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Abstract 

A finite number of sellers ( n ) compete in schedules to supply an elastic demand. The 
cost of each seller is random, with common and private value components, and the seller 
receives a private signal about it. A Bayesian supply function equilibrium is 
characterized: The equilibrium is privately revealing and the incentives to rely on private 
signals are preserved. Supply functions are steeper with higher correlation among the 
costs parameters. For high (positive) correlation supply functions are downward sloping, 
price is above the Cournot level, and as we approach the common value case price tends 
to the collusive level. As correlation becomes maximally negative we approach the 
competitive outcome. With positive correlation, private information coupled with 
strategic behavior induces additional distortionary market power above full information 
levels. Efficiency can be restored with appropriate subsidy schemes or with a precise 
enough public signal about the common value component. As the market grows large 
with the number of sellers the equilibrium becomes price-taking, bid shading is of the 
order of 1 n , and the order of magnitude of welfare losses is 21 n . The results extend to 
inelastic demand, demand uncertainty, and demand schedule competition. A range of 
applications in product and financial markets are presented. 
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1. Introduction 

Many markets are characterized by traders competing in demand or supply schedules. 

This type of competition is very common in financial markets and some goods markets 

like wholesale electricity. Competition in supply functions has been used also to model 

bidding for government procurement contracts, management consulting, or airline pricing 

reservation systems, and provides a reduced form for strategic agency and trade policy 

models. Furthermore, the jury is still out on whether the price or quantity competition 

model fits better different oligopolistic markets and the supply function model appears as 

an attractive contender. In many of the situations depicted private information is relevant, 

uncertainty has both common and private values components, and traders are potentially 

strategic. This is the case, for example, in dealer markets; in both Treasury and central 

bank liquidity auctions, as well as in the reverse auctions proposed by the US Treasury to 

extract toxic assets from the balance sheets of banks. Supply function models in the 

industrial organization tradition have ignored private information while in the finance 

tradition demand function models have relied on the presence of noise traders. 

 

In this paper I present a tractable model of strategic competition in schedules with an 

information structure which encompasses private and common values, avoiding the need 

to introduce noise traders or noisy supply, as well as paradoxes associated to fully 

revealing equilibria, and allowing a full welfare analysis. A main result is that private 

information with positive correlation of values generates market power, over and above 

the full information level, and this has deleterious welfare consequences. As a byproduct 

of the analysis we are able to explain market anomalies as well as provide policy 

prescriptions. 

 

Consider a market where n  sellers compete in supply functions to satisfy a downward 

sloping demand. The market price is the one that equates aggregate supply and demand. 

Each seller receives a noisy signal of the uncertain intercept of his private marginal cost, 
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which has a non-random slope.1 The modeling strategy is to consider linear-quadratic 

payoffs coupled with an affine information structure, which admits common and private 

value components, that yields a unique symmetric linear Bayesian supply function 

equilibrium (SFE) of the game among the n  sellers. Linear equilibria are tractable, in 

particular in the presence of private information, have desirable properties like simplicity, 

and have proved very useful as a basis for empirical analysis. The characterization of a 

linear equilibrium with supply function competition when there is market power and 

private information needs some careful analysis in order to model the capacity of a seller 

to influence the market price at the same time that the seller learns from the price. Kyle 

(1989) pioneered this type of analysis in a financial market context introducing noise 

trading in order to prevent prices from being fully revealing and the market collapsing. 

The present paper provides a tractable alternative to the models with an aggregate 

exogenous shock and is based on rational traders who are heterogeneous because of 

idiosyncrasies that translate in their market positions. 

 

It is found that there is a unique SFE except in the limit cases of pure common value and 

maximal negative correlation. This equilibrium is privately revealing. That is, the private 

information of a firm and the price provide a sufficient statistic of the joint information in 

the market. This means in particular that each trader has incentives to rely on his private 

signal despite the fact that the price aggregates information about the signals of other 

traders in the market.  

 

In the linear equilibrium sellers, when they have private information on their positively 

correlated costs, are more cautious when they see a price increase since it may mean that 

costs are high. The more so, with sellers using steeper schedules, when signals are noisier 

or costs parameters more correlated. The market looks less competitive in those 

circumstances as reflected in increased expected price-cost margins. This is reminiscent 

of the winner’s curse in auctions. Indeed, the price has an information role on top of its 

                                                 
1  We could consider as well the symmetric situation where n  buyers with uncertain private valuations 

compete to fulfill an upward sloping supply schedule. In the paper we stick to the seller convention 
until we develop applications. 
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traditional capacity as index of scarcity. In fact, when the first effect is strong enough 

supply functions slope downwards and prices are above the Cournot level. This is in 

contrast to the results of Klemperer and Meyer (1989) with symmetric information. More 

surprisingly perhaps, as we approach the common value case the price tends to the 

collusive level. This is because of information-induced market power at the unique linear 

equilibrium and not because of the existence of a vast multiplicity of equilibria. Even 

with constant marginal costs there is market power in equilibrium when adverse selection 

is severe enough. Relaxation of competition due to adverse selection is also obtained in 

Biais et al. (2000) in a different pure common value environment. When costs are 

negatively correlated then there is “favorable” selection and competition is intensified 

with respect to the full information benchmark, the competitive outcome being attained 

with maximal negative correlation. 

 

Sellers at the strategic equilibrium act as if there were price–takers but facing steeper 

marginal costs than the true ones. The distortion has a full information market power 

component and another component induced by private information, which is increasing 

with the correlation of cost shocks and noise in the signals (when costs are positively 

correlated). Both aggregate/allocative and distributive/productive inefficiency increase 

with the size of the distortion, implying too low sales and too similar sales among sellers. 

As we approach the common value case expected profits converge to the collusive level. 

Furthermore, simulations suggest that typically the expected deadweight loss increases as 

we approach the common value case and with noisier signals. A welfare optimal 

allocation can be implemented by a price-taking Bayesian supply function equilibrium. It 

is shown how a quadratic subsidy which lowers the perceived slope of marginal costs of 

sellers may induce price-taking behavior and restore efficiency. 

 

The paper considers also the large market case where the number of sellers and demand 

are replicated (with n  the number of sellers and the size of the market as well). Then 

both the distortion induced by private information and bid shading are decreasing in n . 
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Furthermore, bid shading is of the order of 1 n , in a large market there is no efficiency 

loss (in the limit), and the order of magnitude of the expected deadweight loss is 21 n .2 

 

The welfare evaluation of the SFE is in marked contrast with the Cournot equilibrium in 

the presence of private information. The reason is that the SFE aggregates information 

but not the Cournot market.3 In a large Cournot market, in general, there is a welfare loss 

due to private information even in the limit. 

 

The results are shown to be robust to a number of extensions: costly information 

acquisition, with maintained incentives under certain conditions even when close to the 

common value case; inelastic demand, which makes the model basically a double auction 

similar to Kyle (1989) but with no need of noise traders; demand uncertainty, which 

makes the equilibrium noisy and shows how an increase in noise in the public statistic 

lessens the adverse selection problem (when there is positive correlation); and the 

introduction of a public signal, which if it is precise enough may restore efficiency. The 

model with demand uncertainty has as a limit, with appropriate choice of parameters, the 

markets considered in the linear Klemperer and Meyer (1989) model and in the Kyle 

(1989) risk neutral informed traders model. 

 

A leading application of the model to goods markets is to wholesale electricity. The 

model admits also other interpretations. The cost shock could be related to some ex post 

pollution or emissions damage which is assessed on the firm, or it could be a random 

opportunity cost of serving the market which is related to revenue management dynamic 

considerations. At the same time the reinterpretation of the results in terms of demand 

schedule competition opens up a host of applications to financial markets (e.g. to legacy 

                                                 
2  This is also the rate of convergence to efficiency obtained in a double auction context by Cripps and 

Swinkels (2006). Vives (2011b) deals with the limit continuum economy case and provides a 
foundation for competitive rational expectations equilibria. 

3  The welfare analysis in the supply function model contrasts thus with the one in models where there is 
no endogenous public signal such as the Cournot market in Vives (1988), the beauty contest in Morris 
and Shin (2002), or the general linear-quadratic set up of Angeletos and Pavan (2007). 
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loans, central bank liquidity, and Treasury auctions). Each of these applications is dealt 

with in Section 6. 

 

Competition in supply or demand schedules has a long tradition in the literature. It has 

been studied in the absence of uncertainty by Grossman (1981) and Hart (1985) showing 

a great multiplicity of equilibria.4 Similar results in a complete information setting are 

obtained by Wilson (1979) in a share auction model and by Bernheim and Whinston 

(1986) in a menu auction. Back and Zender (1993) and Kremer and Nyborg (2004) obtain 

related results for Treasury auctions. Some of the equilibria can be very collusive.5 

Klemperer and Meyer (1989) show how adding uncertainty in the supply function model 

can reduce the range of equilibria and even pin down a unique equilibrium (linear in a 

linear-quadratic model) provided the uncertainty has unbounded support. In this case the 

supply function equilibrium is always between the Cournot and competitive (Bertrand) 

outcomes.6 The supply function models considered typically do not allow for private 

information.7 Kyle (1989) introduces private information into a double auction for a risky 

asset of unknown liquidation value and derives a unique symmetric linear Bayesian 

equilibrium in demand schedules when traders have constant absolute risk aversion, there 

is noise trading, and uncertainty follows a Gaussian distribution.  

