with growing number of options. Additionally, the summary statistics
for the Gittins Index closely resemble those of the Static model, showing that this model does not
effectively learn from the data. Lastly, predictions above the 50th percentile for Thompson Sam-
pling fall within the same range as those of UCB and Greedy policies. This confirms the favorable
performance of the Thompson Sampling policy when the number of arms is low.

In conclusion, the out-of-sample predictions provides evidence that the Greedy model is the
most plausible model to explain LEGO’s data.

Figure 6: Out of Sample Predictions
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WAIC. Table 8 displays the computed Watanabe information criteria on the same evaluation
dataset as before. To provide a metric per period, we present the mean WAIC, calculated by
dividing the total WAIC by 12,511, which represents the length of the validation sample (12,861
minus 350). Alongside the mean-period WAIC, we provide the number of effective parameters
(pWAIC), its standard error, and the Akaike weight. The results demonstrate that the Greedy
model outperforms all other models, exhibiting an Akaike weight of 86.7% and the lowest pWAIC
value among the effective parameters. It is worth noting that the Model 1 to Model 5 estimate
each category with a fixed effect, resulting in 150 fixed effect parameters when all categories are
revealed. When combined with other covariates and non-belief parameters, the maximum number
of estimated parameters reaches 156. Interestingly, the Greedy model excels in reducing model
complexity, as evidenced by its lower pWAIC value of 49.77. This indicates that, with the same
156 parameters, the Greedy model effectively exploits the correlation structure between product
categories, leading to more stable posteriors. The UCB model ranks as the second-best model with
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Table 6: Predictions for simulated out-of-sample decisions in periods 351-1,000

Actual Model 1 Model 2 Model 3 Model 4 Model 5

Non-Bayesian Softmax Softmax Softmax Thompson
LEGO Softmax Greedy UCB GI Sampling

Min. probability 0.0000 0.0000 0.0016 0.0007 0.0000 0.0000
Pc25 probability 0.0000 0.0000 0.0253 0.0203 0.0001 0.0070
Median probability 0.0000 0.0005 0.0495 0.0396 0.0011 0.0450
Mean probability 0.0616 0.0616 0.0616 0.0616 0.0616 0.0616
Pc75 probability 0.0000 0.0050 0.0790 0.0916 0.0089 0.0990
Max probability 1.0000 0.9702 0.2950 0.3864 0.9924 0.3060
Std Deviation 0.2404 0.1834 0.0508 0.0581 0.1967 0.0615

Number of existing categories 9 -22

Table 7: Predictions for simulated out-of-sample decisions in periods 12,000-12,861

Actual Model 1 Model 2 Model 3 Model 4 Model 5

Softmax Softmax Softmax Softmax Thompson
LEGO Non-Bayesian Greedy UCB GI Sampling

Min. probability 0.0000 0.0000 0.0001 0.0001 0.0000 0.0000
Pc25 probability 0.0000 0.0000 0.0009 0.0007 0.0000 0.0000
Median probability 0.0000 0.0000 0.0023 0.0019 0.0002 0.0000
Mean probability 0.0067 0.0067 0.0067 0.0067 0.0067 0.0067
Pc75 probability 0.0000 0.0002 0.0070 0.0057 0.0008 0.0040
Max probability 1.0000 0.6350 0.0751 0.1015 0.6236 0.1780
Std Deviation 0.0816 0.0520 0.0116 0.0133 0.0509 0.0189

Number of existing categories 148 - 150

an Akaike weight of 13.3%. However, with a pWAIC = 110.3 value, it exhibits a higher number of
effective parameters, which indicates a greater degree of model complexity. Thompson Sampling
and the Gittins Index show similar WAIC values, although Thompson Sampling is more complex
than the Gittins Index. Lastly, the Static model demonstrates the highest WAIC value but lower
model complexity compared to Thompson Sampling and the Gittins Index.

To conclude, several metrics on the evaluation set shows that Greedy is the best model in terms
of prediction LEGO’s future launches.

5.4 Robustness checks

We perform additional analyses to evaluate the robustness of our results. For details, we include
all supporting materials in Appendix D.

Longer training sample size. We replicated our analysis with a training period of 1,000
periods, instead of 350. The results are shown in Table 10. We confirm that UCB provides the
best in-sample fit and the Greedy model the best out-of-sample performance, albeit with a small
gap in comparison to UCB.

Other performance variables. We estimate models with alternative measures of product
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Table 8: Watanabe Information Criteria (WAIC)

Model 1 Model 2 Model 3 Model 4 Model 5

Non-Bayesian Softmax Softmax Softmax Thompson
Softmax Greedy UCB GI Sampling

WAIC 950,441 148,491 195,465 863,209 868,745
Mean period WAIC 75.97 11.87 15.62 69 69.44

dWAIC 64.1 0 3.75 57.13 57.57
Standard Error 0.03 0.04 0.03 0.02 0.04
Akaike Weight 0.0% 86.7% 13.3% 0.0% 0.0%

pWAIC 268.7 49.77 110.3 332.83 343.75

performance: instead of log Revenue, we consider log V olume and log Price as the metric to
maximize. We replicated our results in-sample, and find that UCB provides the best fit with
log V olume, while Greedy does so with log Price. Estimated parameters, shown in Tables 11
and 12, remain similar to Table 5’s. However, the specification with log Revenue reported earlier
provides the overall best fit.

Parameter recovery. To ensure that data generated with a specific model can also be reverse-
engineered to retrieve the same model, we attempt to recover parameters of simulated model by
ensuring we obtain the same model that generated the data. We find that the Greedy model
exhibits a remarkable capability to accurately represent data generated by other policies. This
finding can be attributed to the existence of regime changes in behavioral models across different
time horizons, where the Greedy models consistently capture a behavior that persists over long
periods. We discuss this further in Appendix D.4.

Other robustness checks
Alternative ground truth. We replicated our out of sample study starting with the priors iden-

tified by Greedy and Static. Figure 14 and 15 show the predictions performance, which need to
be compared to Figure 6. We find that, regardless of the ground truth, the UCB model never
outperform the Greedy model, suggesting that it is more adaptable than UCB.

Trends and forgetting. Since category launches exhibits a curvilinear growth rate over the
years, we included trends in the different models, as well as a limited memory factor in (3b), to
give more weight to recent observations. Table 17 includes the results. As obtained with our main
specification, we find that the UCB model remains superior to remaining models, followed by the
Greedy model.

