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Abstract

This paper develops a general equilibrium model to study the link between the amount
of capital invested in housing assets and the term structure of interest rates. In the model,
the production of housing assets is irreversible and housing assets can be used as collateral
for borrowing funds. Agents’ decisions about consumption and investments in housing and
non-housing assets generate a time-varying market price of risk that drives the dynamics of
the term structure. The calibration to U.S. data using the simulated method of moments
technique captures the dynamics of consumption, and the short- and long-term interest rates.
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1. Introduction

Consumers and firms generally use short-term debt to finance the purchase of computers

and most non-housing assets. Investments in computers represent a short-term investment

because computers are assets characterized by high depreciation rates and a relatively short

service life. In contrast, houses are usually financed with long-term debt. As opposed to

computers, houses represent long-term investments with low depreciation rates and a long

service life. Consequently, the aggregate amount of capital invested in non-housing assets,

K, and the aggregate amount invested in housing assets, H, should be related to the short-

and long-term interest rates.

In order to study this relationship, I develop a general equilibrium model in which the

term structure of interest rates is endogenously determined by the representative agent’s

decisions on consumption and investments in housing and non-housing assets. The model is

a fundamental extension of the Cox, Ingersoll, and Ross (CIR, 1985a and 1985b) model. As

in Hirshleifer (1972) and Diamond and Dybvig (1983), the model considers two production
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technologies: (i) a fully reversible technology that offers constant returns to scale, as in

the CIR model for the production of non-housing assets; and (ii) an irreversible technology

for the production of housing assets. I assume that capital is the only input used in both

production technologies. The assumption of perfect reversibility in non-housing capital and

irreversibility in housing capital is based on the large adjustment costs in the housing markets

and the unfeasibility to transform housing into non-housing assets.1

The model assumes an infinitely lived representative agent with preferences for non-

housing and housing consumption. At each period, the agent must reassess how much

capital to consume, how much capital to allocate to non-housing investments, and how

much capital to allocate to housing investments. I study the equilibrium implications of

these decisions on the endogenously generated term structure of interest rates. The ratio of

housing to non-housing assets in the economy, H/K, is the state variable of this problem. To

provide some insight into the key economic mechanism of the model, let us assume that the

economy experiences a sequence of negative shocks. As a result, the economy has too little

non-housing capital because the irreversibility constraint on long-term capital is binding.

Consequently, the volatility of consumption growth will rise and the interest rate will fall.

The model and supporting empirical calibration suggest that the agent demands a high

risk premium for holding housing assets for two reasons. First, the irreversibility of the

housing production technology prevents her from incorporating new information about the

economy over time. Therefore, undertaking housing investments requires her to give up

the option value of delaying the investment decision, such that the rate of return must be

high enough to compensate for that lost option value. Second, the agent is risk averse and

cares about future non-housing consumption. Therefore, although she has utility for housing

services, she dislikes the idea of owning “too much” housing and “not enough” non-housing

assets.

The model is calibrated using the simulated method of moments (SMM) technique with

1The appendix shows a discussion of adjustment costs in the housing markets.
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U.S. data from 1962 to 2016, and it provides estimates of consumption and the term struc-

ture of interest rates in terms of the ratio of housing to non-housing assets invested in the

economy, H/K. I use aggregated U.S. economic data for fixed assets (i.e., stocks of capital),

consumption and investments (i.e., flows of capital), and the term structure of interest rates.

I separate the fixed assets and the investment accounts into housing and non-housing ac-

counts. The model captures the first moments of consumption, and the short- and long-term

interest rates, while it underestimates the second moments. Moreover, the model provides

testable implications for consumption, and the short- and long-term interest rates. Empirical

tests show that a 0.10% higher value in the ratio of housing to non-housing assets in the

economy relates to a 0.57% (0.86%) lower value in the real (nominal) short-term interest

rate and a 0.60% (0.89%) lower value in the real (nominal) long-term interest rate.

This study makes two main contributions to the existing literature. First, the paper

focuses on a stylized general equilibrium model that endogenously determines consumption,

non-housing investments, housing investments, and the term structure of interest rates. The

model’s dynamics are driven by one state variable, which is the ratio of aggregate housing to

non-housing capital invested in the economy. This state variable is not imposed but found

in equilibrium from the structural model. In contrast to the reduced-form term-structure

models (see Constantinides. 1992; Due and Kan, 1996; Dai and Singleton, 2002; Duffee, 2002;

Ang and Piazzesi, 2003; and Lettau and Wachter, 2007), the model does not impose any

statistical structures on the market price of risk in the economy. The time-varying market

price of risk is solved endogenously. By endogenizing the market price of risk, the model

provides rich economic intuition concerning the channels through which non-housing and

housing investments and consumption jointly determine the dynamics of the term structure

of interest rates. Therefore, this model offers a useful framework for studying how changes

in interest rates affect real-estate investments and vice versa. This paper adds a theoretical

framework to the empirical literature that connects business-cycle variables to real-estate

investments, as in Iacoviello (2005), Davis and Heathcote (2005), Leamer (2007), and Del

3



Negro and Ortok (2007).

Second, I provide empirical tests to validate the model. Traditionally, equilibrium mod-

els of consumption have generally required high values for risk aversion to generate the

low interest rates and high excess returns that I find in the data. However, Bekaert, En-

gstrom, and Grenadier (2010), Wachter (2006), and Buraschi and Jiltov (2007) have devel-

oped consumption-based term-structure models that produce realistic moments when they

are calibrated to real data from both bond and stock markets. Their models are driven

by the concept of external habit persistence introduced in Campbell and Cochrane (1999),

which generates a time-varying market price of risk. More recently, Jermann (2013) and

Kung (2015) have developed production-based models of the term structure that capture

the dynamics that I observe in the data. However, their papers do not distinguish between

non-housing (short-term) investments and housing (long-term) investments.

Figures 1 and 2 suggest that the distinction between housing and non-housing capital

invested in the real economy is related to the dynamics of the term structure. Figure 1

compares the dynamics of the slope of the term structure to the ratio of aggregate housing

to non-housing assets, H/K.2 This comparison reveals that the slope of the term structure

is closely related to the H/K ratio. The economic intuition is as follows. If the slope of

the term structure is high, then the cost of capital for long-term investments relative to the

cost of capital for short-term investments is also high. In this case, long term investments,

such as investments in housing, become less attractive and the H/K ratio is low. Note that

both the slope of the term structure and the H/K ratio are endogenous variables that are

jointly determined equilibrium outcomes. Figure 2 shows that there is a link between the

H/K ratio and the short-term interest rate. If the short-term rate is low, then the cost of

capital for non-housing short-term investments is low and the capital allocated to this type

2To calculate H and K, I use data on fixed assets in the U.S. from the Bureau of Economic Analysis. I
separate the different fixed-asset accounts into accounts related to housing and non-housing. Let H and K
denote the accounts that aggregate all of these housing and non-housing accounts, respectively. Section 4
provides a detailed description of the data.
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of investment should be high.3 Note also that both the short-term interest rate and the H/K

ratio are endogenous variables.

[FIGURES 1 AND 2 HERE]

The remainder of the paper is organized as follows. Section 2 covers the model’s setup.

In Section 3, I discuss the model’s equilibrium and its economic implications, as well as func-

tional forms for the short-term interest rate, the optimal consumption policy, the stochastic

discount factor of the economy, and the rates horizons that determine the term structure at

different. In Section 4, I provide details about the data, develop the model calibration, and

show the empirical results. Finally, Section 5 concludes the paper.

2. The model

In this section, I set up the central planner’s problemthe need to determine the optimal

allocation of resources given the technological constraints. This problem is formally moti-

vated by a general equilibrium economy in a decentralized production economy as in Lucas

and Prescott (1970), and Cox, Ingersoll, and Ross (1985a).

2.1. The production side: Non-housing and housing production technologies

Assume that there are two types of assets in this economy: housing assets and non-

housing capital goods.4 Consider also that there are two production technologies to produce

these assets: an irreversible technology for producing housing assets, which exhibits constant

returns to scale, and a perfectly reversible technology for producing non-housing assets, which

3Furthermore, when there are positive shocks in the non-housing production technology, investors will
be willing to pay higher short-term interest rates because the returns on short-term investments increase
accordingly. This is consistent with the finding that production-based factors have explanatory power for
asset-price dynamics (see Cochrane, 1988; Jermann, 1998, 2013; and Tallarini, 2000).

4In this model, non-housing consumption goods are capital goods. In classical economic theories, capital
is one of the three traditional factors of production. The others are land and labor. Goods are viewed as
capital if: (i) they can be used in the production of other goods (they are a factor of production) and (ii)
they were produced (e.g., they are not natural resources, such as land and minerals). In the rest of the
paper, the concepts of non-housing capital and non-housing capital goods are used interchangeably.
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has constant returns to scale and instantaneously produces consumption goods. The only

input for production is non-housing capital.