 

The plan of the paper is as follows. Section 2 presents the supply function model with 

strategic sellers and characterizes a SFE and its comparative static properties. Section 3 

performs a welfare analysis characterizing the distortion at the SFE and deadweight 

losses, including welfare simulations and a comparison with Bayesian Cournot equilibria, 

and showing how the efficient allocation can be attained with price-taking equilibria and 

                                                 
4  Grossman thought of firms signing implicit contracts with consumers that committed the firm to a 

supply function. Hart uncovers the equivalence between choosing a reaction function and a supply 
function. 

5  Back and Zender (2001) and LiCalzi and Pavan (2005) show how the auction can be designed to limit 
those collusive equilibria. 

6  This is also the result in Vives (1986) where the slope of the supply function is fixed by technological 
considerations. 

7  Exceptions are the empirical papers of Hortaçsu and Puller (2008) and Kühn and Machado (2004) in 
electricity. 
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implemented with subsidy schemes. Section 4 studies replica markets and characterizes 

the convergence to price-taking behavior as the market grows large and the order of 

magnitude of deadweight losses. Section 5 deals with the extensions: inelastic demand, 

demand uncertainty, public signals, and demand schedule competition. Section 6 

develops the applications. Concluding remarks, including potential policy implications, 

close the paper. Proofs are gathered in the Appendix and in the Supplement (Vives 

(2011a)), which includes also details of the simulations of the model, the analysis of 

endogenous information acquisition and the Bayesian Cournot model.  

 

 

2. A strategic supply function model 

Consider a market for a homogenous good with n  sellers. Seller i  faces a cost  

  2

2
;i i i i iC x x x    

of supplying ix units of the good where i  is a random parameter and 0  .8 Demand 

arises from an aggregate buyer with quasilinear preferences and gross surplus 

  2 2U y y y   , where  and   are positive parameters and y  the consumption 

level. This gives rise to the inverse demand  P y y   . In a reverse auction, for 

example, the buyer presents the schedule  P y y    to the sellers who will bid to 

supply.9 Total surplus is therefore given by    ,i i ii i
TS U x C x    . 

 

We assume that i  is normally distributed (with mean 0   and variance 2
 ). The 

parameters i  and j , j i , are correlated with 2cov ,i j       ,   1
1 ,  1n      , 

for j i . The average parameter  1

n

ii
n 


   is thus normally distributed with 

                                                 
8  We could also deal easily with the case where there the seller faces an adjustment cost of the form 

 2
2i i

ˆx x   where ix̂  is a target quantity for agent i . 

9  We will comment in Section 5.1 on how the results specialize to the case of inelastic demand and in 
Section 5.5 on how they can be reinterpreted for the case of demand instead of supply bids. 
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mean ,    1 2var 1 1n n        
 , and cov , vari        

  .10 Seller i  receives a 

signal i i is     with i normally distributed, 0iE      and   2var i   . Error terms 

in the signals are uncorrelated among themselves and with the i  parameters. Ex-ante, 

before uncertainty is realized, all sellers face the same prospects. 11  

 

Our information structure encompasses the cases of “common value” and of “private 

values”. For 1  , the   parameters are perfectly correlated and we are in a common 

value model. When signals are perfect, 2 0   for all i , and 0 1  , we are in a 

private values model. Agents receive idiosyncratic shocks, which are imperfectly 

correlated, and each agent observes his shock with no measurement error. When 0  , 

the parameters are independent, and we are in an independent values model. When 

0  , the costs parameters are negatively correlated. The case of non-negative 

correlation is the one more relevant empirically. 

 

2.1 Equilibrium 

Sellers compete in supply functions. We will restrict attention to symmetric linear 

Bayesian supply function equilibrium (SFE for short).12 The strategy for seller i  is a 

price contingent schedule  ,iX s  . This is a map from the signal space to the space of 

supply functions. Given the strategies of sellers 1j  , …, n  for given realizations of 

signals market clearing implies that   n

jj=1
p P X s , p  . Let us assume that there is a 

                                                 
10  Note that var 0   

  for   1
1n 

    since then  1 1 0n    . 

11  With normal distributions there is positive probability that prices and quantities are negative in 
equilibrium. This can be controlled by choice of the variances of the distributions and the parameters 

 ,  ,    and  .  

12  What makes the model tractable is the combination of linear-quadratic payoffs coupled with an affine 
information structure (that is, a pair of prior and likelihood that yields affine conditional expectations as 
under the normality) that allows for the existence of linear equilibria. It is crucial that the slopes of 
demand and costs are not affected by uncertainty. Adding (intercept) demand uncertainty presents no 
problem as long as the affine information structure is kept (see Section 5. 2).  
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unique market clearing price     1 np̂ X s , ,...,X s ,   for any realizations of the signals.13 

Then profits for seller i , for any given realization of the signals, are given by  

         1i n i iX s , ,...,X s , pX s , p C X s , p      

where     1ˆ , ,..., ,np p X s X s   . This defines a game in supply functions and we want 

to characterize a SFE. Given linear strategies of rivals  j jX s , p b as cp   , j i , 

seller i  faces a residual inverse demand 

    , 1j i j ij i j i
p X s p x n b cp a s x      

 
          . 

Provided  1 1 0n c    it follows that i ip I dx   where 

  1 1i jj i
I d n b a s 


     , and    11 1d n c

   . The (endogenous) 

parameter d  is the (absolute value of the) slope of inverse residual demand for a seller 

and plays an important role in the characterization of equilibrium and its welfare 

properties. All the information provided by the price to seller i  about the signals of 

others is subsumed in the intercept of residual demand iI . The expression for residual 

demand disentangles the capacity of a seller to influence the market price ( d ) from 

learning from the price ( iI ). Note that iI  is informationally equivalent to i jj i
h a s


  . 

The information available to seller i  is therefore  ,is p  or, equivalently,  ,i is h . Seller 

i  chooses ix  to maximize 

   2 2

2 2
, , ,i i i i i i i i i i i iE s p x p E s p x x I dx E s p x

                    . 

The F.O.C. is 

  2 0i i i i i iI E s ,I dx x      or, equivalently,    i i ip E s , p d x    . 

The second order sufficient condition for a maximum is 2 0d   . An equilibrium must 

fulfill also  1 1 0n c   . The following proposition characterizes the linear equilibrium 

and the following subsections its properties. 14 

                                                 
13  If there is no market clearing price assume the market shuts down and if there are many then the one 

that maximizes volume is chosen. 

14  We use the term increasing or decreasing in the strict sense unless otherwise stated. 
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Proposition 1. Let   1
1 1n      and 2 2

     .  

(i) If 0   there is a unique SFE. It is given by the supply 

function      , ,i i iX s p p E s p d       with    11 1d n c
   , and  c X p    

is given by the largest solution to a quadratic equation  ; 0g c M  where  

     
2

2 21 1 1

n

n
M 

 



      
 . We have that 0ia X s    , 0 d n  , 

   1
1c M M n


   , 1 0M  ; c  decreases with   and M , ranging from    1n   

to    as M  ranges from   to 1 . 

(ii) If 0   there is a SFE if and only if 2 0n M   , then 

    0 2c c n M n M n      . 

 

2.2 Information revelation 

The equilibrium price p  is  a linear function  of, and therefore reveals, the aggregate 

information  ii
s s n  .15 The equilibrium is privately revealing. That is, for seller i , 

 is , p  or  is ,s  is a sufficient statistic of the joint information in the market 

 1 ns s ,...,s  in the estimation of i  (see Allen (1981)). In particular, in equilibrium we 

have that the conditional distribution of posterior beliefs of i  fulfils 

      i i i i iE s , p E s ,s E s    .16 That is, a seller obtains from the price the 

collective information of other sellers (which is relevant as long as costs are correlated) 

but still his private signal is useful to improve the estimation of his cost parameter 

(provided 1  ). This means that incentives to rely (and purchase) private signals 

                                                 
15  Average quantity is given by  ii

x x n b as cp     . Substituting in the inverse demand 

p nx    , noting that in equilibrium 1 0nc  , and solving for p  we 

obtain    1
1p nc nb nas   

     . 

16  Note that under normality the conditional expectation is a sufficient statistic for the conditional 
distribution.  
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remain since a private signal adds information for seller i  on top of the information 

conveyed by the price. (Indeed, we have that 0ia X s     if 1  .)  