Fixed effect and novelty only. We also tested specifications without structural parameters
(log MarketShare, log V olume, log Price) and only fixed effect for product categories (cf. Table
19). We further consider models with novelty, i.e., the Novel covariate (cf. Table 20). On the
one hand, in both cases, we find that, in-sample, Thompson Sampling explains best the data, al-
though its Log-likelihood value is worse than in our main specification. However, as in the main
specifications, its predictions on the evaluation dataset degrades to become worse than remaining
policies. On the other hand, the Gittins Index has the same fit value and predictions performance
than remaining models, including the Static model.
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6. Conclusion

In this work, we aim to elucidate the learning process of a firm about its business environment. Our
study is especially relevant when we consider a long time horizon over which consumer preferences
evolve. We postulate that this learning process is revealed from the observation of a firm’s new
product launch decisions and the corresponding commercial performance of those. We create a
model that includes both a knowledge and a choice rule, which will help the firm balance its goal
of extracting higher performance from existing product categories while also exploring newer ones
to renew the product offering. We represent the firm’s knowledge with a sleeping linear bandit to
account for newly available categories and the inherent structure in the product space. With this
framework in mind, we can test alternative rule configurations and then reverse-engineer the best
combination that explains the firm’s data in the most plausible way.

We evaluate our framework with data from a leading toy design firm, LEGO, over a long
history of product launches from the 1950s until now. On the one hand, our analysis provides
evidence that LEGO is most likely to have been using either UCB, which gives low confidence
to initial belief values and seeks novelty, or Greedy, which exploits existing knowledge to seek
immediate performance. Both models have similar fit performance, similar parameter estimates
with respect to past performance, but different uncertainty values associated with them. These
models are much better than static, non-anticipatory models, i.e., those that only use information
from the past, as well as less exploratory models such as Thompson Sampling and the Gittins
Index, which does not reflect the increase in new categories experienced at LEGO. Interestingly,
UCB and Greedy models are sufficiently adaptive so that there is no further need to discount
past observations. Hence, our results indicated that LEGO has developed a feedback mechanism
between the observed performance of new products, and its future launch plans. Our framework
allows us to uncover this relationship, by rationalizing the launch decision as a comparison between
options with different (random) rewards, such as category revenue. On the other hand, we cannot
state that LEGO actively explores new product spaces via active learning –with UCB–, since it is
as plausible as passive learning –with greedy. In addition to the general structure of the learning
strategy, our model also reveals two aspects of adaptation.

First, category heterogeneity is of the utmost importance. Indeed, the belief associated with
a given category performance varies wildly across categories, and moreover, it also dynamically
evolves. Figure 7 plots the dynamics of mean belief (aggregated in each year) associated with
category intrinsic features over the years for the first seven launched categories, which we compare
to the intrinsic value of opening a new category.

For example, the firm first launched the category System. From the year 1949 to the year 1964,
System had a slightly lower aggregated fixed-effect than Category0 at a value around 1, which, after
adding the rest of covariates, led LEGO to launch new System products. Then, Samsonite was
launched and updated to a slightly better category mean value, while the belief value for category
System quickly decreased and hence LEGO ceased launching the latter. Subsequently, category
Train was launched and enjoyed a strong and increasing category worth, which later decreased in
the 1980s. These bifurcations are an example of cannibalization across categories, due to changes
in the relative values in the options. As we can see, categories with higher values are predicted
to be launched more often. Another relevant observation from the figure relates to the innovation
appetite, which is materialized with an updated value for Category0, which steadily increased from
the 1960s until now. This led the firm to launch many new categories, including Legoland, Duplo
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Figure 7: Time-Series of category fixed effects, aggregated by year. Table 24 and 25 in Appendix
E.4 zoom on the periods 280 to 300 to illustrate how new categories inherit the fixed effect of
Category 0.
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and Town. Legoland and Town were very successful (the first one up until its peak in 1975, and
the second up until 1988), while Duplo did not do as well. This demonstrates how our framework
allows us to visualize the relative value of each category, in comparison with other categories, as
well as the option of opening a brand new category.

Second, our model also incorporates context-dependent covariates, that describe the observable
differences between options. Besides making the model richer by controlling by category differences,
this approach has a secondary effect: it allows to transfer learning across experiments. Namely,
since each category has certain past performance covariates, it can learn through them from launches
of other categories.

Specifically, contextual learning is conducted by measures of past experience, which, under
passive learning, has a stable and positive effect, so that categories with higher past market share
will be more likely to be chosen in the future. Interestingly, as shown in Figure 8, under UCB, the
model reflects high uncertainty about this variable, which is considerably reduced over time.

Contextual learning is also taking place through the effect of past volume sales and past price.
We observe that both the Greedy and UCB models initially detect very high uncertainty about the
role of these past performance measures, and quickly learn about them. More expensive categories,
which received a large bonus initially and led to more launches, later resulted in lower performance,
which made LEGO learn that the impact of price was not as large as originally thought. This meant
that the posterior of this variable was reduced from a high value (2.95 and 4.89 for Greedy and
UCB respectively) in the 1950s to a value close to zero in the 2020s. More strikingly, the role of
volume changed signs, from a negative to a positive value. In other words, LEGO initially gave
priority to more niche categories with smaller number of units sold, but later started giving a bonus
to larger volume ones.

In summary, the combination of a conceptual framework, its operationalization in a bandit
model, and its application to a set of actual product launches demonstrates the potential of dynamic
learning perspectives to better understand real new product introduction patterns. This is in
contrast with most of the literature in innovation management, which tends to employ reduced
form specifications. We hope that our work will spark interest in considering observable or latent
(as in this paper) knowledge states.
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Figure 8: Evolution of belief confidence bound for Greedy and UCB models.
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To conclude, we study decisions as an inference of a learning process, in which the blackbox of the
underlying structure of unitary experiences (consisting of a choice and its associated performance)
is opened. We find that the Greedy model provides the best representation of decision data of
LEGO, a leading toy product firm. Through our framework, we gain insights into the natural
selection process among product categories. Specifically, we can visually assess the significance of
category heterogeneity by analyzing the variation in category fixed-effects. Additionally, we observe
the occurrence of cannibalization as new categories emerge. Furthermore, we quantify the level of
innovation appetite, which reflects the value of untapped innovation that remains unlaunched, as
well as the necessary degree of category heterogeneity within the population. Lastly, we employ
modeling, estimation, and visualization techniques to examine transfer learning among categories,
exemplifying category mutation. For instance, although niche categories initially perform better,
over time, categories with larger sales volumes receive greater rewards.