Let Kt denote the amount of capital in the non-housing sector. This capital is available

for immediate consumption or investment at any time t. Changes in Kt from time t to time

t+dt arise from four sources. The first source is the return from the fraction xt of non-housing

capital Kt that is allocated to non-housing production. Let fK (Kt) denote the reversible

production function. For simplicity, let us assume that capital is the only factor of produc-

tion, and it presents constant returns to scale, such that fK (Kt) = Kt

(
µKdt+

√
σKdW

K
t

)
.

The second source is the return from the remaining fraction (1 − xt) that is allocated to

investments at the short-term risk free rate rt. The third source is consumption, Ctdt. The

fourth source is the capital that is invested in housing production at each period, Itdt. This

investment is irreversible, so It ≥ 0. Therefore, the stock of capital Kt evolves according to

the following process:

dKt = xtKt

(
µKdt+

√
σKdW

K
t

)
+ (1− xt)Ktrtdt− Ctdt− Itdt. (1)

Let Ht denote the amount of capital in the housing sector at any time t. Changes in Ht

from time t to time t+ dt arise from the returns from housing production. Let fH (Ht, I(t))

denote the irreversible housing production function. For simplicity, let us assume that (hous-

ing and non-housing) capital is the only factor of production and that it presents constant

returns to scale such that fH (Ht, It) = Ht

(
µHdt+

√
σHdWH,t

)
+ Itdt. As a result, the stock

of housing capital Ht evolves according to the following process:

dHt = Ht

(
µHdt+

√
σHdW

H
t

)
+ Itdt. (2)

Note that the capital accumulated in the housing sector is illiquid in the sense that the

agent is not able to transfer capital from the housing sector to the non-housing sector. Hence,

the agent faces a trade-o between investing in a reversible (liquid) technology that supplies a

consumption good and investing in an irreversible (illiquid) technology that supplies housing,
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which is a good that provides her with some utility Moreover, the following non-negativity

and irreversibility constraints apply for all t:

Kt > 0, Ct > 0, Ht > 0, and It ≥ 0. (3)

2.2. The demand side: The representative agent

The economy is populated by identical competitive households. Assume that this econ-

omy can be modeled as a single representative agent who maximizes her expected utility of

intertemporal consumption over non-housing and housing capital goods, has time-separable

utility U(Ct, Ht), and a patience rate parameter given by ρ. In each period, the agent must

decide: (i) how much capital stock Ct she consumes, (ii) the fraction xt of capital stock that

she allocates to non-housing investments, and (iii) how much capital stock It she allocates

to housing investments. Consequently, the agent solves the following problem:

max
Ct,xt,It

{
E0

[∫ ∞
0

e−ρtU(Ct, Ht)dt

]}
(4)

such that the conditions in equations (1), (2), and (3) hold. In equation (4), E0 denotes the

expectation operator.

Finally, the agent faces a collateral constraint. She can borrow up to a fraction of the value

of the housing stock defined by a constant loan-to-value ratio, LTV , with 0 < LTV < 1.

The value of housing stock is the amount of housing, Ht, times the shadow price of the

housing stock, Pt.
5 The collateral constraint is given by the following inequality:

LTV HtPt ≥ (xt − 1)Kt, (5)

which states that a proportion, LTV , of the housing value that she owns, HtPt, must be

greater than the amount that she borrows, (xt − 1)Kt. Note that xt can be greater than 1.

5The shadow price of the housing stock is equivalent to Tobin’s q and is given by the ratio of the market
value of an additional unit of housing stock to its replacement cost. Therefore, it has a value of 1 whenever
there is an investment in housing.
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Therefore, the amount that she holds in the risk-free asset, (1 − xt)Kt, could be negative,

and it is equivalent to borrowing or holding debt.6

3. Equilibrium

This section studies the equilibrium of the representative agent problem described by

equations (1)-(5). Specifically, I focus on the term structure of this economy provided by

the equilibrium of the model. I examine the first-order conditions (FOCs) and provide the

economic intuition behind the model.

3.1. Preliminary implications in equilibrium

Under the setup of the economy described in Section 1, a competitive equilibrium with

dynamically complete markets is a set of processes {C∗t , x∗t , K∗t , H∗t , I∗t , rt,Mt,s} such that the

following statements hold:

1. Given rt and the stochastic discount factor (SDF) of the economy, Mt,s, the set

{C∗t , xt, I∗t } solves the representative household’s problem defined in equation (4).

2. Given C∗t , x∗t , I
∗
t , and the initial amounts of non-housing and housing capital goods in

the economy (K0 and H0, respectively), the amounts of non-housing capital, K∗t , and

housing capital, H∗t , solve the budget constraints in equations (1) and (2).

3. Markets clear. Therefore the clearing condition x∗t = 1 holds at each time t.7

4. The stochastic process for rt is such that M∗
t,s is the unique SDF of this economy, and

the following equation holds for each time t and s, with s > t: 1
1+rt

= limdt→0Et [Mt−dt,t].

The following lemma presents the existence of an equilibrium that satisfies the definition

of competitive equilibrium above:

6Note that the cost of borrowing is equal to the risk-free rate, rt. In other words, the agent may borrow
and lend at the same rate.

7I also study the case of an open economy experiencing positive inflow from outside (e.g., foreign lenders
exist). In this case, the representative agent of the economy can borrow in equilibrium, so that xt can be
greater than 1.

8



Lemma 1. A competitive equilibrium with dynamically complete markets exists in which:

(i) the set of processes {K∗t , H∗t , C∗t , I∗t } is determined as the solution of the central plan-

ner’s problem in equations (1)-(4); (ii) the optimal portfolio of the representative agent is

determined by xt = 1; and (iii) the SDF of this economy is given by Mt,s = e−ρ(s−t)UC(C∗s ,H
∗
s )

UC(C∗t ,H
∗
t )

.

The first part of lemma 1 is based on Anderson and Raimondos (2008) findings, which

provide conditions for ensuring that an equilibrium is dynamically complete. The second

part states the market-clearing condition in equilibrium.8 The third part remarks that the

SDF of this economy presents the standard form of the SDF of classic consumption-based

models. However, the dynamics of the SDF are different from the classic models, as the level

and volatility of consumption depend on both Kt and Ht in this model.9

3.2. The value function and the Hamilton-Jacobi-Bellman equation

The model described by equations (1)-(4) leads to a two-state variable problem. Let J

denote the value function for this problem:

J = J(Kt, Ht, t) = max
Ct,xt,It

{
E0

[∫ ∞
0

e−ρtU(Ct, Ht)dt

]}
. (6)

Note that this value function depends on both the non-housing capital account, Kt, and

the housing capital account, Ht. The state space of the problem {Kt, Ht} is divided into two

regions: a no-investment region and an investment region.10 When the pair {Kt, Ht} is inside

the no-investment region, the agent consumes, but makes no new housing investments. When

the pair {Kt, Ht} is inside the investment region, the agent consumes and makes housing

investments. Let JK and JH denote the first derivative of the value function with respect to

Kt and Ht, respectively. The inequality JK > JH holds in the no-investment region, while

8If we assume that the net supply of risk-free bonds is at zero, then the equilibrium will require setting
the interest rates at a level at which the representative agent will choose not to invest in them. Hence,
xt = 1.

9Note that the dynamics of consumption in most consumption-based models are imposed or are not
governed by at least two processes that depend on endogenous variables.

10See Kogan (2001, 2004), Mamaysky (2001), and Tuzel (2010) for similar models with two sectors and
irreversible investments.
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the equality JK = JH holds in the investment region.

The solution of the agent’s optimal control problem, which is defined above, satisfies the

following Hamilton-Jacobi-Bellman (HJB) equation:

max

{
sup

Ct,xt,It

{
E0

[
d̂J∗ + e−ρtU(Ct, Ht)dt

]}
︸ ︷︷ ︸

No−investment region

, JK − JH︸ ︷︷ ︸
Investment
region

}
= 0 (7)

where d̂J∗ is represented by the following expression:

d̂J∗ = Jt + [xtµKKt + (1− xt)Ktrt − ct − It] JK +
1

2

[
x2
tσKK

2
t

]
JKK+

+ [µHHt + It] JH + +
1

2

[
H2
t σH

]
JHH + [xt

√
σKσHρKHKtHt] JKH .

These no-investment and investment regions correspond to the two parts of the max-

imization function in equation (7). When the first part of this maximization problem is

binding, the pair {Kt, Ht} is inside the no-investment region and, therefore, It = 0. If the

second part of this maximization problem is binding, then the pair {Kt, Ht} is inside the

investment region and It > 0.