 

If the signals are costly to acquire and agents face a convex cost of acquiring precision 

21    then it is possible to show that each seller will have an incentive to purchase 

some precision for any   1
1 1n      and any n  provided that the marginal cost of 

acquiring precision is small enough for little amounts of precision or that the prior is 

diffuse enough. The reason is as follows. A seller by purchasing a signal will improve the 

information on his random cost parameter even though he learns the signals of the other 

sellers through the price. When the number of sellers is large or correlation is high the 

improvement will be small but if the seller can purchase a little bit of precision at a small 

cost he will do it. Furthermore, the more diffuse is the prior the higher the marginal value 

of information. 17 

 

An equivalent formulation that highlights the aggregate and idiosyncratic components of 

uncertainty is to let i i      and note that i i    , where cov , 0i    
  and 

1

1
0

n

ii
n 


 .18 It becomes clear then that key to the private revealing property of the 

equilibrium is that the same signal is  conveys information about the idiosyncratic 

component i  and an aggregate component  , and that the price reveals a sufficient 

statistic of the signals of sellers other than i .19  

 

                                                 
17  If the marginal cost of acquiring precision is positive at zero and   close to 1 then for n  large enough 

there is no purchase of information. However, this is not the case in the natural case of a large market 
where the number of buyers and sellers grow together (as in Section 4). See Section S.4 in the 
Supplement (Vives (2011a))  for the information acquisition model, results and proofs.  

18  We could also let i i̂      where 1

1
lim

n

n ii
n 

  
   is now the common component, then we 

would have both  ˆcov , 0
i

 


   and  ˆ ˆcov , 0
i j

    for i j . 

19  This latter property obtains typically in the linear-Gaussian models with uniform correlation in the 
parameters (see, e.g., Ch. 3 in Vives (2008)). However, Rostek and Weretka (2010) show that this need 
not be the case with heterogeneous correlation (when considering symmetric equilibria which depend 
only on average correlation).  
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The equilibrium is in contrast with the pure common value “noise trader” model of Kyle 

(1989) where risk-averse traders, some with private information about the value of the 

risky asset, face liquidity traders. Here the collective information of traders would be 

revealed by the price, and the market would collapse, except for the presence of noise 

traders. In our base model there is no shock to the residual demand function (be it noise 

traders or demand uncertainty) and, consequently, in the pure common value case ( 1   

and 2
   ) the equilibrium collapses.20 Indeed, when 1   and 20     a fully 

revealing rational expectations equilibrium is not implementable and there is no linear 

equilibrium. The reason should be well understood: If the price reveals the common value 

then no seller has an incentive to put any weight on his signal (and the incentives to 

acquire information disappear as well). But if sellers put no weight on their signals then 

the price can not contain any information on the costs parameters. This is the essence of 

the Grossman-Stiglitz paradox (1980). The approach in our paper allows performing a 

welfare analysis since it does away with the need to introduce noise traders who do not 

have a well-defined utility function. The private value component in the valuation of an 

agent in our model arises naturally in applications as we will see in Section 6.  

 

2.3 Private information and market power 

Despite the fact that the SFE is privately revealing it is distorted in relation to the full 

information supply function equilibrium where sellers share  1,..., ns s s  (denoted by a 

superscript f ). Indeed, following a similar analysis as before it is easy to see that 

     ,f f
i iX s p p E s d        where fd  and fc correspond in Proposition 1 to the 

case 0M  . Whenever there is no correlation between the cost parameters ( 0  ) or 

signals are perfect (the private values case with 2 2 0    )21, 0M  , 

                                                 
20  As we will see in Section 2.4, the equilibrium also collapses when   1

1n 
    since then there is 

no aggregate uncertainty ( var 0   
 ). 

21  In this case the equilibrium is independent of   and it exists even if 1   or   1
1n 

   . 
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     i i i i iE s , p E s E s   
 
and seller i  does not learn about i  from prices. In these 

cases the SFE coincides with the full information equilibrium.22 

 

When 2 0  , the price at a SFE serves a dual role as index of scarcity and as conveyor 

of information. This can be seen from the supply 

function      , ,i i iX s p p E s p d       . Indeed, a high price has a direct effect to 

increase the competitive supply of a seller, but also conveys news that costs for the seller 

are high if 0   (since then  i iE s , p  is increasing in p ) or low if 0   (since then 

 i iE s , p  is decreasing in p ).  When 2 0   supply functions at the SFE are steeper 

than with full information fc c  (and fd d ) due to adverse selection. Private 

information creates market power ( d ) over and above the full information level ( fd ). 

When 2 0   supply functions are flatter fc c and the informational effect of the price 

is pro-competitive since a high price conveys the news to a seller that the costs of rivals 

are high and therefore that his own costs are low due to negative correlation. As   

increases from 0   the adverse selection problem worsens and as   turns negative the 

adverse selection problem disappears and becomes “favorable” selection. The parameter 

M  (a function of   and 2 2
   ) is an index of adverse selection and the slope of the 

supply function becomes steeper ( c  decreases) with M  (Proposition 1). We have that 

when 2 0  , M is increasing in   and       2 2sgn sgn sgnM M       . 

 

Both as either   increases and cost parameters become more correlated, or 2 2
    

increases and private signals are (relatively) less precise, the price signal becomes more 

relevant to estimate i . More precisely, the absolute value of the weight on the information 

component of the price ih  in  i i iE s ,h  increases in   and 2 2
   .23 When 2 0   the 

                                                 
22  This equilibrium is robust to the introduction of noise in the demand function as in Klemperer and 

Meyer (1989), see Section 5.2. 

23  See the proof of Claim A.1 in the Appendix. 
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result is that as   or 2 2
    increase then c  decreases since a high price is bad news (i.e., 

the seller learns more from the price about its cost shock and reacts less to a price change 

than if the price was only an index of scarcity). When 2 0  , as   or 2 2
    increases 

then c  increases since a high price is good news. 24 

 

As   tends to 1, M  tends to   and c  becomes negative. As 1   we have that the 

equilibrium collapses in the limit. In fact, since 0a  ,   1
c n   ,   1

b n   , the 

supply function of a seller converges to the per capita seller demand function 

   1
x p n     (see Figure 1) or, equivalently, the aggregate supply function 

converges to the demand function. As 2 2
      the SFE also collapses and there is a 

discontinuity in the limit when 0  . 25 

  

There are particular parameter combinations when 0   for which the scarcity and 

informational effects balance and sellers set a zero weight ( 0c  ) on public information. 

In this case sellers do not condition on the price and the model reduces to the Cournot 

model where sellers compete in quantities. However, in this particular case, when supply 

functions are allowed, not reacting to the price (public information) is optimal. Figure 1 

depicts the change in the equilibrium supply function as   goes from   11n    to 1 for 

is  :  X , p . 

                                                 
24  From the expression for the weight a  of private information in the strategy of a seller and the fact that 

d decreases in c  we have that  a  decreases in   and in 2 2

    when 0  . 

25  When 2 2

      we have that 0a   and c c 
, with fc c  for 0   and fc c 

 ( fc c 
) 

for 0   ( 0  ). (See Claim A.2 in the Appendix.) However, the equilibrium in the limit economy 

with 2 2

      (even when 1  ) is given by    fX p c p    since  i iE s , p  , and 

therefore it coincides with the limit of the SFE as 2 2

      only when 0  . There is a 

discontinuity in the equilibrium correspondence when 0  . This discontinuity disappears when 

there is noise in the demand function (see in Section 5.2).  
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Figure 1. The SFE  X , p  as   goes from   1
1n


    to 1. 

 

Constant marginal costs26 ( 0  ): If 2n M   there is no SFE (Proposition 1 (ii)) and 

the slope of supply degenerates to competitive ( c  ) as 0  . However, whenever 

adverse selection is important enough 2n M   then as 0  , 0c c  and  there is a 

SFE with slope 0c  (negative when n M ). (See Claim A.3 in the Appendix.) In short, 

for high enough adverse selection sellers have market power even with constant returns. 

 

Our results are related to the winner’s curse in common value auctions (Milgrom and 

Weber (1982)): A bidder refrains from bidding aggressively because winning conveys the 

news that the signal the bidder has received was too optimistic (the highest signal in the 

pool). Bidders shade their bid more, to protect against the winner’s curse, the less precise 

their signals are (see Reece (1978)). In our model a seller refrains from competing 

aggressively with its supply function because a high price conveys the bad new that costs 

are high and the more so the less precise his signal is. However, in the typical auction 

model sellers bid for a unit of a good while in our model sellers compete in schedules to 

                                                 
26  This case approximates classical multi-unit auction environments.  
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fulfill a demand for a divisible good and therefore the analogy works with respect to 

adverse selection but not necessarily with respect to market power. 27  

 

The results are also reminiscent of asymmetric information models where traders submit 

steeper schedules to protect themselves against adverse selection.28 Biais et al. (2000) in a 

common value environment in a discriminatory auction show that adverse selection 

reduces the aggressiveness of competition in supply schedules of risk neutral uninformed 

market makers, facing a risk averse informed trader who is subject also to an endowment 

shock. At the unique equilibrium in convex supply schedules the outcome is of imperfect 

competition because marginal prices are increasing with the size of trade as market 

makers protect themselves against informed trading. The latter combined with the 

optimal response of the informed agent determines a residual demand curve with finite 

elasticity for every market maker. This imperfect competition result disappears in a pure 

private value environment where there is no asymmetric information about the value of 

the asset and adverse selection arises only out of the idiosyncratic endowment shock to 

the trader. Then marginal prices need no longer be increasing in the amount traded to 

reflect the informational content of trade. In both Biais et al. (2000) and in our paper 

private information generates market power.29 In our model in the pure private value case 

( 0  ) there is some market power provided that 0   and it vanishes when 0  . 