Finally, it is worth mentioning that our work is limited by its very high computational cost.
However, it can be replicated in any industry, and future research could address questions related to
learning from outside events, such as competitors, or internal learning mechanisms, such as people
versus processes related decisions.
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Lattimore T, Szepesvári C (2018) Bandit algorithms. preprint 28.

LEGO Group (2022) Lego annual report 2022. URL https://www.lego.com/cdn/cs/aboutus/assets/

blt70ef2efdd8d21dc7/LEGO_Annual_Report2022_Final_WEB.pdf, accessed on April 9th, 2023.

Levine S, Kumar A, Tucker G, Fu J (2020) Offline reinforcement learning: Tutorial, review, and perspectives
on open problems. arXiv preprint arXiv:2005.01643 .

Li D, Raymond LR, Bergman P (2020) Hiring as exploration. Technical report.

30



Li L, Chu W, Langford J, Schapire RE (2010) A contextual-bandit approach to personalized news article
recommendation. Proceedings of the 19th international conference on World wide web, 661–670.

Loch CH, Kavadias S (2002) Dynamic portfolio selection of npd programs using marginal returns. Manage-
ment Science 48(10):1227–1241.

Mullen K, Ardia D, Gil DL, Windover D, Cline J (2011) Deoptim: An r package for global optimization by
differential evolution. Journal of Statistical Software 40(6):1–26.

Musaji S, Schulze WS, De Castro JO (2020) How long does it take to get to the learning curve? Academy
of Management Journal 63(1):205–223.

Ortner R, Ryabko D, Auer P, Munos R (2014) Regret bounds for restless markov bandits. Theoretical
Computer Science 558:62–76.

Posen HE, Keil T, Kim S, Meissner FD (2018) Renewing research on problemistic search—a review and
research agenda. Academy of Management Annals 12(1):208–251.

Powell WB, Ryzhov IO (2012) Optimal learning, volume 841 (John Wiley & Sons).

Qin C, Russo D (2022) Adaptivity and confounding in multi-armed bandit experiments. arXiv preprint
arXiv:2202.09036 .

Rusmevichientong P, Shen ZJM, Shmoys DB (2010) Dynamic assortment optimization with a multinomial
logit choice model and capacity constraint. Operations research 58(6):1666–1680.

Russell SJ (2010) Artificial intelligence a modern approach (Pearson Education, Inc.).

Russo D (2021) A note on the equivalence of upper confidence bounds and gittins indices for patient agents.
Operations Research 69(1):273–278.
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Appendices

A. Pseudo-algorithms

Algorithm 1 Static Model/Softmax Non-Bayesian

Tune γ, Infer µ0

for t ∈ {1, . . . , T} do
for i ∈ {1, . . . , It} do

Compute R̂t,i = µTt ·Xi

Ỹt,i ∼ p̃t,i = Softmaxγ(R̂t,i) cf. Equation (2a)
end for

end for

Algorithm 2 Greedy Model/ Softmax Bayesian

Set γ = 1, Infer µ0

for t ∈ {1, . . . , T} do
for i ∈ {1, . . . , It)} do

Compute R̂t,i = µTt ·Xi

Ỹt,i ∼ p̃t,i = Softmaxγ(R̂t,i) cf. Equation (2a)
end for
Observe (yt, ryt,t), Update((µt,Σt) cf. Equation (2b)

end for

Algorithm 3 Softmax UCB (Auer 2002)

Set γ = 1, Infer µ0,Σ
θ
0, σε, βUCB

for t ∈ {1, . . . , T} do
for i ∈ {1, . . . , It} do

Compute R̂t,i = µTt ·Xi + βUCB(XT
i · Σt ·Xi) + σ2

ε

Ỹt,i ∼ p̃t,i = Softmaxγ(R̂t,i)) cf. Equation (2a)
end for
Observe (yt, ryt,t), Update((µt,Σt) cf. Equation (2b)

end for
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Algorithm 4 Softmax Gittins Index, GI (Chick and Gans 2009)

Set γ = 1, γGI = 0.99, Infer µ0,Σ
θ
0, σε

for t ∈ {1, . . . , T} do
for i ∈ {1, . . . , It)} do

Compute R̂t,i = µTt ·Xi + σε · b̃
(
−XT

i ·Σt·Xi
σ2
ε ∗logγGI

)√
−logγGI

Ỹt,i ∼ p̃t,i = Softmaxγ(R̂t,i) cf. Equation (2a)
end for
Observe (yt, ryt,t), Update((µt,Σt) cf. Equation (2b)

end for

Algorithm 5 Thompson Sampling

Infer µ0,Σ
θ
0, σε

for t ∈ {1, . . . , T} do
for i ∈ {1, . . . , It)} do

for k ∈ {1, . . . , n} do
θ̃t ∼ N (µt,Σt)
Compute R̄t,i,k = θ̃Tt ·Xi + σ2

ε

ỹt = argmaxi∈{1,...,It} R̃t,i,k

Ỹt,i,k = 1ỹt=i
end for
Ỹt,i ∼ p̃t,i = 1

n

∑n
k=1 Ỹt,i,k cf. Equation (2a)

end for
Observe (yt, ryt,t), Update((µt,Σt) cf. Equation (2b)

end for
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B. Skewness of Category Market Share

We present summary statistics for the variable logMarketShare based on periods of 1000 launches
and compare these statistics to the descriptive statistics for log MarketShare across the en-
tire dataset. Each row in the table represents a specific period, where “ms” represents mar-
ket share and e.g., “ms2000” refers to the market share within the period of 1,001 to 2,000
launches. Additionally, we include the kurtosis2 value, which is calculated as follows: kurtosis2 =
3×(mean−median)/stdev. A kurtosis value between 0.5 and 1 indicates slightly positive skewness,
while a value greater than 1 suggests extreme skewness. From the provided statistics, we observe
that the log MarketShare variable exhibits a slightly positively skewed distribution.