3.3. Obtaining the first-order conditions

There are three FOCs in equilibrium. First, I obtain the following FOC when I take the

derivative of the HJB equation with respect to Ct:

JKt = e−ρtUC(Ct, Ht). (8)

This envelope condition establishes the equilibrium trade-o between consumption today and

consumption in the next period. In other words, there is an equilibrium between (i) the

discounted marginal gain or loss in utility e−ρtUC(Ct, Ht) from consuming one more unit of

non-housing goods at timet, and (ii) the marginal gain or loss JK from investing this unit

either in non-housing or housing assets, which will influence future utility. Consequently, the

representative agent must be indifferent among the following decisions in equilibrium: (i)
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consuming an extra unit of non-housing goods today; (ii) investing an extra unit of capital

in the non-housing technology in order to consume some extra non-housing capital in the

next period; and (iii) investing an extra unit of capital in the housing technology to be able

to consume some extra housing capital in the future.

Second, I take derivatives of the HJB equation with respect to xt to obtain the short-term

interest rate in equilibrium:

rt = µK︸︷︷︸
Drift of the short

term process

+ σK

[
JKK
JK

Kt

]
xt︸ ︷︷ ︸

Risk aversion

+
√
σKσHρKH

[
JKH
JK

Ht

]
xt︸ ︷︷ ︸

Hedging term for

housing investments

. (9)

This result is a generalization of the equilibrium interest rate in the Cox, Ingersoll, and Ross

(CIR; 1985a) term-structure model. Although the JK and JKK variables in this model and

in CIR (1985a) are equivalent, the JKH variable does not account for the housing investment

in CIR (1985a). The result presented here also generalizes the equilibrium interest rate of

the model of durable goods in Mamaysky (2001).11

Given equation (9), the short-term interest rate rt presents the following characteristics:

(i) the more productive the non-housing technology is (i.e., the higher the µK), the higher the

rt; (ii) JKK
JK

Kt and JKH
JK

Ht have negative signs, and they are measures of risk aversion towards

non-housing and housing investments, respectively; (iii) the higher the uncertainty in the

non-housing sector σ2
K , the lower rt will be; and (iv) rt is related to the standard deviations

σK and σH of the non-housing and housing processes, respectively, as well as the correlation

ρKH between these processes through the hedging term for the non-housing versus housing

risk JKH
JK

Ht. Note that this hedging term is zero when non-housing and housing processes are

uncorrelated (ρKH = 0). Because the ratio JKH
JK

Ht is negative, this hedging term is positive

for a negative correlation between K and I (i.e., ρKH < 0), and negative for a positive

11The model in Mamaysky (2001) presents only one source of uncertainty: shocks in the capital stock of
nondurable goods (i.e., non-housing). As a result, the hedging term for housing investments in equation (9)
that Mamaysky (2001) obtains is zero. Moreover, this model does not include collateral constraints.
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correlation (i.e., ρKH > 0).

Third, I obtain the following FOC when I take derivatives of the HJB equation with

respect to It:

JK > JH . (10)

Note again that the state space of the problem {Kt, Ht} is divided into two regions: the

no-investment region (It = 0) in which JK > JH , and the investment region (It > 0) in

which JK = JH holds. Initially, the following inequality holds in the investment region:

JH > JK . However, the agent allocates capital to housing investments, which increases the

Ht
Kt

ratio until JH is equal to JK . Hence, agents allocate capital to housing investments when

the ratio of housing to non-housing capital, Ht
Kt

, becomes sufficiently low.

3.4. Equilibrium conditions in terms of the housing to non-housing ratio Ht/Kt

By using the left part of the HJB equation in (7), the FOCs, and Lemma 1, I obtain

the following two-dimensional ordinary differential equation (ODE), which applies to the

no-investment region:

0 = e−ρtUC(Ct, Ht) + Jt + JK [xtKtµK + (1− xt)Ktrt − Ct] + JH [HtµH ] +

+0.5JKK
[
x2
tK

2
t σK

]
+ 0.5JHH

[
H2
t σH

]
+ JKH [xtKtHt

√
σKσHρKH ] , (11)

such that the conditions in equation (8) and the equality in (10) hold. I also reduce the

dimensionality of the ODE from two dimensions to one. First, consider the utility function

U(Ct, Ht) =

(
Cβt H

(1−β)
t

)1−γ
1−γ . As the production function is homogeneous of degree 1 and the

utility function is homogeneous of degree 1− γ, the value function is homogeneous of degree

one. This implies that the ratio of outstanding long-term capital outstanding to short-term

capital invested in the economy is sufficient to characterize this economy. Let us define g(ωt)

as part of the value function such that:

J(Kt, Ht, t) = e−ρt
H1−γ
t

1− γ
g(ωt), (12)
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where ωt is defined as ωt = log
(

1
Xt

)
and Xt = Ht

Kt
. Given this state variable ωt, the no-

investment region will be given by (−∞, ω∗], where ω∗ is determined as part of the agent’s

control problem.12 The process for ωt is obtained using the two-dimensional version of Ito’s

lemma:

dωt =
[
(xtµK + (1− xt)rt − µH)− 0.5(x2

tσK − σH)− Ĉt − Λt

]
dt+xt

√
σKdW

K
t −
√
σHdW

H
t

(13)

where Ĉt = Ct/Kt and Λt =
[
It
Kt

(eωt + 1)
]
. Therefore, Λt is a function of the ratios Ît = It/Kt

and eωt = Kt/Ht or, equivalently, Λt = Λt(Ît, ωt). Note that Λt = 0 when It = 0.

From equations (8) and (10), I obtain the following expressions for the optimal consump-

tion policy, Ĉt, and the smooth pasting condition at the boundary, ω∗, respectively:

Ĉt = e−ωt
(

g′(ωt)

(1− γ)eωt

) 1
β(1−γ)−1

(14)

(e−ω
∗

+ 1)g′(ω∗) = (1− γ)g(ω∗) . (15)

The super-contact condition JKH = JKK or, equivalently, JHK = JHH , introduced in Dumas

(1991) must also hold at the boundary of the investment region. If I use the form of the

value function in equation (12), then the super-contact condition becomes:

((1− γ)eω
∗ − 1)g′(ω∗) = (eω

∗
+ 1)g′′(ω∗) . (16)

Remarkably, the consumption policy that I obtain from equation (14), the smooth pasting

condition in equation (15), and the super-contact condition in equation (16) only depend on

the state variable ωt or the realization of the state value at ωt = ω∗. Finally, I need to obtain

the form of the function g(ω) in order to determine the equilibrium conditions. Consider a

12The inequality JK > JH holds in the investment region. Then the agent would allocate capital into
long-term investments until JK = JH . The trigger ω∗ is the value of the state variable ωt, such that JK = JH .

13



constant x̄, with x̄ ≥ 1, such that the agent borrows up to a constant fraction (1 − x̄) of

Kt.
13 The following theorem describes the functional form for g(ω).

Theorem 1. The function g(ω) is the solution of the following ODE:

0 = 0.5β1g
′′(ω) + β2g

′(ω) + β3

(
g′(ω)

eω

) β(1−γ)
β(1−γ)−1

+ β4g(ω), (17)

where:

β1 = (2− x̄)x̄σK + σH − (1− 0.5x̄)x̄
√
σKσHρKH , (18)

β2 = µK − (1− 0.5x̄)σK x̄− (µH + 0.5(2− γ)σH) + (1− γ)(2− x̄)x̄
√
σKσHρKH , (19)

β3 = γ (1− γ)
−β(1−γ)
β(1−γ)−1 , (20)

β4 = −ρ+ (1− γ)(µH − 0.5γσH), (21)

under the conditions that must hold at the optimal boundary ω∗ shown in equations (15)

and (16). In addition, the following boundary condition accounts for the states in which ω

becomes very small:

lim
ω→−∞

g(ω) = +∞. (22)

Proof. See appendix.

By expressing equation (9) for the short-term interest rate in terms of the state variable

g(ωt), I obtain:

rt = µK + σK

[
g′′(ωt)− g′(ωt)

g′(ωt)

]
xt︸ ︷︷ ︸

Risk aversion

+
√
σKσHρKH

[
−g′′(ωt) + (1− γ)g′(ωt)

g′(ωt)

]
xt︸ ︷︷ ︸

Hedging term for

long term investments

. (23)

The following proposition shows the differential form for the short-term interest rate. Most

13Note that Lemma 1 accounts for the particular case x̄ = 1, in which the markets clear or the agent does
not borrow. Values of x̄ greater than one imply that the agent borrows.
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of the parametric models of the term structure of interest rates are of the form described in

this proposition, as discussed in Duffie and Kan (1994).

Proposition 1. The short rate process for this problem is the solution of the stochastic

differential equation of the form:

drt = [α1 + α2rt] dt+
[
αK1 + αK2 rt

]
dWK

t +
[
αH1 + αH2 rt

]
dWH

t , (24)

where α1, α2, αK1 , αK2 , αH1 , and αH2 are functions of t, ωt, Λt, and g(ωt), and depend on the

parameters of the model µK, µH , σK, σH , ρKH , β, and γ.

Proof. See appendix.