 

2.4 Competitiveness 

The competitiveness of a market is usually measured in terms of absolute and relative 

margins over marginal costs which are closely related to the perceived elasticity of the 

                                                 
27   Our results are perhaps more closely related to the generalized winner’s curse or “champion’s plague” 

pointed out in Ausubel (2004) for multi-unit auctions according to which, and translated in our context, 
the expected cost of a bidder conditional on being allocated a larger quantity is larger than with a 
smaller quantity.  

28  I will discuss the precise relationship with the Kyle (1989) model when introducing noise and demand 
schedule competition (Section 5.4). 

29  However, their framework is very different from ours: In their paper the competing market 
makers/sellers are uninformed while privately informed in ours; the monopsonistic informed buyer 
selects quantities in the posted schedules while we have a passive competitive demand; the buyer has 
liquidity shock while there is no noise in our demand; and the auction is discriminatory while ours is 
uniform. As we will see in Section S.1 of the Supplement (Vives (2011a))  the behavior of a large 
market is quite different in both models. 
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residual demand of a seller. For seller i  the residual demand 

is    1 ,jj i
p X s p 


  , with elasticity î ip dx  . The (absolute value of the) 

slope of residual demand is  1 1 1d n c    . From the equilibrium F.O.C. we have 

that  i i ip E MC dx  , where    i i i iE MC E s x    is the (interim) expected marginal 

cost of seller i . In Lerner index form, 

  1

ˆ
i i

i

p E MC

p 


 . 

A similar relation holds for the margin over average (interim) expected marginal 

cost    1

1

n

n n i ii
E MC n E MC


  ,  n np E MC dx    and, correspondingly, for the 

aggregate (interim) Lerner index, 

 
  1

1

1

n np E MC d

p n c n n    



 
  , 

where  p nx    is the elasticity of demand.  It follows that 

 p E s d x      
   .30  

 

Three important benchmarks for rivalry are perfect competition, Cournot and collusion. If 

sellers are price takers and act with full information  1,..., ns s s then   0i ip E MC   

and   0n np E MC  , and this corresponds to the case when c    and 0d  . 

 

The case 0c   corresponds to a Bayesian Cournot equilibrium, where seller i  sets a 

quantity contingent only on his information is , and the aggregate (interim) Lerner index 

is   1
n 

.31 The supply function and the Cournot equilibrium (and allocations) coincide 

when   111M n 
  , in which case 0c  and d  . When 0c  , we are in the 

                                                 
30  Noting that      1

1

n

ii
n E s E s E s  


     , the latter equality holding since s  is a sufficient 

statistic for s  in relation to  . 

31  There is a unique Bayesian Cournot equilibrium and it is linear (see Proposition S.1 in the Supplement 
(Vives (2011a))).  
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usual case in which the supply function equilibrium has positive slope and is between the 

Cournot and the competitive outcomes (e.g. Klemperer and Meyer (1989) when 

uncertainty has unbounded support and with full information, in which case 0fc c  ). 

However, when 0c   the aggregate (interim) Lerner index is larger than the Cournot 

level. 

 

If sellers were to collude with full information (share the signals  1,..., ns s s and 

maximize joint profits) it is easy to see that we would obtain the usual collusive 

(monopoly) Lerner formula, 

  1n np E MC

p 


 . 

What is surprising, as we will show, is that as   ranges from   1
1n

   to 1 we have 

that d  ranges from 0  to n , and, correspondingly, the price ranges from competitive to 

collusive. The following proposition states the competitiveness-related results plus a 

volatility result. 

 

Proposition 2. Let    1
1 1n       and 2 20      , then at the SFE:  

(i) The slope of equilibrium supply is steeper ( c  smaller) with increases in   and c  

ranges from   to 1 n , and d  from 0  to n ,  as   ranges from   1
1n

   to 

1. When 0   ( 0  ), c  decreases (increases ) with 2 2
   . 

(ii) As   ranges from   1
1n

   to 1 the price ranges from competitive to collusive. 

When 0c   ( 0c  ) the price is smaller (larger) than the Cournot level. When 

0   ( 0  ) the price is larger (smaller) than the full information level. 

(iii) The expected price p  and margin    np E MC dE x    are increasing in   and 

2 2
   (when 0  ), and with 1n (for 0c   when 0  ). They are decreasing 

in 2 2
   when 0  . 

(iv)  Price volatility  var p , when 0  , decreases with 2
  and increases with 2

 . 
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It is remarkable that sellers may approach aggregate collusive margins in a one-shot 

noncooperative equilibrium because of informationally-induced market power. Let us 

recall that at the full information equilibrium (corresponding to 0  ), indicating the 

pure market power distortion, the aggregate Lerner index would equal  fd n  . As 

1   the private information distortion becomes more severe and sellers protect 

themselves by increasing the slope of their supplies and become less and less aggressive. 

Furthermore, as   1
1n     the increased “favorable” selection implies that market 

power is reduced and eliminated in the limit. 

 

The explanation of the result is as follows. The aggregate margin and output tend to the 

collusive level, maximal market power, because as 1  , d n , the aggregate 

supply function converges to the demand function and the market collapses. This is 

precisely the case in which the slope of residual demand for an individual seller is 

collusive since sellers tend to produce the same (as we will see in Section 3.1, despite that 

there is some productive inefficiency as long as 1  ) and as 1  , 1 1

i̂ 
  and 

  1n np E MC
p 


 . 

This would not happen if equilibrium were to exist for 1  . Indeed, with noisy demand 

(Proposition 8) equilibrium exists even if 1   and the aggregate margin is never fully 

collusive. (In a similar vein, as   1
1n     the competitive outcome obtains as the 

equilibrium collapses also since c  , see Figure 1, but with demand uncertainty it 

does not and the limit then is not fully competitive.)  

 

Remark 1: It is worth noting that the distortion d  may increase with n  when 0c  .32 

This does not happen with full information -then fc ( fd ) is increasing (decreasing) in n  

                                                 
32  For example,    3 2d n d n    with parameters 1   , 2 2 1     when   is close to1 .  

See Figure S.1a in Section S.3 of the Supplement (Vives (2011a)) which contains more results and 
details of the simulations.  



 19

(see Claim A.4 in the Appendix)- and it will not happen either when demand is replicated 

with the number of sellers (see Section 4). 

 

 

3. Welfare analysis 

In order to assess the welfare loss at the SFE we provide an outcome-based 

characterization of the equilibrium and characterize the deadweight losses. At the full 

information equilibrium sellers have market power and there is no private information. 

There is a welfare loss due to market power. At the SFE there is an additional welfare 

loss due to private-information-induced market power. I show also that the efficient 

outcome can be implemented with a price-taking supply function equilibrium and how 

subsidies can implement the efficient allocation. 

 

3.1 A characterization of the SFE outcome and welfare 

Let, i it E s    , 1i  , …, n  and  1,..., nt t t  be the predicted values with full 

information s . The strategies at a SFE, where , ii iE s p t    , induce outcomes as a 

function of the realized vector of predicted values t :   
1

n

i i
x t


and  p t . It is easy to see 

then than the outcome at the SFE maximizes a distorted surplus function with common 

information t : 

  1

2

12
max n

i i

n

iix

d
E TS t x




      
  

where d  is the equilibrium SFE parameter (Proposition 1). That is, the market solves the 

surplus maximizing program with a distorted cost function which represents both higher 

total and marginal costs: 

    2

2
ˆ , ,i i i i i

d
C x C x x   .33 

The result follows since the (sufficient) F.O.C. of the distorted planning problem are: 
                                                 
33  The SFE allocation would be obtained by price-taking sellers with distorted costs functions  ˆ ,i iC x   

and full information t . However in this case, supply functions would always be upward sloping, 

   i ix p E t d       , since there is no informative role for the price to play. 
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  0i ip E t d x        , 1i  , …, n , 

which are identical to those of the SFE since: ,i i iE s p E t         . Similarly, the full 

information supply function equilibrium can be obtained as the solution to a distorted 

planning program replacing d  by fd . It is clear that the full (shared-) information 

efficient allocation obtains setting 0d  . The implied allocation is symmetric (since the 

total surplus optimization problem is strictly concave and sellers and information 

structure are symmetric).  

 

We can consider an SFE allocation parameterized by d  for a given realization of 

predicted values t ,   
1

;
n

i i
x t d


. The deadweight loss ( E DWL t   ) at the SFE is the 

difference between total surplus at   
1

;
n

i i
x t d


 and at the efficient allocation 

  
1

; 0
n

i i
x t d


 . The wedge 0d   induces both distributive/productive and 

aggregate/allocative inefficiency. Distributive inefficiency refers to an inefficient 

distribution of sales/production of a given aggregate (average) quantity x . Sellers 

minimize distorted costs  ˆ ,i iC x   with 0d  , equivalent to a fictitious more convex 

technology, and the choices of individual quantities are biased towards too similar sales: 

   1

i ix x t t d       while cost minimization would require letting 0d  . Aggregate 

inefficiency refers to a distorted level of average quantity while producing in a cost-

minimizing way. Note that average quantity      ;x t d t n d      is decreasing 

in d . The impact of the distortion on profits is also of interest. An increase in d  

increases margins but also productive inefficiency with an a priori ambiguous impact on 

profits. The following proposition states the results. 