Table 9: Kurtosis of Market Share variable

mean stdev min pc25 median pc75 max kurtosis2

Overall Market Share 0.0120 0.0302 0.0000 0.0009 0.0028 0.0097 1.0000 0.9108
ms1000 0.0843 0.1910 0.0000 0.0043 0.0168 0.0595 1.0000 1.0613
ms2000 0.0426 0.0507 0.0000 0.0059 0.0200 0.0672 0.2980 1.3382
ms3000 0.0365 0.0410 0.0000 0.0037 0.0140 0.0618 0.1490 1.6462
ms4000 0.0257 0.0354 0.0000 0.0033 0.0074 0.0419 0.1471 1.5504
ms5000 0.0178 0.0283 0.0000 0.0020 0.0061 0.0145 0.1438 1.2464
ms6000 0.0144 0.0232 0.0000 0.0015 0.0048 0.0141 0.1208 1.2414
ms7000 0.0115 0.0195 0.0000 0.0010 0.0029 0.0109 0.1076 1.3198
ms8000 0.0095 0.0169 0.0000 0.0009 0.0026 0.0093 0.1030 1.2359
ms9000 0.0085 0.0153 0.0000 0.0009 0.0024 0.0085 0.1013 1.2086
ms10000 0.0078 0.0142 0.0000 0.0008 0.0022 0.0072 0.0973 1.1975
ms11000 0.0074 0.0134 0.0000 0.0007 0.0021 0.0071 0.0928 1.1888
ms12000 0.0068 0.0127 0.0000 0.0006 0.0019 0.0063 0.0884 1.1688
ms13000 0.0067 0.0123 0.0000 0.0006 0.0020 0.0059 0.0836 1.1378

C. Data Distribution Visualization and Correlation Matrix

Figure 13 provides a visualization of the variables’ distribution in the diagonal, their correlation
matrix in the upper diagonal, boxplots, and the histogram for the dummy variables in the last two
columns, respectively. The x-axis on the upper diagonal provides the relative frequency for every
density plot on the diagonal. The distribution for log MarketShare has a long tail on its right,
highlighting that a large number of categories have a low market share value. Specifically, about
600, 000 observables have less than 10% market share.

The variable log Price is skewed to the right and has several modes. Thus, many categories
seem to belong to specific bins associating a category with a price level. The distribution for
log V olume has a fatter tail on the right, meaning that many categories have a very low level of sales.
Regarding variables’ correlation, unsurprisingly, log Price and log V olume are highly correlated
with Revenue. The relationship between all variables is positive, but for the relationship between
log MarketShare and log V olume. Hence, there is a positive association between past experience
and past price as well as past revenue. However, there is a tiny negative linear relationship between
past experience and past sale.
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In this work, the relationship investigated is between past experience and future performance for
existing categories, and to what extent past experience can be transferred to new category variants.
The barplot for the dummy Novel shows 12, 861 observations for the value Novel. However,
only 150 of them are selected, as observed on the right-hand side of the cell (Novel, Selected),
representing the number of categories in our dataset. Finally, boxplots show that selected categories
either have a very high or very low market share, and there is no difference in mean past performance
between selected and not selected categories.

Figure 9: Visualization of data distribution and correlation matrix
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D. Robustness Test Results

D.1 Longer training Samples, 1000 periods

In-Sample Results. We redid the estimation of our main model displayed in Table 5 over 1000
samples. The results of this estimation are presented in Table 10. Similar to the findings from the
inference with 350 samples, the UCB model exhibits a better fit on the training dataset compared
to the other models. It is followed by the Greedy model. In all models, the parameters for
log MarketShare are consistently strong and positive. However, the confidence interval for UCB
is quite large, indicating that the prior attributed to experience is uncertain. Interestingly, none
of the models show a premium associated with category novelty, which is surprising, especially for
an active learning policy like UCB. Additionally, the exploration bonus is very low, with a value of
βUCB = 0.02. This suggests that experimentation occurs over short horizons, and capturing this
behavior becomes challenging over longer timeframes. This finding is supported by the close fit
values of the UCB and Greedy models.

Table 10: Inference results. Training sample includes product launches in periods 1-1000.

Model 0 Model 1 Model 2 Model 3 Model 4 Model 5

MNL Softmax Softmax Softmax Softmax Thompson
Non-Bayesian Greedy UCB GI Sampling

log MarketShare 2.34 2.33 5 4.84 5 4.91
0.18 [2.33, 2.33] [-10.31, 19.62] [-29.29, 37.77] [3.40, 6.61] [2.66, 7.31]

log Volume -0.04 -0.04 -2.23 -3.8 -0.74 2.35
0.06 [-0.04, -0.04] [-5.36, 0.96] [-7.60, 0.21] [-2.87, 1.54] [-32.03, 37.84]

log Price -0.08 -0.08 -0.76 -1.17 -3.92 -0.11
0.05 [-0.08, -0.08] [-1.91, 0.29] [-1.74, -0.55] [-31.09, 21.65] [-1.04, 0.90]

Novel -2.01 -2.01 -4.37 -4.86 -4.08 -3.9
0.36 [-2.01, -2.01] [-17.15, 7.90] [-5.85, -3.86] [-6.66, -1.50] [-7.93, 0.19]

Noise (σε) 0 18.86 14.46 6.74 17.36
Bonus (βUCB) 0 0 0.02 0 0

Logtest 418.14
McFadden pseudo-R2 0.03
Wald Test 283.65
Log-likelihood -1990.57 -1990.57 -1779.89 -1770.18 -1955.66 -1928.01
AIC 3989.13 3567.78 3548.36 3919.32 3864.02
Observations 11844 11844 11844 11844 11844 11844
Simulations per period 1,000

Out-of-Sample Results. Figure 10 displays the predictions on the evaluation set spanning
from period 1001 to 12,861. It is evident that the UCB and Greedy models exhibit complete overlap
in their predictions. In contrast, the Gittins Index model demonstrates a significant performance
advantage over the Static model, indicating that it requires a larger sample size to effectively
learn from the available data. Additionally, the predictions from the Thompson Sampling model
consistently underperform compared to both the Greedy and UCB models, and its performance
continues to deteriorate to the extent that it performs worse than the Gittins Index and Static
models.
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Figure 10: Out of Sample Performance with Revenue as product performance variable. 1000
training samples.
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D.2 Other Performance Variable: Price and Volume

Inference with Current Volume. We conducted model estimation using category volume (unit
sold) as the performance variable. The results of this estimation are presented in Table 11. The
parameter estimates and goodness-of-fit values obtained in this analysis are comparable to those
reported in Table 5.

Figure 11 further illustrates the superiority of the Greedy model over the UCB model on the
evaluation set. However, in this specific specification, the Static model exhibits a performance that
is closely comparable to the UCB model.