The short rate process obtained from the model developed in this paper and shown in

equation (24) has a form similar to the two-factor CIR (1985b) model and the set of two-

factor ane term-structure models (ATSMs) in Dai and Singleton (2000). However, there is

one main dierence between these models and my model. In the model presented here, the

time-dependent coefficients α1, α2, α3, αK1 , αK2 , αH1 , and αH2 are neither deterministic nor

defined by an affine structure. Instead, these coefficients depend on g(ωt) and Λt, whose

functional forms are provided by the optimization problem described in Section 2. Finally,

note that the power θ of the diffusion terms is 0.5 as in the CIR model and the ATSM, while

θ is 1.0 in Merton (1973), Vasicek (1977), Brennan and Schwartz (1979), and Black, Derman

and Toy (1990), and 1.5 in Ahn and Gao (1999). Table I compares the forms of the short

rate processes for these classic term structure models.

[TABLE I HERE]

Denote the equilibrium bond prices B(ωt, t, T ) as the date t securities that deliver one

unit of the consumption good at date T . The following theorem shows how to calculate the

price of any bond B(ωt, t, T ).
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Theorem 2. The equilibrium price at time t of a zero-coupon bond that expires at time T ,

B(ωt, t, T ), is the solution of the following partial differential equation (PDE):

0 = Bt − rtB +
[
(x̄µK + (1− x̄)rt − µH)− 0.5(x̄2σK − σH)− Ĉ(ωt)− Λ̂(ωt)

]
Bω

+0.5
[
x̄2σK + σH + x̄ρKH

√
σKσH

]
Bωω, (25)

subject to the following boundary conditions:

B(ωT , T, T ) = 1, (26)

Bω(ω∗T , t, T ) = 0, (27)

Bω(−∞, t, T ) = 0. (28)

Proof. See appendix.

Five remarks arise from Theorem 2. First, the term Ĉ(ωt) = Ct
Kt

in equation (25) is a

function of only ωt because Ct
Kt

= e−ωt
(

g′(ωt)
(1−γ)eω

) 1
β(1−γ)−1

. Second, Λ̂(ωt) = It
Kt

(eωt + 1) is zero

in the no-investment region (It = 0). Third, the boundary condition (26) is necessary to

impose that B(ωt, t, T ) is the price of a security that pays $1 at time T . Fourth, conditions

(27) and (28) are necessary to rule out arbitrage opportunities. Finally, the term structure

of interest rates at time t for different maturities T , with T > 0, is given by yt(ωt, T ) and

the expression:

yt(ωt, T ) = − log (B(ωt, t, t+ T ))

T
. (29)

3.5. Closed-form solutions for consumption, the short rate, and the term structure of interest

rates

There are no known closed-form solutions to the ODE in equation (17), subject to equa-

tions (15), (16), and (22) for the constants defined in equations (18)-(21). Therefore, this

ODE should be solved numerically. However, Theorem 3 shows the existence of a closed-form

solution under certain restrictions.
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Theorem 3. If γ = 0, then the solution of the ODE in equation (17), subject to equations

(15), (16), and (22), has the following functional form:

g(ωt) = eλωt (30)

where λ = −β2
β1

+

√(
β2
β1

)2

− 2β4
β1

, for ωt < ω∗, and ω∗ = log( λ
1−λ).

Proof. See appendix.

Using equation (14) and the results from Theorem 3, the model provides the following

closed form for the optimal consumption policy Ĉt which only depends on ωt:

Ĉt = e−ωt
(
λeλωt−1

) 1
β−1 . (31)

After taking logarithms, this equation becomes:

log

(
Ct
Kt

)
=

1

β − 1
· (logλ− 1)︸ ︷︷ ︸

Constant term

+

(
λ

β − 1
− 1

)
log

(
Kt

Ht

)
︸ ︷︷ ︸
Terms that depend on Ht/Kt

. (32)

Assume that the collateral constraint is binding, such that the agent borrows LTV times

the value of her housing stock. This gives the following linear relationship between interest

rates and the Ht/Kt ratio, when applying the findings in Theorem 3 to equation (23):

rt = [µK + σK(λ− 1)−
√
σKσHρKH(λ− 1)] + [(σK −

√
σKσHρKH)(λ− 1)LTV ] · Ht

Kt

. (33)

Therefore, the equilibrium of the model can be stated in terms of the state variable Xt =

Ht/Kt. I find the dynamics of this state variable by applying Ito’s lemma to Xt and using

equations (1) and (2):

dXt = d(Ht/Kt) = µX(Xt)dt+
√
σHXtdW

H
t +

√
σKXtdW

K
t , (34)
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where µX(Xt) is a function of the state variable Xt = Ht/Kt:

µX(Xt) =
[
µH − (LTV Xt + 1) (µK + (LTV Xt + 1)σK − ρKH

√
σKσH)− Ĉt(Xt) + Ψ̂t(Xt)

]
Xt,

(35)

where Ĉ(Xt) = Ct/Kt and Ψ̂(Xt) = Ψt
Kt

(
1

Ht/Kt
+ 1
)

.14 At this point, I can linearize the

function µX(Xt) by applying a Taylor expansion of this function around the point X∗ =

H∗/K∗ that separates the no-investment region from the investment region:

µX(Xt) ≈ µX(X∗) + βX(X∗) · (Xt −X∗), (36)

where

βX(X∗) = X∗
[
LTV (µ+ 2(LTV X∗ + 1)σK − ρ

√
σKσH)− Ĉ ′(X∗) + Ψ̂′(X∗)

]
+
µX(X∗)

X∗
.

When I consider the linearization of term (35) shown in equation (36), the model presents

the characteristics of the family of the affine term structure (ATSM) models developed

and classified in Duffie and Kan (1996). In particular, the three hypothesis related to the

functional forms of ATSMs stated and developed in Piazzesi (2010) hold for this model:

1. The process for the short interest rate, rt, is affine on Xt = Ht/Kt:

rt = αr + βr ·Xt (37)

for αr ∈ R and βr ∈ R. Note that αr =
[
µK + σK(λ− 1)−√σKσHρKH(λ− 1)

]
, and

βr =
[
(σK −

√
σKσHρKH)(λ− 1)LTV

]
as shown in equation (33).

2. The process Xt is an affine diffusion. This means that Xt solves

dXt = µX(Xt)dt+
√
σHXtdW

H
t +

√
σKXtdW

K
t (38)

14Two of the remarks that follow Theorem 2 justify the nature of the second and third terms in (35). For
example, note that from equation (31), the Ct/Kt ratio is only a function of ωt and, consequently, from Xt

and the Ht/Kt ratio.
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for µX(Xt) = κ(x̄ − Xt) and κ ∈ R and x̄ ∈ R. From equation (36), I obtain κ =

−βX(X∗) and x̄ = X∗ − µX(X∗)
βX(X∗)

.

3. The local expectations hypothesis holds.

Under these three hypothesis, the following proposition provides a functional form for

the bond prices in equilibrium in terms of the state variable Xt, time t, and maturity T .

Proposition 2. The equilibrium bond prices B(Xt, t, T ) that determine the term structure

of interest rates in this economy are given by the following exponential affine form:

B(Xt, t, T ) = exp [A1(T ) + A2(T ) ·Xt] , (39)

where A1(T ) and A2(T ) solve the system of ODEs:

A1(T ) = −αr + κx̄B1(T ) (40)

B1(T ) = −βr − κB1(T ) +
1

2
σX(B1(T ))2 (41)

with the starting conditions A1(0) = 0 and B1(0) = 0, and σX is the standard deviation of

the process that defines the dynamics of the state variable Xt.

Proof. See appendix.

Given equations (29) and (39), the term structure of interest rates at time t for different

maturities T , yt(T ) has the following functional form:

yt(T ) = −A1(T )

T
− A2(T )

T
·Xt. (42)

Finally, note that the interest rates in the model are in real terms (see Evans, Keef, and

Okunev, 1994, and Dahlquist, 1996, for further details on modeling real interest rates). As in

Boudoukh (1993), Campbell and Viceira (2002), and Wachter (2006), I assume that inflation

follows an exogenous process in order to model nominal bonds. Let πt denote log realized
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inflation and zt denote log expected inflation. I assume that πt follows an AR(1) process:

πt+1 = zt + νπ,t+1, (43)

zt+1 = (1− φz)µz + φzzt + νz,t+1, (44)

where φz is a constant parameter. I use the estimation of the parameters for the inflation

process in Campbell and Viceira (2002): φz = 0.992 for the period 1962-1983 and φz = 0.8674

after 1983.

4. Numerical and empirical results

4.1. Data

This section presents details about the data and the intuition behind the dynamics of

the term structure that the model provides. I use data on: (i) fixed assets (i.e., stocks of

capital); (ii) consumption and investments (i.e., flows of capital); and (iii) short-term and

long-term interest rates. I consider data from 1962 to 2016.

The dataset for fixed assets consists of the net stock of fixed assets from the fixed asset

tables (FAT) of the U.S. National Economic Accounts, which are provided by the Bureau of

Economic Analysis (BEA). I consider both private (FAT, Tables 2.1 and 2.2) and government

assets (FAT, Tables 7.1.A, 7.1.B, 7.2.A, and 7.2.B). Residential assets are treated as housing

investments. Non-residential assets are separated into equipment and software (non-housing)

and structures (housing). These data cover the stock of the non-housing capital account,

Kt, and the housing capital account, Ht, in the model.