 

Proposition 3. Consider an allocation parameterized by d  for a given realization of 

predicted values t . Then 

(i) both aggregate and distributive inefficiency, and therefore E DWL t   , are increasing 

in d ; and 
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(ii) average profits increase in d  for d  small and decrease in d  for d  close to n .  

 

The intuition for the result (i) should be clear since increases in d , for a given realization 

of predicted values, reduce average output and bias individual outputs towards excessive 

similarity. In regard to result (ii) when the distortion is small increasing d  increases 

average profits by increasing margins more than productive inefficiency while the 

opposite happens when the distortion is large.  

 

Do the welfare results extend when averaging over predicted values, that is, when taking 

unconditional expectations? From Proposition 3 we have that for given predicted values t  

both types of inefficiency increase with d , and therefore with   and 2
 , but changes in 

those parameters change the probability distribution over t . The (expected) deadweight 

loss (  E DWL ) at the SFE is the difference between expected total surplus at the 

efficient allocation ( oETS ) and at the SFE ( ETS ). Let  ;i ix x t d  and  ;0o
i ix x t .  It 

can be checked that 

        2 2
2o o

i iE DWL n n E x x E u u               
  , 

with i iu x x    and o o o
i iu x x   , where the first term corresponds to aggregate 

inefficiency and the second to distributive inefficiency. The following proposition takes 

into account the averaging effect and characterizes deadweight losses.  

 

Proposition 4.  

(i) Expected aggregate inefficiency increases always in   (if 2 0  ) while it may 

increase or decrease in 2
 . If 0   then it decreases in 2

 . 

(ii) Expected distributive inefficiency may increase or decrease in   and in 2
 . If 

2 0   then it decreases in   and if 0   then it decreases in 2
 . 
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(iii) Expected profits, when 2 0  , converge to the collusive level as 1   and to the 

competitive level when  11n    . If 2 0   then they decrease in   and if 

0   then they decrease in 2
 . 

 

Remark 2: With respect to the welfare loss induced by full information market power: 

Both expected aggregate and distributive inefficiency decrease in 2
 , and expected 

aggregate (distributive) inefficiency increases (decreases) in  .  

 

The intuition for the results is as follows. (i) The aggregate inefficiency  term 

        
22 21 1oE x x n n d E t                  

   increases in d  and in the 

variance of the prediction t E s   
  , var t   . Increases in   increase both (if 2 0  ) 

while increases in 2
  decrease var t    and this effect may dominate if   is small. (ii) 

The distributive inefficiency term       
22 211o

i i iE u u d E t t             
  increases 

in d  and in  2
vari iE t t t t      

  . The non-monotonicity with respect to  (if 

2 0  ) and 2
 (if 0  ) follows since  var it t    

decreases in  (if 2 0  ) and 2
 (if 

0  ). Indeed, with 1   or 2
    there would be no distributive inefficiency. The 

results when 2 0   follow since then d  is independent of    and 2
  and only the 

averaging effect is present, and when 0   then d  is decreasing in 2
 .34  (iii) When 

1   and 2 0   we know (from Proposition 2) that d n  and 

   , ,mx t d x x t n    , the average collusive output. Furthermore, as 1  , firms to 

produce the same and productive inefficiency at the SFE vanishes, and expected profits  

converge to the collusive level. The same result holds replacing collusive by competitive 

when   1
1n    .  

                                                 
34  The same applies for the welfare loss induced by standard market power since fd d  is independent 

of   and 2

 . 



 23

3.2 Simulations  

In the central scenario of the simulations (with  0,1 ) increases in   or 2
  increase 

the deadweight loss at the SFE (   oE DWL ETS ETS  ) - see Figure 2.35 However, 

increasing   may decrease  E DWL  when 2
  is small for a range of   bounded away 

from 1, and increasing 2
  may decrease  E DWL  when   is small. Furthermore, 

expected profits  iE  increase in   or 2
  provided  or 2

  are not too close to 0 . 

Otherwise  iE   may decrease in   or 2
 , and this will tend to be so for 2

  large.36  

 

The outcome of the simulations performed suggests thus that the results of Proposition 

3(i) derived for given predicted values of cost parameters extend to averaging over those 

values provided that  and 2
  are not too small. This is so since for given t  increases in 

  or 2   increase both aggregate and distributive inefficiency. When averaging over 

predicted values distributive inefficiency decreases with increases in   or 2
  and the 

effect overwhelms the impact given t  when 2
  (or  ) are small enough. With respect to 

expected profits the results of Proposition 3(ii) do not extend to the ex ante situation since 

now increasing   or 2   increases the expected margin and although it increases also the 

distortion d , it reduces the expected distributive inefficiency because the predictions of 

sellers are more aligned. However, when either   or 2
  is small  distributive 

inefficiency may weigh more. 

 

Remark 3: The deadweight loss due to private-information-induced market power 

fETS ETS  (which equals  E DWL  minus the deadweight loss in the full information 

equilibrium o fETS ETS ) increases in   or 2
  (  E DWL  tends to increase with 

increases in   or 2
  while o fETS ETS diminishes with 2

  always and distributive 

                                                 
35  See Section 3.1 in the Supplement (Vives (2011a)) for details and more results of the simulations. 

36  Recall that  iE   decrease in   when 2 0   and in 2

   when 0   (Proposition 4(iv)). See 

Figures S.2 and S.3 in the Supplement (Vives (2011a)) for illustrations of the simulations. 



 24

inefficiency -which tends to dominate- also diminishes with  ).  fETS ETS  may 

decrease in 2
  when   is small. 

 

 

 

Figure 2.   oE DWL ETS ETS   as a function of   and 2

  (with parameters 1   , 
2 1  , 4n  , 200  , 20  ). 

 
Supply function versus Cournot. For 2

  or   small, sellers at the supply function market 

act with full information, 0c   and have less market power than in the (Bayesian) 

Cournot equilibrium,  where sellers do not act with full information. For larger   and 

2 0  , 0c   and sellers in the supply function market have more market power and this 

may dominate the information effect. Simulations suggest that for parameters for which 

0c   at the SFE, the supply function market attains a higher expected total surplus than 

the Cournot market and, for n  not too large, the opposite happens when 0c   (e.g. for 

 close to 1).37 (See Sections S.2, S.3.3 and Figure S.5  in the Supplement (Vives 

(2011a))  When a supply function market is modeled, for convenience, à la Cournot a 

bias is introduced, overestimating the welfare loss with respect to the actual supply 

function mechanism on two counts when supply functions slope upwards: excessive 

market power and lack of information aggregation. When the equilibrium supply function 

                                                 
37  When parameters are such that 0c   the SFE and (Bayesian) Cournot allocations coincide and 

therefore they are both equally efficient.   
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slopes downwards the Cournot market underestimates market power and then the 

Cournot market may in principle under- or over-estimate the deadweight loss in relation 

to supply function competition.  

 

3.3 Price-taking equilibrium, efficiency, and optimal subsidies 

If sellers would act as price-takers and had full information the allocation would be (full 

information) efficient. It is easy to see that the efficient full information allocation can be 

implemented by a symmetric price-taking linear Bayesian supply function equilibrium 

(price-taking SFE for short, denoted with a superscript PT ). This is an equilibrium 

where sellers do not perceive the influence that their supply decisions have on prices but 

still condition on their private signals and try to learn from prices. The F.O.C. for a price-

taking SFE are the same as in the proof of Proposition 1 letting 0d  : 

,i i ip E s p x       for 1i  , …, n , 

yielding a supply function    , ,PT
i i iX s p p E s p      . As before, in equilibrium p  

reveals  s , , ,i i i iE s p E s s         , and the price-taking equilibrium implements the 

efficient solution since sellers have full information and act competitively. 

 

From the previous analysis it may be conjectured that first best efficiency may be 

restored by a quadratic subsidy 2 2ix  that “compensates” for the distortion 2 2idx  and 

induces sellers to act competitively.38 The question is whether we can find a   (with 

0   for a subsidy) such that  d      , where        11 1d n c   
     

is the (endogenous) distortion when the slope of marginal cost is   . That is, whether 

we can find a solution to the fixed-point equation  d   . If we can find such a  , a 

seller would act effectively as if he was competitive and facing a marginal cost with slope 

  and the F.O.C. would be  

                                                 
38   Angeletos and Pavan (2009) provide a thorough analysis of tax-subsidy schemes in quadratic 

continuum economies with private information and with agents using non-contingent strategies (e.g. of 
the Cournot type). In their model, however, there is no learning from endogenous public signals and 
taxes are made contingent on aggregate realizations. 
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   0i i i ip E s d x p E s x                    . 

The following proposition states the results. 

 

Proposition 5. Let   1
1 1n      and 2 2

     . Then: 

(i) There is a unique price-taking SFE and the equilibrium implements the efficient 

allocation. The slope of supply is given by     11 1PTc n M M     , which is 

decreasing with M  and  .  

(ii) There is an optimal quadratic subsidy 2* 2ix ,      11* 1 PTn c  
   , which 

implements price-taking behavior. Implementation need not be unique if adverse selection 

is severe: 2n M  . The optimal subsidy *  increases with   and  , and it increases 

(decreases) with 2
  when 0   ( 0  ). 