Inference with Current Price. We also attempt to confirm the validity of our findings by
using log Price as the performance variable. In this case, the Greedy model demonstrates a superior
fit compared to the other models. Furthermore, the parameters associated with log MarketShare
are consistently positive, and the confidence intervals for these parameter estimates are significant.
These results indicate that when aiming to introduce higher-priced products, there is limited scope
for experimentation, and the Greedy algorithm is likely to be the best fit for the observed data.

Compared to the in-sample results with price as performance measure, the out-of-sample analy-
sis yields even more interesting findings. The Static model produces predictions that are as accurate
as those of the Greedy model and even outperforms the UCB model, as shown in Table 13 with
comparable WAIC, pWAIC, and Akaike Weight values. This result is further supported by Figure
12. It suggests that when the performance metric revolves around increasing the category price,
a Greedy model is just as effective as a model that follows previous launch patterns by focusing
on categories with higher prices. However, our in-sample analysis, as shown in Table ??, indicates
that the fit of the UCB model is superior to the fit of this specification with log Price as the
performance variable. Nonetheless, the Greedy model demonstrates superior performance across
all alternative specifications and does not exhibit overfitting.
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Figure 11: Out of Sample Performance with Volume as product performance variable.
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Figure 12: Out of Sample Performance with Price as product performance variable.
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Table 11: Inference results with Volume as performance variable. Training sample decision period
1-350.

Model 0 Model 1 Model 2 Model 3 Model 4 Model 5

MNL Softmax Softmax Softmax Softmax Thompson
Non-Bayesian Greedy UCB GI Sampling

log MarketShare 3.17 3.17 4.82 0.31 4.5 4.55
(0.29) [3.17, 3.17] [4.08, 5.53] [-32.05, 31.54] [3.07, 5.95] [1.86, 7.43]

log Volume 0.29 0.29 0.01 -0.54 0.25 0.54
(0.15) [0.29, 0.29] [-1.72, 1.78] [-2.25, 1.27] [-0.38, 0.92] [0.48, 0.61]

log Price 0.7 0.7 2.17 0.47 0.07 3.66
(0.17) [0.70, 0.70] [-34.24, 35.44] [-5.99, 7.37] [-15.69, 14.90] [-3.48, 11.35]

Novel 2.74 2.74 -4.15 2.34 -2.77 -3.96
(1.15) [2.74, 2.74] [-37.60, 27.95] [-16.86, 21.65] [-10.31, 4.77] [-14.01, 6.27]

Noise (σε) 18.5 15.55 18.59 18.09
Bonus (βUCB) 0.19

Logtest 458.5
McFadden pseudo-R2 0.3
Wald Test 215.28
Log-likelihood -186.43 -186.43 -182.4 -174.97 -186.81 -187.68
Observations 1290 1290 1290 1290 1290 1290
Simulations per period 1,000

D.3 Breakpoints

We plot the correlation between the yearly average predictions for product categories and LEGO’s
average choices in Figure 13. We add horizontal lines for correlation values at 0.5 and 0.25. This
allows us to see that the Greedy model has a higher correlation than the competitive models for
several years until 1978, where it falls below the 0.5 line. We use this year to undertake the
breakpoint analysis. Even after 1978, the correlation between the Greedy model and LEGO’s
choices remains above the value of 0.25, unlike the remaining competing policies. Interestingly,
1977 and 1979 are the years that Kjeld Kirk Kristiansen, the grandson of LEGO’s founder, joined
the company and took over as CEO respectively.

D.4 Parameter recovery

To ensure that data generated with a specific model can also be reverse-engineered to retrieve the
same model, we attempt to recover parameters of simulated model by undertaking the following
optimization exercise:

max
µ1
Σ1

σ2
ε

T∑
t=1

ln
(
p(ỹM

′
t |M,X·t, µt,Σt, σ

2
ε )
)

(8)

where ỹM
′

t is simulated with model M ′, but is conditioned on another model M from which the
inference is undertaken. We attempt to confirm that the maximum likelihood is obtained when
M ′ = M . Table 14 presents the results of recovering parameters from simulated data obtained
with the Static model. We find that the Greedy model is most likely to have generated this data,
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Table 12: Inference results with Price as Performance variable. Training sample decision period
1-350.

Model 0 Model 1 Model 2 Model 3 Model 4 Model 5

MNL Softmax Softmax Softmax Softmax Thompson
Non-Bayesian Greedy UCB GI Sampling

log MarketShare 3.17 3.17 4.37 4.8 5 4.87
(0.29) [3.17, 3.17] [3.46, 5.25] [4.52, 5.07] [4.90, 5.09] [0.01, 10.06]

log Volume 0.29 0.29 0.18 -0.19 -2.32 0.44
(0.15) [0.29, 0.29] [-3.19, 3.62] [-8.66, 8.77] [-10.15, 6.05] [-0.16, 1.06]

log Price 0.7 0.7 0.52 -0.15 -4.17 4.41
(0.17) [0.70, 0.70] [-17.81, 17.26] [-19.80, 20.84] [-27.43, 17.72] [-19.18, 29.83]

Novel 2.74 2.74 -1.73 -4.39 -3.76 -3.04
(1.15) [2.74, 2.74] [-28.13, 23.62] [-38.24, 29.66] [-6.05, -1.46] [-11.31, 5.37]

Noise (σε) 18.88 18.77 2.26 18.18
Bonus (βUCB) 0.05

Logtest 458.5
McFadden pseudo-R2 0.3
Wald Test 215.28
Log-likelihood -186.43 -186.43 -182.44 -183.22 -186.09 -189.44
Observations 1290 1290 1290 1290 1290 1290
Simulations per period 1,000

Table 13: Watanabe Information Criteria (WAIC) with Price as Performance.

Model 1 Model 2 Model 3 Model 4 Model 5

Non-Bayesian Softmax Softmax Softmax Thompson
Softmax Greedy UCB GI Sampling

WAIC 154,764 146,397 204,923 1,129,073 834,463
Mean period WAIC 12.37 11.70 16.38 90.25 66.70

dWAIC 0.67 0.00 4.68 78.55 55.00
Standard Error 0.03 0.04 0.03 0.02 0.04
Akaike Weight 39.5% 55.2% 5.3% 0% 0%

pWAIC 51.59 45.62 120.64 85.10 382.24

followed by the Thompson Sampling and Gittins Index models, respectively. The Static model
performs worse compared to these models.