For consumption and investments, I use data from the National Income and Product

Accounts (NIPA) on real consumption of nondurable goods. The data come from personal

consumption expenditures (NIPA, Tables 2.3.4 and 2.3.5), real gross private domestic fixed

investment (NIPA, Tables 5.3.4 and 5.3.5), and real government consumption expenditures

and gross investments (NIPA, Tables 3.9.4 and 3.9.5) provided by BEA. The NIPA data
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on government consumption and investment are provided as an aggregate of consumption

expenditures, gross investments in structures, and gross investments in equipment and soft-

ware.15

For the short- and long-term interest rates, I use data for the term structure of interest

rates from the Federal Reserve Board. I use the three-month rate as the short-term rate

rt and the five-year rate as the long-term rate Rt. Note that the five-year rate y(ωt, t, 5) is

equivalent to the long-term rate Rt, according to equations (29) and (42).

Moreover, I need to deflate the variables when working on real (not nominal) terms.

Deflated data on the NIPA accounts can be obtained directly from the BEA. I use two main

alternatives to estimate the real interest rates. First, I estimate real interest rates as deflated

nominal interest rates.16 Second, I dene an exogenous process for inflation and infer the real

rates from the nominal rates. I use data on the consumer price index (CPI) for the nominal

inflation.

The summary statistics for the main variables for the period 1962 through 2016 are

shown in Table II. The mean of the real short-term rate (1.38%) is lower than the mean of

the real long-term rate (2.42%) for this period. Meanwhile, the standard deviation of both

variables is similar. The nominal real short-term (long-term) rate averages 5.28% (6.32%)

with a standard deviation of 3.35% (2.83%.) The slope of the term structure measured as

the difference between the rates of the 10-year and 5-year T-bonds has a mean of 1.04%

with a maximum of 3.12% and a minimum of −1.22%. Consumption grows at an average

of 2.85% per year in the sample period. The average ratio of consumption to non-housing

15I consider gross investments in structures as housing investments and gross investments in equipment
and software as non-housing investments. I include government consumption expenditures as non-housing
investments. Accordingly, I use the data on real consumption of nondurable goods as Ct, data on housing
investments as It, and data on non-housing investments estimated as the portion of the account Kt that has
neither been invested in housing nor consumed.

16Series covering an extended period of time are needed to estimate the model, but the U.S. Treasury
started issuing Treasury Ination-Protected Securities (TIPS) in 1997. The differences between TIPS rates
and the real rates calculated as deflated nominal rates are minor. Therefore, I can assume that the deflated
nominal interest rate is a good proxy for the real interest rate. The differences between TIPS and real rates
calculated as deflated nominal rates were more remarkable in the early years of the TIPS markets. This may
be due to the significant illiquidity in the early years of the TIPS market.
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assets is 0.29. The mean of the Ht/Kt ratio is 0.47. This ratio increases by an average of

0.21% per year during the period of analysis.

[TABLE II HERE]

The correlation matrix for the main variables is shown in Table III. The correlation

between the real short-term and long-term rates is high (0.89). Similarly, the correlation

between the nominal short-term and long-term rates is high (0.95). However, the correlation

between the real and nominal short-term rates is lower (0.57), as is the correlation between

the real and nominal long-term rates (0.40).

[TABLE III HERE]

4.2. Model estimation

This subsection presents the implementation of Duffie and Singleton’s (1993) SMM to es-

timate the model’s parameters. The model’s set of parameters is Ψ = {γ, ρ, β, µK , σK , µH , σH , ρKH , LTV }.

I must find the parameters that minimize the weighted distance between a set of model un-

conditional moments, FZ(ψ̃), and their moment conditions from the empirical data FT .

Let ft denote the vector of the time series of the following variables: (i) the real short-

term interest rate, (ii) the real long-term interest rate, and (iii) the ratio of consumption

to non-housing assets. Let FT denote the set of unconditional moments of these variables

in the data: FT = 1
T

∑T
t=1ft. I fix the subset of parameters Ψ = {γ, ρ, β, µK , ρKH , LTV }

and estimate the set of parameters Ψ̃ = {σK , µH , σH} ⊂ Ψ. As I am mostly interested in

estimating the characteristics of housing and non-housing capital, I focus on the estimation

of the subset of parameters Ψ̃. The rest of the parameters are set to reasonable values

according to existing studies and observed data (see Campbell and Cocco (2003), Cocco

(2004), Yao and Zhang (2004), and Corradin, Fillat and Vergara-Alert (2013)).

More specifically, I fix the time preference parameter, ρ, at 2.5%, which is consistent with

an expected long term inflation between 2% and 3%. The housing flow services parameter,
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1− β, measures the degree to which households value housing consumption relative to non-

housing consumption. I set 1−β at 0.35. This figure is consistent with the share of household

housing expenditures in the US estimated using expenditure data from the U.S. Bureau of

Labor Statistics. The value of the drift of the non-housing process, µK , is set at 6.3%, which

corresponds to the annualized return on the S&P 500 index in the focal period 1962-2016.

The correlation between the non-housing and housing processes, ρKH , is set at 0.745 given

that the correlation between these two processes using US data for the period 1962-2016 is

0.745. I set the loan-to-value, LTV , at 0.420 because the average loan-to-value of across all

homes in the US is 42.0%.17 Table IV reports the model’s fixed and estimated parameters.

[TABLE IV HERE]

I simulate the economy described by the model for a particular set of parameters Ψ̃ using

Theorem 3. This economy is uniquely determined by its state variable, ωt, and endogenously

determined by the optimal consumption and investment strategy of the agent. Hence, I first

have to solve the optimal control problem developed in Section 3. I estimate the implied

density function of the state variable, h(ω; Ψ̃), and I calculate the implied moments of the

model: FZ(Ψ̃) = E
[
f(ω; Ψ̃)

]
≈
∫
f(ω; Ψ̃)h(ω; Ψ̃)dω.

Finally, SMM requires solving the problem:

Ψ̃∗ = arg min
ψ∈Ψ̃

[FZ(ψ)− FT ]′WT [FZ(ψ)− FT ] , (45)

where WT is the weighting matrix. I assume WT = V −1, where V is the asymptotic unbi-

ased estimate covariance matrix of the sample averages FT . Table IV shows the subset of

estimated parameters Ψ̃ = {σK , µH , σH} ⊂ Ψ. The model provides estimations of the stan-

dard deviations for the non-housing process, σK , and the housing process, σH , of 10.2% and

17The average loan-to-value of across all homes in the US is estimated as the value of all mortgages divided
by the value of all US homes using data from FRED, Federal Reserve Bank of St. Louis: Owner-Occupied
Real Estate including Vacant Land and Mobile Homes at Market Value (code: HOOREVLMHMV) and
Households and Nonprofit Organizations; Home Mortgages; Liability (code: HHMSDODNS)).
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17.8%, respectively. These estimates correspond to variances in the non-housing and hous-

ing processes of 1.04% and 3.17%, respectively. The estimation of the drift of the housing

process, µH , is 1.6%. Note that the standard deviation of the non-housing process is lower

than the standard deviation of the S&P 500 (16.6%) but higher than the standard deviation

for the growth process, dK/K, that I find in the data (3.6%). Nevertheless, the parameters

of the housing process are similar to those found in Campbell and Cocco (2003), who report

µH of 1.6% and σH of 16.2%.

Table V reports the first and second moments provided by the SMM estimation, and

compares them to the moments in the data. The model slightly overvalues the first mo-

ments of the real short-term rate (1.55%), the real long-term rate (2.53%), and the ratio of

consumption to housing assets (0.61), while it undervalues their second moments (0.21%,

0.16%, and 0.01, respectively). As I focus on the first moments of these three variables, only

three parameters can be independently estimated from the data.

[TABLE V HERE]

Finally, I perform sensitivity analyses with respect to the loan-to-value ratio, LTV , the

correlation between housing and non-housing, ρHK , and the standard deviation of the housing

process, σH , using the parameters described in Table IV. Figure 3 and 4 exhibit these analyses

for the short-term interest rates and consumption, respectively. The top two graphics in

Figure 3 show the real short-term interest rate as a function of the Kt/Ht ratio for two

values of the parameter ρKH . The bottom two graphics display the real short-term interest

rate as a function of the Kt/Ht ratio for two values of the parameter σH . The model captures

the trend of decreasing interest rates as the Ht/Kt ratio increases.

The top two graphics in Figure 4 show consumption in terms of housing capital, Ct/Kt, as

a function of the Kt/Ht ratio for two values of the parameter ρKH . The bottom two graphics

display the Ct/Kt ratio as a function of the Kt/Ht ratio for two values of the parameter σH .