 

Remark 4: In contrast to result (i) at a price-taking Bayesian quantity-setting equilibrium 

there is typically a welfare loss because of lack of information aggregation.39 

 

Remark 5: We have that 0PTc   for M  small (and negative a fortiori) and 0PTc   for 

M  large. The price-taking supply function will coincide with the marginal cost schedule 

only when there is no learning from prices (that is, when 0M  , in which case both 

schedules boil down to i i ip E s x      ).40 The supply function of a seller in the price-

taking equilibrium is always flatter than the supply function in the strategic equilibrium 

since 0d   and    1 11 1 0PTc c d M         .41 

                                                 
39  See Section S.2 in the Supplement (Vives (2011a)).  

40  As in the strategic case the supply function of a seller converges to the per capita seller demand 

function as 1  , and PTc   as    1
1n 

   . 

41  Sellers are more cautious responding to their private signals when they are strategic since they take 
into account the price impact coming from the amount sold as well as the potential informational 

leakage from their actions: 0PTa a  . By the same token, given that 0fd d   we have that 
PT fc c c   and PT fa a a  .  
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To understand result (ii) note that we have to find a   such that    PTc c    , and 

this will yield        11 1 PTd n c  
   .  When 2n M  , and the adverse selection 

problem is moderate, we are in the situation depicted in Figure 4a and we can find a 

subsidy 0    to implement price-taking behavior. However, when 2n M   we are 

in the situation depicted in Figure 4b and we may need to induce effective increasing 

returns: 0   . However, for negative slopes of marginal costs there are two linear 

equilibria (with slopes of supply 2c  and 1c -see Lemma A.1 in the Appendix). This means 

that we can find an optimal quadratic subsidy always but the implementation of the 

efficient allocation is unique only when there is no need to induce negative slopes of 

effective marginal costs. When 2n M   and   0
PTc c   there is one equilibrium that 

implements price-taking behavior with * 0   . For example, for   such that ˆPTc c  

( '' in Figure 4b) we need to choose the higher 1c  equilibrium, while for lower   with 

0 ˆPTc c c  , ( ' in Figure 4b) we need to choose the lower 2c  equilibrium. It is worth 

noting that, indeed, when   1
1n     competitive behavior is already approached in 

the market with no subsidy and, therefore, * 0  . 

 

PTc

c



c

* 

 

Figure 4a: The equilibrium parameters PTc and c  as a function of  and the optimal subsidy *  

when 2 0n M    and 0M  .  
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Figure 4b: The equilibrium parameters PTc and c  as a function of   and the optimal subsidy   
when 2 0n M    (the case depicted is with 0n M  ). When '   the optimal subsidy is 

'  with    2
PTc ' c     and when ''   the optimal subsidy is ''  with 

   1
PTc '' c    . 

 

 

4. Convergence to price-taking behavior in large markets 

In order to study whether (and if so how fast) the inefficiency of supply function 

equilibria disappears in large markets we consider replica markets where the numbers of 

sellers and buyers grow at the same rate n . More precisely, suppose that there are n  

buyers, each with quasilinear preferences and benefit function   2 2u x x x    where 

x  is the consumption level. This gives rise to the inverse demand  nP y y n    

where y  is total consumption. There are n sellers as before. Total surplus is therefore 

given by    ,i ii
TS nu y n C x    and per capita surplus by TS n . We restrict 

attention in this section to the case of nonnegative correlation  0,1 . 

 

We denote with subscript n  the magnitudes in the n -replica market. The results we have 

obtained so far, except possibly comparative statics with respect to n , hold replacing   

by n . The following proposition characterizes the convergence of the SFE to a price-

taking equilibrium as the market grows. (See  Section S.1 in the Supplement (Vives 

(2011a)) for the definitions of orders of sequences, further results, proofs and comments.) 
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As we have seen before the price-taking equilibrium is first best efficient since it 

aggregates information. We confirm that the efficient outcome is approached as the 

market becomes large.  

 

Proposition 6. Let  0,1  . In the replica market:  

(i) As the market grows large the market price np  at the SFE converges in mean square 

to the price-taking Bayesian price PT
np  at the rate of 1 n .  

(ii) The deadweight loss at the SFE  o
n nETS ETS n  is of the order of 21 n . 

 

A large market approaches efficiency in prices at a rate 1 n , which is the same as the 

usual rate under complete information. This is a statement that bid shading is of the order 

of 1 n . It follows from the fact that the distortion    11 1n nd n n c
   is of order 1 n , 

and both equilibria aggregate information since np  and PT
np  reveal the average signal ns . 

Simulations suggest that both nd  and  nE DWL n  are monotonically decreasing in n .42 

 

Cripps and Swinkels (2006) obtain a parallel result in a double auction environment. The 

authors consider a generalized private value setting where bidders can be asymmetric and 

can demand or supply multiple units. Under some regularity conditions (and a weak 

requirement of “a little independence” where each player’s valuation has a small 

idiosyncratic component), they find that as the number of players grows (say that there 

are n  buyers and n  sellers) all nontrivial equilibria of the double auction converge to the 

competitive outcome and inefficiency vanishes at the rate of 21 n   for any 0  .  

 

As in Kyle (1989) we could ask what happens when the total amount of precision 

available to agents is fixed as the market grows large. Then as n  tends to infinity 

0  . In this case it is easy to see that M   as n   and, as when 1  , the 

                                                 
42  See Section S.3.2 in the Supplement (Vives (2011a)) for further results and details of the simulations. 

The optimal subsidy      1* 1 1 PT
n nn n c  

   can be checked also to be decreasing in n .  
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supply function of a seller converges to the per capita demand, d n , and the 

equilibrium collapses. In the limit we approach the collusive price (as in Proposition 2) 

and therefore an extreme form of the non-competitive limit of Kyle. 

 

Remark 6: For a given 0   and for large enough n  we have always that the supply 

function equilibrium attains higher surplus than the (Bayesian) Cournot equilibrium. This 

is so since as n  grows the SFE, but not the Cournot equilibrium, converges to the full 

information first best. In a large enough market the Cournot model always overestimates 

the welfare loss since a deadweight loss remains due to private information when 0   

(while convergence to price taking behavior obtains as in the supply function market).43  

 

 

5. Extensions 

In this section we test the robustness of the results in the context of inelastic demand, 

demand uncertainty, public signals, and demand schedule competition. 

 

5.1 Inelastic demand 

The case where an auctioneer demands q  units of the good is easily accommodated 

letting     and q   . Then from the inverse demand we obtain 

 y p q    . Let   1
1n     and 2 2

     . It can be checked that there is a 

unique SFE if only if 2 0n M   .44 In equilibrium we have that 
  

2

1 1
0

n M

n M
c



 

 
  , 

and    1
1d n c


   is decreasing with n . A necessary condition for existence of the SFE 

                                                 
43  Proposition 7 holds for the (Bayesian) Cournot equilibrium replacing  o

n
ETS  with the expected total 

surplus at the price-taking (Bayesian) Cournot equilibrium. See Proposition S.2, and Figure S.7 in the 
Supplement (Vives (2011a)). 

 

44  The analysis is analogous to the proof of Proposition 1. Now the S.O.C. holds if 0c  . If  0q   we 

are in a double auction case and there is also a no-trade equilibrium. See Vives (2010) for a 
presentation of the model with demand bidders facing an inelastic supply. 
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if 2 0   is that 3n  . If 2 0   then 0M   and there is an equilibrium for 2n  .  

As M increases, c  decreases and as 2 0n M   , 0c   and the SFE collapses. This 

is because of the combination of adverse selection and market power when demand is 

inelastic: The supply schedules become too inelastic to sustain a linear equilibrium as 

2 0n M   . The market breaks down when traders submit vertical schedules since 

with vertical residual demand curves traders sometimes would like to force unbounded 

prices. This is similar to the double auction context of Kyle (1989) in which a linear 

equilibrium exists only if the number of informed traders is larger or equal than 3 (when 

there are no uninformed traders). In our more general model with strategic agents facing 

an elastic demand function from passive buyers the market does not break down since 

there is always price elasticity from demand. With inelastic demand supply functions are 

always upward sloping ( 0c  ). This is as in the auction models of Kyle (1989) or Wang 

and Zender (2002) where demand schedules always have the “right” slope.  

 

The results obtained specialize to the inelastic demand case. We highlight here the 

differences. With regard to Proposition 2 we have that in the range of existence 

2 0n M   : (ii) the price is always between the competitive and the Cournot price 

(since 0c  ); (iii) expected bid shading increases with q n  (  n np E MC dq n   and d  

is decreasing with n ); and (iv)  var p  increases with   and 2
 , and decreases with 2

  

(since  x q n  and therefore  var varp E s     
  ). With regard to propositions 3 and 

4, the results for distributive inefficiency apply (there is no inefficiency in the aggregate 

quantity). With regard to Proposition 5: (i) we have that    1
1PTc M


   and c   

as 0  , and  (ii) for any 0   there is always a  0, 
 

such that 

   PTc c     with effective marginal costs with positive slope. This yields 

        1
* 1 1 1PTn c M n  


     . The subsidy *  increases with M  and  , 

and decreases with n .  
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5.2 Demand uncertainty 

Demand uncertainty can be incorporated easily in the model as long as it follows a 

Gaussian distribution and enters in an additive way:  P y u y     with 

 20, uu N �  independent of the other random variables. The analysis of the equilibrium 

proceeds as in Section 2.1 with now the intercept of residual demand iI  being 

informationally equivalent to i jj i
h u a s


   . The following proposition characterizes 

the equilibrium (see Section S.5 in the Supplement (Vives (2011a)) for a development, 

complete statement of results and proofs).45 

 

Proposition 8. Let 0  . For any,   1
1 ,1n      , 2 0u  , and 2 0  , there exists a 

SFE. It is given by      , ,i i iX s p p E s p d        where 0 d n  . As 2 0u  ,  

d tends to the value of d  in Proposition 1 (where 2 0u  ) and as 2
u  , fd d .   