Firstly, the Greedy model exhibits a remarkable capability to accurately represent data gen-
erated by other policies. This finding can be attributed to the existence of regime changes in
behavioral models across different time horizons, where the Greedy models consistently capture a
behavior that persists over long periods. Consequently, relying solely on inference results is insuf-
ficient to draw conclusions about whether data generated by an agent originates from this specific
policy. However, it is evident from Figure 13 that the Greedy model’s predictions exhibit the high-
est correlation with LEGO’s choices over a significantly long period. This serves as further evidence
that our results are valid and robust.

Secondly, the high likelihood values for Thompson Sampling and the Gittins Index demonstrate
that these policies are more adept at matching data generated by another bandit policy rather than
data generated by a non-bandit policy.
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Figure 13: Correlation between LEGO average choices and predictions from Model 0 to 5.
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Table 15 and Table 16 display the outcomes of parameter recovery using launch patterns sim-
ulated from the Greedy and UCB models, respectively. These results corroborate the findings
from Table 14, indicating that the Greedy model consistently outperforms the other models. How-
ever, it is noteworthy that the fit values and parameter estimates remain identical for all models
incorporating a Softmax layer (Model 1 to Model 4).

Table 14: Parameter recovery from Static Model. Training sample decision period 1-350.

Model 1 Model 2 Model 3 Model 4 Model 5

Softmax Softmax Softmax Softmax Thompson
Non-Bayesian Greedy UCB GI Sampling

log MarketShare -5 -3.29 -4.9 -4.06 -4.98
[-5.00, -5.00] [-37.40, 29.28] [-7.69, -2.21] [-26.06, 18.19] [-5.76, -4.14]

log Volume 0.62 4.36 4.93 2.64 0.2
[0.62, 0.62] [3.15, 5.60] [-1.38, 11.60] [0.56, 4.88] [-0.31, 0.73]

log Price 2.55 4.91 2.34 4.42 -2.96
[2.55, 2.55] [4.35, 5.43] [2.07, 2.62] [3.16, 5.61] [-23.28, 18.93]

Novel -5 -3.74 -4.53 -4.16 -1.48
[-5.00, -5.00] [-20.60, 12.45] [-35.20, 26.31] [-5.67, -2.64] [-4.87, 1.97]

Noise (σε) 0 18.97 18.93 18.99 18.3
Bonus (βUCB) 0 0 0.01 0 0

Log-likelihood -61.02 -11.55 -60.46 -39.57 -20.46
Observations 1290 1290 1290 1290 1290

D.5 Other robustness checks

Alternative Ground Truth. We analyze the predictions on the evaluation set data by simulating
policies with a prior other than the UCB model, which had the maximum likelihood in our main
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Table 15: Parameter recovery from Greedy Model. Training sample decision period 1-350.

Model 1 Model 2 Model 3 Model 4 Model 5

Softmax Softmax Softmax Softmax Thompson
Non-Bayesian Greedy UCB GI Sampling

log MarketShare -5 -3.29 -4.9 -4.06 -4.85
[-5.00, -5.00] [-37.40, 29.28] [-7.69, -2.21] [-26.06, 18.19] [-5.53, -4.13]

log Volume 0.62 4.36 4.93 2.64 0.47
[0.62, 0.62] [3.15, 5.60] [-1.38, 11.60] [0.56, 4.88] [0.02, 0.93]

log Price 2.55 4.91 2.34 4.42 0.75
[2.55, 2.55] [4.35, 5.43] [2.07, 2.62] [3.16, 5.61] [-29.72, 33.59]

Novel -5 -3.74 -4.53 -4.16 -4.55
[-5.00, -5.00] [-20.60, 12.45] [-35.20, 26.31] [-5.67, -2.64] [-7.09, -1.97]

Noise (σε) 0 18.97 18.93 18.99 18.55
Bonus (βUCB) 0.01

Log-likelihood -61.02 -11.55 -60.46 -39.57 -20.97
Observations 1290 1290 1290 1290 1290

Table 16: Parameter recovery from UCB Model. Training sample decision period 1-350.

Model 1 Model 2 Model 3 Model 4 Model 5

Softmax Softmax Softmax Softmax Thompson
Non-Bayesian Greedy UCB GI Sampling

log MarketShare -5 -3.29 -4.9 -4.06 -4.99
[-5.00, -5.00] [-37.40, 29.28] [-7.69, -2.21] [-26.06, 18.19] [-6.03, -3.87]

log Volume 0.62 4.36 4.93 2.64 4.21
[0.62, 0.62] [3.15, 5.60] [-1.38, 11.60] [0.56, 4.88] [-1.36, 9.97]

log Price 2.55 4.91 2.34 4.42 1.98
[2.55, 2.55] [4.35, 5.43] [2.07, 2.62] [3.16, 5.61] [0.96, 3.07]

Novel -5 -3.74 -4.53 -4.16 -3.21
[-5.00, -5.00] [-20.60, 12.45] [-35.20, 26.31] [-5.67, -2.64] [-6.57, 0.22]

Noise (σε) 0 18.97 18.93 18.99 18.72
Bonus (βUCB) 0.01

Log-likelihood -61.02 -11.55 -60.46 -39.57 -34.51
Observations 1290 1290 1290 1290 1290

estimation. Specifically, we use the Greedy and Static models sequentially. Figure 14 illustrates
that when using the prior from the Greedy model, the predictions from both the Greedy and
UCB models completely overlap. This finding indicates that both the UCB and Greedy models
outperform other competing models when it comes to predicting unseen data.

Additionally, Figure 15 illustrates that when considering the Static model as the ground truth,
it is evident that the Static model outperforms the predictions of the competing models. On the
one hand, the predictions of the Greedy, UCB, and Gittins Index models show complete overlap.
This suggests that the prior information from the Static model does not provide strong guidance
for these models to learn unique characteristics from the data. On the other hand, the predictions
of the Thompson Sampling model deteriorate from the beginning and remain consistently poor.
This highlights the sensitivity of these policies to the underlying ground truth, particularly in the
case of Thompson Sampling.

Inference with trends covariates. Table 17 displays the results of the estimation with a
curvilinear effect of years. It is observed that only the Greedy model demonstrates improvement,
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Figure 14: Out of Sample Performance with the Greedy model as the ground truth

Training 350 periods
0

1970 1980 1990 2000 2010 2020

−10

−20

Model Name Static Greedy UCB GI TS

Year

C
u
m

u
la

ti
ve

 L
o
g
−

lik
e
lih

o
o
d

Figure 15: Out of Sample Performance with the Static model as the ground truth
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indicating a higher likelihood of launching an increasing number of products in categories as the
years progress. Conversely, the fit for the remaining policies deteriorates.