The model captures the trend of increasing Kt/Ht values as the Kt/Ht ratio increases as

well as the convexity of the relationship between the Ct/Ht and Kt/Ht ratios.
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[FIGURES 3 AND 4 HERE]

Moreover, Figures 3 and 4 highlight four interesting facts. First, interest rates decrease

with the correlation between housing and non-housing capital. Second, the ratio of con-

sumption to housing capital increases with this correlation. The economic intuition behind

these two facts is as follows. Assume that the economy experiences a sequence of negative

shocks in non-housing capital. This will lead to an economy with “too much” housing capital

that cannot be transferred to non-housing capital because of the irreversibility constraint.

As a result, consumption growth will become more volatile and the interest rate will fall.

However, a higher correlation between housing and non-housing capital will decrease the

effect of the irreversibility constraint, which will lead to a lower interest rate and a higher

consumption-to-non-housing ratio. Third, interest rates decrease as the LTV ratio rises that

is, lower LTV ratios lead to higher interest rates. Fourth, the ratio of consumption to non-

housing capital increases as the LTV ratio rises. The intuition behind these two facts is as

follows. Assume that the economy experiences a sequence of negative shocks in non-housing

capital, which leads to an economy with “too much housing capital. If the LTV ratio is low,

then the agent cannot borrow as much as she would find optimal in an economy with no

collateral constraints. Consequently, interest rates are high. At the same time, the higher

the LTV ratio, the more attractive are investments in housing capital. Therefore, the agent

is willing to lower the ratio of consumption to housing capital.

4.3. Empirical tests

In this subsection, I present the results of the empirical tests. To validate the model, I use

the closed-form solutions for consumption, the short-term interest rate, and the long-term

interest rate shown in (32), (33), and (42), respectively. I show the tests for both the real

and nominal interest rates.

The first empirical analysis, which focuses on the dynamics of consumption, tests the

power of the closed-form solutions for consumption in equation (32). Table VI shows the
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results of this exercise. The negative sign for log(Ht/Kt) dominates the positive sign for

Ht/Kt for the range [0.42, 0.55] of the ratio Ht/Kt that it is observed in the data (see

Table II). In other words, an increase in the Ht/Kt ratio leads to a decrease in the Ct/Ht

ratio. These results are statistically significant and consistent with the economic intuition

behind the model: the lower level of available (liquid) non-housing capital Kt, the less the

agent is able to consume, Ct, for a fixed amount of capital locked into housing investments,

Ht. Columns [1] and [2] show the results of the OLS regressions for the logarithm of the

consumption-to-housing ratio using the estimated end-of-the-year real rate. Column [3]

shows the results of the regressions using the lagged Ht/Kt ratio as the instrumental variable.

[TABLE VI HERE]

The second empirical analysis focuses on the dynamics of the real and nominal interest

rates. Tables VII and VIII show the tests of the power of the closed-form solutions for

the short-term and long-term rates, respectively. In both tables, columns [1], [2], [4], and

[5] show the results of the OLS regressions for the real and nominal rates in equation (33)

using the estimated end-of-the-year real rate. Columns [3] and [6] show the results of the

regressions for the real and nominal rates using the lagged Ht/Kt ratio as the instrumental

variable.

[TABLES VII AND VIII HERE]

Table VII shows that a 0.10% higher value in the Ht/Kt ratio relates to a 0.57% lower

value in the real short-term interest rate and a 0.86% lower value in the nominal short-term

interest rate in the analysis period. Table VIII shows that a 0.10% higher value in the Ht/Kt

ratio relates to a 0.60% lower value in the real long-term interest rate and a 0.89% lower

value in the nominal long-term interest rate in the analysis period. Overall, these empirical

results are consistent with the economic intuition provided by the mode’s equilibrium results.
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5. Conclusions

This paper differentiates between housing and non-housing capital, and applies this dis-

tinction to the CIR model to study the dynamics of the term structure of interest rates. The

proposed model contains two risky production technologies: one for producing non-housing

assets and another for housing assets. A representative agent decides how much capital to

invest in the non-housing and housing technologies, how much to consume, and how much

to borrow using housing as collateral. The capital invested in the non-housing technology is

liquid, while the capital allocated to the housing technology cannot be disinvested whenever

capital is needed for consumption. The illiquidity that characterizes housing production

makes consumption smoothing harder, which leads the agent to increase her precautionary

savings. Therefore, the short interest rate needs to be low in order to clear markets.

Under certain general conditions, the model is an affine term-structure model (ATSM) as

defined in Duffie and Kan (1996). Its dynamics are driven by one state variablethe ratio of

aggregate housing to non-housing capital invested in the economy, Xt = Ht/Kt. In contrast

to standard ATSMs, this state variable is not imposed on the market price of risk in the

economy, but found in equilibrium from a structural model. By endogenizing the market

price of risk, the model provides rich economic intuition on how the housing and non-housing

investment channels and the consumption channel jointly determine the dynamics of the term

structure of interest rates.

The model provides functional forms for consumption, short-term interest rates, and long-

term interest rates that can be used to empirically test the model. I estimate the parameters

of the model using SMM and US data from 1962 to 2016. I find that the model captures

the dynamics of consumption as well as the short-term and long-term interest rates. The

empirical analysis shows that a 0.10% higher value in the ratio of housing to non-housing

assets in the economy relates to a 0.57% (0.86%) lower value in the real (nominal) short-term

interest rate and a 0.60% (0.89%) lower value in the real (nominal) long-term interest rate.

These results confirm the importance of separating housing and non-housing investments
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when modeling the term structure of interest rates. This distinction has not been explored

in the classic term-structure models and highlights an area for future research with high

relevance for policy makers and bond investors.
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Appendix

A.1. Proofs of Propositions and Theorems

——————————————————————————————————————

Proof of Proposition 1

Apply Ito’s Lemma to equation (23) and rearrange terms to obtain the following expres-
sion:

drt = [α1 + α2rt] dt+
[
αK1 + αK2 rt

]
dWK

t +
[
αH1 + αH2 rt

]
dWH

t ,

where

α1 = α1(Ψ̂t, ωt, t) = xt
√
σKΥ1(Ψ̂t, ωt, t)Υ2(ωt, t) + ΓKHΥ3(ωt, t)

α2 = α2(Ψ̂t, ωt, t) = xt
√
σKΥ1(Ψ̂t, ωt, t)Υ2(ωt, t) + ΓKH

(
g′′(ωt)

g′(ωt)

)2

αK1 = αK1 (ωt, t) = xt
√
σKΥ2(ωt, t)

αK2 = αK2 (ωt, t) = −xt
√
σK

g′′(ωt)

g′(ωt)

αH1 = αH1 (ωt, t) =
√
σHΥ2(ωt, t)

αH2 = αH2 (ωt, t) = −
√
σH

g′′(ωt)

g′(ωt)

and where Υ1(Ψ̂t, ωt, t), Υ2(ωt, t), Υ3(ωt, t), and ΓKH are defined as follows:

Υ1(Ψ̂t, ωt, t) = (xtµK+(1−xt)rt−µH)−0.5(x2
tσK−σH)−e−ωt

(
g′(ωt)

(1− γ)eωt

) β(1−γ)
β(1−γ)−1

+Λt(Ψ̂t, ωt)

Υ2(ωt, t) = (xtµk+(1−xt)rt)
g′′(ωt)

g′(ωt)
+x2

tσK
g′′′(ωt)− g′′(ωt)

g′(ωt)
+xt
√
σKσHρKH

(1− γ)g′′′(ωt)− g′′(ωt)
g′(ωt)

Υ3(ωt, t) = −xtµK
(
g′′(ωt)

g′(ωt)

)2

+ 0.5

(
g(iv)(ωt)

g′(ωt)
− 3

g′′′(ωt)g
′′(ωt)

(g′(ωt))2
+ 2

(
g′′(ωt)

g′(ωt)

)2
)
xt
√
σK+

+0.5

(
(1− γ)

(
g(iv)(ωt)

g′(ωt)
− 3

g′′′(ωt)g
′′(ωt)

(g′(ωt))2

)
− 2

(
g′′(ωt)

g′(ωt)

)2
)
xt
√
σKσHρKH

ΓKH = x2
tσK + σH − 2xt

√
σKσHρKH .

Q.E.D.
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——————————————————————————————————————

Proof of Proposition 2

See the proof in Duffie and Kan(1996) and take into consideration the following facts: (i)
the drift µX(Xt) of the process for the state variable Xt in equation (34) is affine in Xt; (ii)
the coefficients involved in the volatility term σK and σH are affine (e.g. in fact, they are
constant as in Cox, Ingersoll and Ross (1985b)); and (iii) the process for the interest rate rt
is affine as shown in (33).

Q.E.D.