The equilibrium is unique if 0   , or 0   and 3n  .46  Then if 2 0  , d  increases in 

 ; and if 2 0   (resp. 2 0  ) d is decreasing (resp. increasing) with 2
u .   

 

Remark 7: When 0    equilibrium exists if and only if 2 0n M    (that is, we need 

0   and large enough). 

 
 

The properties of the equilibrium follow.  

 

The equilibrium is noisy. It is immediate that the price is now informationally equivalent 

to u nas  , where as before ia X s   , and sellers learn only imperfectly from the 

price about the average signal s . Now we have a noisy linear equilibrium instead of a 

privately revealing one since sellers have on top of their private signal a noisy estimate of 

                                                 
45  Vives (2011c) considers the common value case with demand uncertainty in a limit large market and 

performs a welfare analysis.  

46  Simulations suggest that the equilibrium is unique also when 0   for 2, 3n  . 
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the average signal. The equilibrium exists even when 1   or   1
1n     since with 

uncertain demand even for extreme values of  there is aggregate uncertainty. The 

consequence is that the collusive and competitive cases are not attained when 2 0u   

when 1   or   1
1n    (respectively). 

 

Conditions for the noise independence property (equilibrium independent of 2
u ).  

(i) When 2 0   ( 0M  ), then the equilibrium does not depend on 2
u  and fd d (as 

in Proposition 1 when 2 0  ). When 2
   and 2 0u   then again the equilibrium 

is independent of 2
u , and fd d  yielding    fX p c p   . This limit is also the 

equilibrium when 2
   . This is in contrast with the case 2 0u   where, as we have 

seen in footnote 25 (Claim A.2 in the Appendix), there is a discontinuity in the limit 

when 2
  . In these cases there is no relevant asymmetric information, no learning 

form prices, and the equilibrium is independent of the distribution of demand uncertainty 

(as in Klemperer and Meyer (1989)).47 

 

Comparative statics. We have that d  decreases (and c  increases) in 2
u  when 2 0   

because as there is more noise in the demand the information role of the price and the 

adverse selection problem are diminished. The supply function is flatter with higher 2
u (a 

high price need not be such bad new about costs since it may come from a high demand 

realization).48 This means that as 2
u  increases average output increases and the expected 

margin over marginal cost decreases. The opposite happens when 2 0   since then 

there is favorable selection and an enhanced information role of the price is pro-

                                                 
47  When 1   and 2 0   we are in fact exactly in the Klemperer and Meyer (1989) case with linear 

and uncertain demand, symmetric quadratic costs, and no private information (and we obtain the same 

equilibrium with slope of supply fc c ). 

48  Bernhardt and Taub (2010) obtain the opposite result in a model with private information about the 
demand for a homogeneous product in which price is observed with noise. Then as the variance of the 
noise increases, the information role of the price signal is diminished, a high price signal is less likely 
to mean a high price, and agents rely less on the price.  
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competitive.   As 2
u   we obtain that fd d since then sellers do not learn from the 

price and rely only on their private signals. As 2 0u  , d  converges to the value in the 

privately revealing equilibrium of Proposition 1. 

 

As   increases, and cost parameters become more correlated, d  increases since the 

weight on the information component of the price ih  in ,i i iE s h    increases with  (see 

Claim S.1 in the Supplement (Vives (2011a))), We have that fd d  when 2 0   and 

fd d  when 2 0  . As 1  , d  attains its largest value d n  for given 2
 , 2

  

and 2
u , and the price falls short of the collusive level.49 As   1

1n    ,  d  attains its 

smallest value 0d 


. As 2 0u  , d n  and 0d 


. 

 

It is easy to see that d  is nonmonotone in 2
 when 0  .50 For 2

  small, increases in 

2
  increase the value of the price signal u nas  (the weight on the information 

component of the price ih  in ,i i iE s h   ) while for 2
  large they diminish it (since the 

price is not very informative as 0a  when 2
  ). This does not matter 

when 2 0u  , since then the price is not noisy and recovers s as long as 0a  . The result 

is that d  increases with 2
  for 2

  small and decreases with 2
  for 2

  large. 

 

5.3 Public signal 

Suppose that sellers receive a public signal on  , r     where  20,N  �  and 

 cov , 0    (and   independent also of the rest of random variables in the model). 

Then linear strategies will be of the form  , ,i iX s r p b as er cp    . A similar analysis 

                                                 
49  Note that with demand uncertainty a collusive seller recovers the value of u from the price by using a 

supply function. The Lerner condition in the collusive case is exactly as in Section 2.4. 

50  Indeed, for 0  , d attains its minimum value fd d  both when 2 0   and when 2
   . 

Furthermore, d  increases in 2
  when 2 2

    and eventually it decreases as 2
  grows (see  (v) 

Proposition S.5 (iii) in the Supplement (Vives (2011a))). 
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as in Section 2.1, with the information set of seller i  being now  , ,is r p  or, 

equivalently,  , ,i is r h  where i jj i
h a s


  , leads to the following proposition (see 

Section S.6 in the Supplement (Vives (2011a)) for a proof). 

 

Proposition 9. Let   1
1 1n     , 2 2

     , and 2 0  , then there is a unique SFE. 

It is given by the supply function      , , ,i i iX s p p E s r p d        with the 

parameters d  and a  characterized as in Proposition 1 with c  the largest solution to the 

quadratic equation  ; 0g c Q   where 

     
         

2 2 2 2

2 2 2 2 2

1 1 1

1 1 1 1 1

n n

n n n
Q   

    

     
       

   

      
 . 

 
We have that 1 0Q  . As 2

  , Q M  and as 2 0  , 1Q  , c   and 

0d  . If 2 0   then Q , and therefore d , increase with 2
  and  , and 

   2sgn sgnQ Q   .  

 

The equilibrium is privately revealing as in our base case, with the price measurable in 

the public signal r  and in s ,     1
1p nc nb n er as         , and 

   ,x E s r n d        
  . Now the public signal provides information on 

aggregate uncertainty   beyond the average signal s     . For 2
  low enough we 

will have 0Q   even if 0  and d  will be reduced below the full information level fd  

when sellers know s  (but not the public signal). The public signal provides additional 

information to the collective information of sellers.51 When 0Q   a high price is good 

news for the costs of a seller (the weight on the price in , ,i iE s r p   ) is negative).52 

                                                 
51  If the public signal were to be just a noisy version of s  then as noise vanishes we would recover the 

full information distortion fd . 

52  The coefficient of ih  in  i i iE s ,r ,h equals  d Q n   (see Claim S.3 in the Supplement 

(Vives (2011a))). To fix the intuition consider the case 0  . Then for seller i  the public signal r  

provides a noisy signal about 
i

 :  i jj i
rn n  


   . The price provides a noisy signal about 
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Note that 0Q   when 2
  is positive and small or negative. When 0   there is 

favorable selection as in the case where there is no public signal. 

 
The index of adverse selection is now Q  instead of M . It follows that the effects of 

changes in   on  c  and d  are the same as in the case 2
    since Q  is increasing in 

 .53 When 1   the distortion d n  (sinceQ  ) and we approach collusive 

pricing (as in the case when there is no public signal). Similarly as in the base case, and 

for the same reasons, we have that as 1   the linear equilibrium collapses. When 

  1
1n     we approach also the competitive outcome (since then 1Q  ). 

Increases in 2
  will decrease c  if 2

  is large, but if 2
  is small or negative then c  

will increase with 2
 . This is so since    2sgn sgnQ Q    and when 2

  is small 

(but positive) or negative, 0Q   and fd d . Then increases in 2
  reduce Q  and 

increase c  since the information role of the price is enhanced and a high price is good 

news.54 

 
As the precision of the public signal improves ( 2

  decreases), the adverse selection 

problem diminishes, and the slope of equilibrium strategies as well as the distortion are 

lowered. In fact, when 2 0   the distortion is eliminated, 0d   (since 1Q  ). Note 

that in the limit as 2 0  , there is no equilibrium (indeed, c  ).55  

                                                                                                                                                 

jj i


  and therefore helps reading the public signal r . When the seller sees a high price then it 

infers that 
jj i


  is high and therefore 

i
  low, the more so the less noisy is the public signal ( 2

  

low). A similar intuition applies when 2 0   is small, and this explains why then 0Q   and a high 

price is good news. As   increases eventually a high price becomes bad news. 