Table 17: Curvilinear trends, revenue as performance. Training sample decision periods 1-350.

Model 0 Model 1 Model 2 Model 3 Model 4 Model 5

MNL Softmax Softmax Softmax Softmax Thompson
Non-Bayesian Greedy UCB GI Sampling

log MarketShare 3.17 3.18 4.99 -2.94 4.94 4.87
(0.29) [3.18, 3.18] [3.18, 6.72] [-27.70, 21.67] [4.29, 5.61] [0.53, 9.34]

log Volume 0.29 0.30 -0.04 -2.03 0.27 0.32
(0.15) [0.30, 0.30] [-2.57, 2.46] [-4.08, 0.03] [-0.27, 0.78] [-0.04, 0.70]

log Price 0.7 0.7 0.53 1.4 4.07 4.8
(0.17) [0.70, 0.70] [-18.36, 19.94] [-1.56, 4.33] [-7.81, 15.86] [-29.16, 34.97]

Novel 2.74 2.71 -1.25 2.67 -1.73 -2.88
(1.15) [2.71, 2.71] [-14.92, 13.25] [-4.61, 9.94] [-7.00, 3.81] [-9.14, 3.22]

log Year 0.55 2.63 2.16 -3.81 -0.52
0 [0.55, 0.55] [-7.62, 12.96] [-3.03, 7.54] [-22.61, 15.60] [-9.27, 8.11]

(log Y ear)2 -4.17 4.95 -2.41 0.94 -2.58
0 [-4.17, -4.17] [-1.77, 11.42] [-4.89, 0.04] [-14.79, 17.23] [-20.27, 16.42]

Noise (σε) 18.83 4.63 14.42 17.34
Bonus (βUCB) 0.51

Logtest 458.5
McFadden pseudo-R2 0.3
Wald Test 215.28
Log-likelihood -186.43 -186.43 -181.66 -178.32 -187.37 -188.95
Observations 1290 1290 1290 1290 1290 1290

Inference with forgetting rate. Table 18 demonstrates that incorporating a forgetting rate
does not enhance predictions. Additionally, the UCB and Gittins Index models fail to converge.
These models already inflate parameter variance through their exploration bonus, and introducing
a forgetting rate for older observations further amplifies the variance, leading to an explosion in
variance.

Inference with only category fixed-effect. Table 19 provides insights into the explanatory
power of only category fixed-effects. It reveals that Thompson Sampling exhibits a better fit than
the other models. The Greedy model’s fit improves compared to our main model, indicating that
category heterogeneity alone can account for category launches. However, when shared covariates
are introduced, the fit of the Greedy model deteriorates, likely due to the path dependence of these
covariates. Additionally, the Greedy, UCB, and Gittins Index models demonstrate comparable
model fit. This suggests that without shared features, category identity alone does not provide
sufficient information to construct a category launch strategy. Moreover, the Gittins Index exhibits
a very low noise value, second only to Thompson Sampling. This suggests that in the absence
of problem structure, such as that introduced by shared covariates, these policies offer better
explanations for the launch pattern, though their sampling behavior cannot be differentiated as
indicated earlier.

Inference with only category fixed-effect and novelty dummy. Table 20 presents the
results of including category novelty in addition to category fixed effects. It can be observed
that classic bandit policies such as Thompson Sampling, Gittins Index, and UCB exhibit better
explanatory power compared to the other models. These policies provide a stronger fit to the data
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Table 18: Inference results with a forgetting rate factor. Training set: periods 1-350.

Model 1 Model 2 Model 3 Model 4 Model 5

Softmax Softmax Softmax Softmax Thompson
Non-Bayesian Greedy UCB GI Sampling

log MarketShare 3.18 4.75 0.62 0.55 4.77
[3.18, 3.18] [4.59, 4.92] [-26.59, 26.89] [-9.83, 11.05] [1.52, 8.24]

log Volume 0.3 -0.02 -3.12 1.02 1.21
[0.30, 0.30] [-14.63, 14.88] [-11.86, 6.11] [-23.58, 27.31] [0.37, 2.07]

log Price 0.7 0.11 -0.62 -0.7 3.06
[0.70, 0.70] [-0.73, 0.87] [-35.77, 36.93] [-13.66, 11.49] [-12.08, 19.37]

Novel 2.75 -1.6 3.12 -0.39 -1.72
[2.75, 2.75] [-6.64, 3.23] [-18.06, 24.44] [-29.36, 28.65] [-4.54, 1.16]

Noise (σε) 0 18.94 14.25 11.01 18.71
Bonus (βUCB) 0.13

Log-likelihood -186.43 -187.74 -578.22 -9027.88 -214.53
Observations 1290 1290 1290 1290 1290

Table 19: Inference results with only Category fixed effect. Training sample decision period 1-350.

Model 1 Model 2 Model 3 Model 4 Model 5

Softmax Softmax Softmax Softmax Thompson
Non-Bayesian Greedy UCB GI Sampling

Noise (σε) 18.08 17.50 0.93 8.93
Bonus (βUCB) 0

Log-likelihood -415.67 -181.22 -181.22 -181.28 -178.50
Observations 1290 1290 1290 1290 1290
Simulations per period 1,000

when considering both category fixed effects and category novelty.
All policies have slightly better performance compared to the model without Novelty Dummy.
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Figure 16: Out of Sample Performance with Category fixed effect only as covariate.
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Figure 17: Out of Sample Performance with Category fixed effect and Novelty only as covariate.
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Table 20: Inference results with only Category fixed effect and Novelty. Training sample decision
period 1-350.

Model 1 Model 2 Model 3 Model 4 Model 5

Softmax Softmax Softmax Softmax Thompson
Non-Bayesian Greedy UCB GI Sampling

Novel -3.34 -2.37 -3.89 -4.86 -4.84
[-3.34, -3.34] [-41.84, 32.94] [-32.27, 25.40] [-16.14, 7.20] [-35.58, 22.44]

Noise (σε) 18.87 17.67 10.37 10.32
Bonus (βUCB) 0.31

Log-likelihood -294.60 -179.11 - 178.87 -178.76 -176.64
Observations 1290 1290 1290 1290 1290
Simulations per period 1,000

E. Additional Analysis

E.1 Inference with random launch within year

Table 21 showcases the results of an analysis where category launches are shuffled within the same
year due to the lack of precise launch dates. The fit values have improved compared to our main
specifications. However, our results and conclusions remain consistent. The UCB and Greedy
models exhibit superior in-sample performance. For the UCB model, the prior information based
on past experience and novelty is diffuse. Similarly, for the Greedy model, the prior value for
novelty is also diffuse.