——————————————————————————————————————

Proof of Theorem 1

The ordinary differential equation (ODE) shown in (17) comes from the left part of the
maximization function in equation (7) evaluated at the optimal consumption shown in (14).
I know from the HJB equation in (7) that the following ODE holds in the no-investment
region:

sup
Ct,xt,It

{
E0

[
d̂J∗ + e−ρtU(Ct, Ht)dt

]}
= 0

where d̂J∗ is represented by the following expression:

d̂J∗ = Jt + [xtKtµK + (1− xt)Ktrt − Ct] JKt +
1

2

[
x2
tK

2
t σK

]
JKtKt+

+ [HtµH ] JH + +
1

2

[
H2
t σH

]
JHtHt + [xt

√
σKσHρKHKtHt] JKH

and JK , JKK , JH , JHH , and JKH are the first and second order partial derivatives of the
value function J(Kt, Ht, t) with respect to Kt and Ht. When taking into account Lemma 1
and the fact that in the no-investment region It = 0, we obtain the following ODE:

0 = e−ρtUCt(Ct, Ht) + Jt + [xtKtµK + (1− xt)Ktrt − Ct] JKt +
1

2

[
x2
tK

2
t σK

]
JKtKt+

+ [HtµH ] JH +
1

2

[
H2
t σH

]
JHtHt + [xt

√
σKσHρKHKtHt] JKH .

Consider the utility function U(Ct, Ht) =

(
Cβt H

(1−β)
t

)1−γ
1−γ and the functional form of the

value function defined by J(Kt, Ht, t) = Ht1−γ

1−γ g(ωt). When we plug the corresponding deriva-

tives of U(Ct, Ht) and J in the two dimensional ODE, I obtain the following one dimensional
form of the ODE:

0 = 0.5β̂1g
′′(ω) + β̂2g

′(ω) + β3

(
g′(ω)

eω

) β(1−γ)
β(1−γ)−1

+ β4g(ω),
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where:
β̂1 = x2

tσK + σH − 2xt
√
σKσHρKH ,

β̂2 =
(
xtµK + (1− xt)rt − 0.5x2

tσK
)
− (µH + 0.5(2− γ)σH) + (1− γ)xt

√
σKσHρKH ,

β3 = γ (1− γ)
−β(1−γ)
β(1−γ)−1 ,

β4 = −ρ+ (1− γ)(µH − 0.5γσH).

Note that β̂2 depends on rt and xt. Hence, we plug equation (23) into β̂2 and assume a
constant xt = x̄. Note that Lemma 1 accounts for the particular case x̄ = 1, in which the
markets clear or the agent does not borrow. Then, the ODE above becomes:

0 = 0.5β1g
′′(ω) + β2g

′(ω) + β3

(
g′(ω)

eω

) β(1−γ)
β(1−γ)−1

+ β4g(ω),

where:
β1 = (2− x̄)x̄σK + σH − (1− 0.5x̄)x̄

√
σKσHρKH ,

β2 = µK − (1− 0.5x̄)σK x̄− (µH + 0.5(2− γ)σH) + (1− γ)(2− x̄)x̄
√
σKσHρKH ,

β3 = γ (1− γ)
−β(1−γ)
β(1−γ)−1 ,

β4 = −ρ+ (1− γ)(µH − 0.5γσH).

This ODE must hold under the boundary conditions shown in equations (15) and (16).
Besides, a third boundary condition is needed in order to account for the states in which ω
becomes very small. I must impose that when the amount of short-term capital Kt becomes
very small, then the value function is zero, because Ct = 0 when Ht goes to zero by the
non-negativity constraint for the illiquid investment It. This final boundary condition is
equivalent to impose that:

lim
ω→−∞

g(ω) = +∞.

Q.E.D.

——————————————————————————————————————

Proof of Theorem 2

The price at time t of a zero-coupon bond paying one unit at time T , T > t is:

B(t, T ) = Et

[
e−

∫ T
t rsds|=t

]
with 0 6 t 6 T in the probability space (Ω,=, P̃ ). Because this problem is Markov (the
processes dKt and dHt are Markov processes) and the equilibrium interest rate rt given by
(23) is a function of the factor ωt, there must be a function f(t, ωt) such that B(t, T ) =
f(t, ωt).

The price of the risk-free money-market account or discount factor Dt follows the process
dDt
Dt

= −rtdt. Iterated conditioning implies that the discounted bond price DtB(t, T ) is a

martingale under the probability measure P̃ . I calculate the differential of DtB(t, T ) by
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using the Ito′s lemma:

d(Dt, B(t, T )) = d(Dt, f(t, ωt))

= −rtDtf(t, ωt)dt+Dtdf(t, ωt)

= Dt [−rtfdt+ ftdt+ fωdωt + 0.5fωωd[ωt, ωt]]

= Dt [−rtfdt+ ftdt+ fωdωt + 0.5fωω[σKdt+ σHdt+ ρKH
√
σKσHdt]]

where ωt is given by equation (13).

Because DtB(t, T ) is a martingale under the probability measure P̃ , the dt term of
DtB(t, T ) must be zero. If I set the dt term equal to zero, and I take into account that
f = B(t, T ), then I obtain the following PDE:

0 = Bt − rtB +
[
(x̄µK + (1− x̄)rt − µH)− 0.5(x̄2σK − σH)− Ĉ(ωt)− Λ̂(ωt)

]
Bω+

+ 0.5
[
x̄2σK + σH + x̄ρKH

√
σKσH

]
Bωω

Q.E.D.

——————————————————————————————————————

Proof of Theorem 3

First, let us consider a function and, then, let us check that it is actually the solution of
the ODE in (17), subject to (15), (16), and (22). Assume that

g(ωt) = eλωt

where λ = −β2
β1

+

√(
β2
β1

)2

− 2β4
β1

is the solution of this problem for any ωt < ω∗. Note that

the first derivative of g(ωt) is
g′(ωt) = λeλωt

and its second derivative is
g′′(ωt) = λ2eλωt .

Now, consider the case γ = 0, in which the equation (17) gets simplified to

0 = 0.5β1g
′′(ω) + β2g

′(ω) + β4g(ω)

and plug these functions g(ωt), g
′(ωt) and g′′(ωt) into it. I plug g(ωt) into the smooth

pasting condition in (15) or the super-contact condition in (16) in order to find ω∗. As a
result, ω∗ = ln( λ

1−λ).

Q.E.D.
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A.2. Adjustment Costs in Housing Markets

Adjustment costs are the expenses associated with moving to a different house. Quigley
(2002) documents six different types of costs for housing purchases: search cost, legal cost,
administrative cost, adjustment cost, financial cost and uncertainty cost. There are four type
of costs that are quantitatively relevant. First, search costs are the monetary expenses and
the value of time spent on looking for a property (buyer) or a buyer for your property (seller).
Real estate agent fees may capture part of the search costs. Second, legal costs are fees paid
to lawyers or consultants in the preparation of the sales and purchase agreement. Lawyers
are typically asked to ensure that there are no liens on the property. Third, administrative
costs are mainly registration costs. They are the taxes and fees incurred in the process of
registering the property with the competent registry (e.g., registration fees, stamp duties,
and notary fees). Four, sales and transfer taxes on the sale and purchase of real estate must
be paid to local and national governments. They include deed taxes, transfer Taxes and
value-added taxes (VAT). In general, most of the adjustment costs are paid by the buyers.

Empirical studies on the economic size of adjustment costs provide a median range around
10% of the property value. However, the dispersion of adjustment costs across countries is
large. The European Monetary Federation (EMF) published the “Study on the Cost of
Housing in Europe” in 2005. In the study, transaction costs were found to be the highest in
Belgium at 17.1% of the property value and lowest in the UK, at 1.9% of the property value.
Belot and Everdeen (2006) estimated housing adjustment costs for 22 OECD countries.
They found that adjustment costs are highest in Italy, Belgium, and Portugal with values of
19%, 18%, and 15.5% of the property value, respectively. On the other hand, New Zealand,
UK and Australia present adjustment costs of 3.5%, 4.0%, and 4.5% of the property value,
respectively. In the US housing markets, Linneman (1986) and Cunningham and Hendershott
(1984) find that transaction costs are at least 12% of the house value. Rosenthal (1988) and
Corradin, Fillat, and Vergara-Alert (2013) document transaction costs of 7% and 10% of
the house value, respectively. Zillow and Global Property Guide report average transaction
costs of 10% and 9.82% of the house value in the US, respectively.
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drt = [α1 + α2rt + α3rtlog(rt)] dt+
[
αK1 + αK2 rt

]θ
dWK

t +
[
αH1 + αH2 rt

]θ
dWH

t

α1 α2 α3 αK1 αK2 αH1 αH2 θ

Merton (1973) x — — x — — — 1.0
Vasicek (1977) x x — x — — — 1.0
Brennan and Schwartz (1979) x x — — x — — 1.0
Cox, Ingersoll and Ross (1985b), 1-factor x x — — x — — 0.5
Cox, Ingersoll and Ross (1985b), 2-factor x x — — x — x 0.5
Pearson and Sun (1990) x x — x x — — 0.5
Black, Dearman and Toy (1990) — x x — x — — 1.0
Affine Term Structure Models, 2-factor x x — x x x x 0.5
This paper x x — x x x x 0.5

Table I: Comparison to classic term-structure models. This table compares the functional forms of the
processes for the short-term interest rate, drt, for the main classic term-structure models in the literature.
“x” indicates that the coefficient is not zero.