Table 21: Inference results with Product launched schuffled within year. Training set: periods
1-350.

Model 0 Model 1 Model 2 Model 3 Model 4 Model 5

MNL Softmax Softmax Softmax Softmax Thompson
Non-Bayesian Greedy UCB GI Sampling

log MarketShare 2.79 2.79 3.84 1.96 4.99 4.95
0.3 [2.79, 2.79] [3.14, 4.50] [-12.93, 16.33] [4.53, 5.45] [4.27, 5.67]

log Volume 0.4 0.4 -2.61 -3.09 -1.55 -0.88
0.15 [0.40, 0.40] [-22.20, 17.37] [-4.70, -1.38] [-6.41, 3.66] [-5.80, 4.21]

log Price 0.7 0.7 4 -2.1 2.12 1.11
0.2 [0.70, 0.70] [-30.53, 35.54] [-34.63, 32.65] [-0.61, 4.69] [0.01, 2.30]

Novel 2.62 2.64 0.77 1.76 1.88 -4.81
1.14 [2.64, 2.64] [-9.27, 10.40] [-25.71, 29.38] [0.72, 3.04] [-13.95, 4.48]

Noise (σε) 0 18.49 3.05 3 16.29
Bonus (βUCB) 0 0 0.44 0 0

Logtest 463.93
McFadden pseudo-R2 0.3
Wald Test 210.77
Log-likelihood -181.92 -181.92 -175.13 -168.1 -176.84 -181.58
Observations 1282 1290 1290 1290 1290 1290
Simulations per period 1,000

48



E.2 Inference with retail sales revenue

Table 22 presents the results of an estimation using revenue generated from actual product sales
in the market. Our results and conclusions remain consistent and unchanged.

Table 22: Retail revenue as performance variable. Training sample decision periods 1-350.

Model 0 Model 1 Model 2 Model 3 Model 4 Model 5

MNL Softmax Softmax Softmax Softmax Thompson
Non-Bayesian Greedy UCB GI Sampling

log MarketShare 3.17 3.18 4.92 0.01 4.97 4.66
(0.29) [3.18, 3.18] [2.05, 7.66] [-32.59, 31.49] [2.85, 7.11] [-2.26, 12.05]

log Volume 0.29 0.29 0.05 -0.76 0.17 -2.24
(0.15) [0.29, 0.29] [-1.09, 1.21] [-3.39, 2.02] [-0.88, 1.28] [-28.57, 24.94]

log Price 0.7 0.7 4.54 1.32 -0.21 0.39
(0.17) [0.70, 0.70] [-10.44, 18.22] [-3.35, 6.32] [-6.57, 5.78] [0.10, 0.70]

Novel 2.74 2.73 -0.03 4.8 -3.19 -4.22
(1.15) [2.73, 2.73] [-19.99, 19.13] [-20.43, 30.19] [-10.08, 3.71] [-10.88, 2.56]

Noise (σε) 0 18.91 12.82 18.98 18.92
Bonus (βUCB) 0 0 0.23 0 0

Logtest 458.5
McFadden pseudo-R2 0.3
Wald Test 215.28
Log-likelihood -186.43 -186.43 -184.27 -179.54 -188.32 -185.52
Observations 1290 1290 1290 1290 1290 1290

E.3 Inference results with wholesale revenue

Table 22 displays the results of an estimation utilizing revenue derived from the inventory sitting
at the reseller for the last 6 months. It also provides results supporting our main findings.

Table 23: Wholesale revenue as performance variable. Training sample decision periods 1-350.

Model 0 Model 1 Model 2 Model 3 Model 4 Model 5

MNL Softmax Softmax Softmax Softmax Thompson
Non-Bayesian Greedy UCB GI Sampling

log MarketShare 3.17 3.18 4.99 0.56 4.66 4.6
(0.29) [3.18, 3.18] [4.57, 5.38] [-34.35, 34.26] [2.22, 7.12] [0.94, 8.52]

log Volume 0.29 0.29 0 -1.53 0.29 0.24
(0.15) [0.29, 0.29] [-2.05, 2.09] [-5.10, 2.26] [0.13, 0.47] [-0.30, 0.81]

log Price 0.7 0.7 2.08 0.71 0.47 0.34
(0.17) [0.70, 0.70] [-14.92, 17.62] [-5.86, 7.72] [-24.61, 24.07] [-17.17, 19.21]

Novel 2.74 2.73 -0.93 2.3 -0.66 -4.31
(1.15) [2.73, 2.73] [-23.25, 20.49] [-12.76, 17.45] [-6.81, 5.51] [-12.35, 3.87]

Noise (σε) 0 17.95 10.54 16.18 14.98
Bonus (βUCB) 0 0 0.19 0 0

Logtest 458.5
McFadden pseudo-R2 0.3
Wald Test 215.28
Log-likelihood -186.43 -186.43 -181.56 -176.61 -186.41 -186.71
Observations 1290 1290 1290 1290 1290 1290
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E.4 Category Fixed Effect Inheritance

Table 24 and 25 demonstrate how new categories inherit their mean and variance priors from
Category0. In period 290, the Universal Building Set (UBS) category is introduced, resulting in an
update to the values of both the Novel variable and Category 0 priors. The mean value increases
from 1.76 to 2.16, while the variance decreases from 6 to 5.66. Furthermore, the new UBS category
inherits these updated priors. In period 291, the Legoland category is launched and similarly
acquires the updated prior from Category0.

Table 24: Mean fixed effect inheritance from Category0 in period 290-292.

Period Novel Category0 System Samsonite Train UBS Legoland

289 4.6860 1.7693 0.5789 1.0437 1.8543
290 4.7088 2.1679 0.5789 1.0437 1.8543 2.1679
291 4.7018 2.0448 0.5789 1.0437 1.8543 2.1679 2.0448
292 4.7018 2.0448 0.8898 1.4578 2.9275 1.0384 2.0448

Table 25: Variance fixed effect inheritance from Category0 in period 290-292.

Period Novel Category0 System Samsonite Train UBS Legoland

289 4.4071 6.0073 6.4721 5.2885 4.5344
290 4.4056 5.6626 6.4721 5.2885 4.5344 5.6626
291 4.4047 5.4408 6.4721 5.2885 4.5344 5.6626 5.4408
292 4.4047 5.4408 6.4352 5.2079 3.8572 5.0763 5.4408
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