Mean Median Std. dev Max. Min.

Real short rate (1 year) 1.38% 1.65% 2.27% 6.59% -2.98%
Real long rate (10 year) 2.42% 2.17% 2.29% 8.14% -3.48%
Nominal short rate (1 year) 5.28% 5.20% 3.35% 14.80% 0.12%
Nominal long rate (10 year) 6.32% 6.16% 2.83% 13.92% 1.80%
Slope (10 year - 1 year) 1.04% 1.20% 1.08% 3.12% -1.22%
Consumption growth 2.85% 2.99% 2.22% 7.04% -3.11%
Ratio Ct/Kt 0.29 0.29 0.02 0.33 0.25
Ratio Ht/Kt 0.47 0.46 0.03 0.55 0.42
Ratio Ht/Kt growth 0.21% 0.41% 2.61% 6.56% -7.36%

Table II: Summary statistics. Summary statistics. This table reports the statistics of the main variables
used in the paper. Aggregate US data for the period 1962-2016.
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(1) (2) (3) (4) (5) (6) (7) (8) (9)
(1) Real short rate (1 year) 1.00
(2) Real long rate (10 year) 0.89 1.00
(3) Nominal short rate (1 year) 0.55 0.26 1.00
(4) Nominal long rate (10 year) 0.57 0.40 0.95 1.00
(5) Slope (10 year - 1 year) -0.23 0.25 -0.61 -0.34 1.00
(6) Consumption growth 0.46 0.46 0.00 0.01 0.01 1.00
(7) Ratio Ct/Kt -0.07 0.12 -0.67 -0.65 0.38 0.11 1.00
(8) Ratio Ht/Kt -0.15 -0.09 -0.30 -0.31 0.12 -0.14 0.54 1.00
(9) Ratio Ht/Kt growth -0.03 0.09 -0.21 -0.15 0.27 0.44 0.23 0.24 1.00

Table III: Correlations among variables. This table reports the correlations among the main variables used
in the paper. Aggregate US data for the period 1962-2016.

Description Symbol Value

Time preference ρ 2.5% Fixed
Housing flow services 1− β 0.35 Fixed

Drift of the non-housing process µK 6.3% Fixed
Std. dev. of the non-housing process σK 10.2% Estimated

Drift of the housing process µH 2.0% Estimated
Std. dev. of the housing process σH 59.6% Estimated

Correlation between non-housing and housing ρKH 0.745 Fixed
Loan-to-value ratio LTV 0.420 Fixed

Table IV: Model parameters. This table displays the parameters estimated using SMM and the first moments
of the real short-term rate, the real long-term rate, and the C/K ratio for the US from 1962 to 2016. I estimate
the following three parameters: σK , µH , and σH . The rest of the parameters are fixed.

Variable Moment Model Data

Real short rate (1-year) Mean 1.55% 1.38%
Real long rate (10-year) Mean 2.58% 2.42%
Ratio Ct/Kt Mean 0.13 0.29

Real short rate Std. Dev. 0.07% 2.27%
Real long rate Std. Dev. 0.24% 2.29%
Ratio Ct/Kt Std. Dev. 0.07 0.02

Table V: SMM estimation. The first and second moments of the real short-term and long-term interest
rates, and the ratio of consumption to housing, Ct/Kt, are obtained using SMM and the real data. In the
estimation using SMM, I minimize the distance between the first moment (i.e., the mean) in the model and
the first moment in the data for the real short-term and long-term interest rates and the Ct/Kt ratio, and
report the squared root of the second moment (i.e., the standard deviation.)
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log(Ct/Kt) = αc + βc,1 ·Ht/Kt + βc,2 · log(Ht/Kt) +Xt + εc,t

[1] [2] [3]
OLS OLS IV

αc -6,101∗∗∗ -6,553∗∗∗ -4,943∗

(2,167) (2,446) (2,634)
H/K 4,852∗∗ 5,29∗∗ 4,497∗

(2,164) (2,447) (2,635)
log(H/K) -5.167∗∗ -5,61∗∗ -5,353∗

(2.415) (2,718) (2,923)
Controls, Xt no yes yes

F-test 7.59 2.32
χ2-test 20.09

Table VI: Empirical results for consumption. This table reports the coefficients for the empirical analysis of
consumption based on OLS and regressions using instrumental variables (IVs). Standard errors are shown
in parentheses. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.
Controls include real GDP, growth in exports, and growth in imports. Newey-West standard errors are
shown in parentheses. The error structure is assumed to be heteroskedastic and possibly autocorrelated up
to a lag. US data from 1962 to 2016.

rt = αr + βr · (Ht/Kt) +Xt + εr,t

[1] [2] [3] [4] [5] [6]
Real Real Real Nominal Nominal Nominal
OLS OLS IV OLS OLS IV

αr 0.110∗∗∗ 0.082∗∗ 0.066∗ 0.163∗∗∗ 0.166∗∗∗ 0.148∗∗∗

(0.035) (0.036) (0.036) (0.034) (0.053) (0.054)
H/K -0.089∗∗∗ -0.072∗∗ -0.057∗ -0.100∗∗∗ -0.102∗∗ -0.086∗

(0.033) (0.031) (0.033) (0.034) (0.048) (0.049)
Controls, Xt no yes yes no yes yes

F-test 7.24 5.82 8.81 2.28
χ2-test 11.93 3.27

Table VII: Empirical results for short-term interest rates. The real short-term rate is the deflated end-of-year
one-year Treasury constant maturity rate from the St. Louis Fed’s FRED (Federal Reserve Economic Data).
Standard errors are shown in parentheses. ***, **, and * denote statistical significance at the 1%, 5%, and
10% levels, respectively. Controls include real GDP, growth in exports, and growth in imports. Newey-West
standard errors are shown in parentheses. The error structure is assumed to be heteroskedastic and possibly
autocorrelated up to a lag. US data from 1962 to 2016.
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Rt = αr + βr · (Ht/Kt) +Xt + εR,t

[1] [2] [3] [4] [5] [6]
Real Real Real Nominal Nominal Nominal
OLS OLS IV OLS OLS IV

αr 0.110∗∗∗ 0.089∗∗∗ 0.081∗∗ 0.163∗∗∗ 0.089∗∗ 0.164∗∗∗

(0.027) (0.044) (0.039) (0.023) (0.038) (0.045)
H/K -0.080∗∗∗ -0.068∗∗∗ -0.060∗ -0.091∗∗∗ -0.068∗ -0.089∗∗

(0.025) (0.024) (0.036) (0.022) (0.035) (0.041)
Controls, Xt no yes yes no yes yes

F-test 10.61 5.91 17.91 4.16
χ2-test 7.58 4.71

Table VIII: Empirical results for long-term interest rates. The real long-term rate is the deflated end-of-year
10-year Treasury constant maturity rate from the St. Louis Fed’s FRED (Federal Reserve Economic Data).
Standard errors are shown in parentheses. ***, **, and * denote statistical significance at the 1%, 5%, and
10% levels, respectively. Controls include real GDP, growth in exports, and growth in imports. Newey-West
standard errors are shown in parentheses. The error structure is assumed to be heteroskedastic and possibly
autocorrelated up to a lag. US data from 1962 to 2016.
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Figure 1: Dynamics of the slope of the term structure of interest rates and the ratio of housing to non-housing
assets, H/K, in the US economy.
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Figure 2: Dynamics of short-term interest rates and the ratio of housing to non-housing assets, H/K, in the
US economy.
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(a) Short interest rate with ρKH = 0.745 (left) and ρKH = 0.600 (right)
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(b) Short interest rate with σH = 30% (left) and σH = 70% (right)

Figure 3: Sensitivity of short-term interest rates to the LTV ratio, ρKH , and σH . Sensitivity to the LTV
ratio and ρKH (top figures) and sensitivity to the LTV ratio and σH (bottom figures). All figures show the
short-term interest rate, rt, versus the ratio of housing to non-housing capital, Ht/Kt. Results are shown for
the baseline parameters detailed in Table VI. Note that the model captures the negative relation between rt
and the Ht/Kt ratio.
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(a) Consumption with ρKH = 0.745 (left) and ρKH = 0.600 (right)
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(b) Consumption with σH = 30% (left) and σH = 70% (right)

Figure 4: Sensitivity of consumption to the LTV ratio, ρKH , and σH . Sensitivity to the LTV ratio and ρKH

(top figures) and sensitivity to the LTV ratio and σH (bottom figures). All figures show the consumption
to non-housing ratio, Ct/Kt, versus the ratio of housing to non-housing capital, Ht/Kt. Results are shown
for the baseline parameters detailed in Table VI. Note that the model captures the positive relation between
Ct/Kt ratio and the Ht/Kt ratio.
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