53  The same applies in relation to 2

  for   not too negative since then Q  is decreasing in 2

  

(      2 2 2 2
1 1sgn sgnQ n n            , see the proof of Proposition 9). 

54  Indeed, when 2 0   the absolute value of the weight on ih  in  i i iE s ,r ,h  increases in   and 2

  

(see Claim S.2 in Section S.6 of the Supplement (Vives (2011a))). 

55  When 2 0  ,  ,E s r r     (since s     ) and the candidate equilibrium price does not 

depend on the average signal. This implies that at a symmetric equilibrium sellers do not put any 
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5.4 Demand schedule competition 

The model can be restated in terms of competition among buyers of an asset of unknown 

ex-post average value  1

n

ii
n 


   and with value i  for buyer i . With a change of 

variables i iz x   we have the results for demand competition. The (inverse) supply of 

the asset is given by ii
p z     (with 0   , 0  ) where ii

z  is the total 

quantity demanded. The equilibrium demand is      , ,i i iZ s p E s p p d        

= ib as cp    (with the endogenous parameters as in Proposition 1). The marginal 

benefit of buying iz  units of the asset for buyer i  is i iz  where i  is the value with a 

private component and iz  a transaction or opportunity cost, or risk aversion 

component.56 The profits of buyer i  are given by   2 2i i i ip z z     A real market 

example would be firms purchasing labor of unknown average productivity  because of 

technological uncertainty, and facing an inverse linear labor supply and quadratic 

adjustment costs in the labor stock.  

 

The extensions to the supply competition model also apply here. Of particular interest is 

the case of supply uncertainty since it corresponds to the noise trader model when 1  . 

Suppose that noise traders have a price-elastic demand (negative supply)  1 u p    , 

then market clearing implies that  1 0ii
u p z       and therefore 

ii
p u z     . It follows from Proposition 8 that increasing noise trading ( 2

u ) 

increases c , decreases d  and the expected margin (of expected marginal benefit over 

                                                                                                                                                 
weight on their private signals (i.e., 0a  ), but this is inconsistent since when 2 0  , at a candidate 

linear equilibrium p reveals s , and therefore    
 

 
2

2 2

1

1
, ,

i i i
E s r p s s

 

 

  
 




  


   and a seller 

will put some weight on the difference between his private signal and the average in order to estimate 

i
  (which is imperfect correlated with  ). 

56  Note that the adjustment cost is exogenous while with CARA preferences, for example, it would be 
endogenous and would depend, in expectation, on the degree of risk aversion times the variance of   
conditional on the information of the trader. 
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price) while c  and d  are non-monotone in 2
 . When supply is inelastic and random 

according to u  and 0   we recover the Kyle (1989) model with 2n   risk neutral 

informed investors. Considering noise of the form u  we have that demand 

 1 u p u        as    and market clearing is given by 0ii
u z  . It follows 

then that in equilibrium we have an inverse of market depth (the Kyle lambda) 

  1
p u nc

   , exactly as in Kyle (1989), decreasing in 2
u , increasing in 2

 , and non-

monotone in 2
 .57 

 

 

6. Applications  

In this section we provide several applications of the model: electricity markets, strategic 

trade policy, pollution damages, revenue management, and financial markets. We 

consider supply schedule competition examples first followed by demand schedule 

competition cases and look at fit to our model, link to the results, and empirical evidence. 

 

6.1 Supply schedule competition 

Wholesale electricity markets 

The day-ahead or spot market, with separate auctions for each delivery period (half-

hourly or hourly), and the balancing market, that secures that demand and supply match 

at each point in time, fit our model since they are typically organized as uniform price 

multiunit auctions. Supplies are discrete while smooth in our model.58 The continuous 

(linear in particular) supply approach has been widely used and empirically implemented 

                                                 
57  See Claim S.2 in Section S.5 of the Supplement (Vives (2011a)) and exercise 5.1 in Vives (2008) for 

the Kyle model with risk neutral investors. 

58  Holmberg at al. (2008) show that if prices are selected from a discrete grid, where (realistically) the 
number of price levels is small in comparison to the number of quantity levels, then the step functions 
converge to continuous supply functions as the number of steps increase. This justifies the 
approximation of step-functions with smooth supply functions. The modeling of the auction with 
discrete supplies leads to existence problems of equilibrium in pure strategies (see von der Fehr and 
Harbord (1993)). 
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in electricity markets.59 In our base model the random residual demand a firms faces is 

due to cost uncertainty. Demand uncertainty is a relevant factor in the wholesale market 

and then our extension (Section 5.2) applies.60 Private cost information related to plant 

availability will be relevant when there is a day-ahead market organized as a pool where 

firms submit hourly or daily supply schedules. The residual demand faced by a firm will 

be random (even with predictable demand) since the supply of other firms depends on 

plant availability, which is random. The firm may have privileged information because of 

technical issues, transport problems, hydro availability in the reservoirs, and the terms of 

supply contracts for energy inputs or imports.61 Furthermore, in an emission rights 

system, future rights allocations may depend on current emissions and firms may have 

different private estimates of such allocation. This will affect the opportunity cost of 

using current emission rights.  

 

The empirical evidence points to firms bidding over marginal costs.62 The Cournot 

framework has been used often but tends to predict prices that are too high given realistic 

estimates of the demand elasticity. Our model helps understand the biases introduced 

when taking the Cournot modeling short-cut when firms compete in supply functions (see 

Section 3.5). There is also evidence of information aggregation: Mansur and White 

(2009) show how a centralized auction market in the Eastern US yields very important 

information aggregation benefits over bilateral trading in order to achieve an efficient 

allocation in a situation where differences in marginal costs and production are private 

information among firms. In our model prices are revealing of average cost conditions 

                                                 
59  See Green and Newbery (1992), and Green (1996, 1999). See Niu et al. (2005), Hortaçsu and Puller 

(2008), and Sioshansi and Oren (2007) for the Texas balancing market (ERCOT). 

60  In a wholesale electricity market the demand intercept   is a continuous function of time (load-
duration characteristic) that yields the variation of demand over the time horizon considered. At any 
time there is a fixed   and the market clears. In the British Pool up to 2001, the first liberalized 
wholesale market, generators had to submit a single supply schedule for the entire day. Over this 
period residual demand facing a firm may vary considerably due to demand uncertainty and plant 
outings.  

61  The latter include constraints in take-or-pay contracts for gas where the marginal cost of gas is zero 
until the constraint –typically private information to the firm– binds, or price of transmission rights in 
electricity imports depending on the private arrangements for the use of a congested interconnector.  

62  See e.g. Borenstein and Bushnell (1999), Borenstein et al. (2002), Green and Newbery (1992), and 
Wolfram (1998). 
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(Proposition 1) but strategic behavior on the basis of private information prevents the 

achievement of an efficient allocation (propositions 3 and 4). 

 

We have seen also (Proposition 2) how increasing the noise in the private signal 2
  

makes the slope of supply steeper (when 0  ). This result may help explain the fact 

that in the Texas balancing market small firms use steeper supply functions than those 

predicted by theory and that those departures explain the major portion of losses in 

productive efficiency (Hortaçsu and Puller (2008)).63 Indeed, smaller firms may have 

signals of worse quality because of economies of scale in information gathering while 

residual non-contract private cost information has not been taken into account in the 

estimation. Consistently with our analysis the welfare losses due to the “excess 

steepness” of supply functions over and above standard market power may be more 

important than the losses due to the latter. Finally, it is worth noting that the usual 

restriction to upward sloping schedules in electricity markets caps the market power of 

sellers in the spot market.64  

 

Other interpretations of the cost shock 

The cost shock i  could be related to a linear ex post pollution or emission damage 

which is assessed on the firm and for which the producer has some private information. 

The regulator can introduce a quadratic subsidy to production to eliminate the distortion 

originating in private information (Proposition 6) and can alleviate the distortion by 

disclosing the available information on the average damage   (Proposition 9). 

 

The cost shock can also be interpreted as a random opportunity cost of serving the market 

which is related to dynamic considerations (e.g. revenue management on the face of 

                                                 
63  The authors explain the finding by the complexity faced by small firms in set up the bidding (and argue 

that to take a linear approximation to marginal costs in the Texas electricity market is reasonable). 

64  The rules typically require producers to submit nondecreasing (step) function offers (although in some 
markets, like the Amsterdam Power Exchange, retailers may submit nonincreasing demands). 
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products with expiration date and costly capacity changes).65 The value of a unit in a 

shortage situation is the opportunity cost of a sale. A high opportunity cost is an 

indication of high value of sales in the future. In this case a firm would have a private 

assessment of the opportunity cost with which it would form its supply schedule. For 

example, if supply function competition provides a suitable reduced form for pricing for 

airline travel66 then taking into account the information aggregation role of price may 

help explaining pricing patterns which have proved difficult to explain with extant 

theoretical models (see e.g. McAfee and te Velde (2006)). For example, when airlines see 

prices going up they may infer, correctly, that the opportunity cost is high (i.e. that 

expected next period demand is high) and they reduce supply in the present period to be 

able to supply next period at a higher profit.  

 

The cost shock could also be a (negative) linear subsidy in a strategic trade policy game 

where governments manipulate the supply function of domestic firms with tariffs and 

subsidies.67 Laussel (1992) considers a market with linear demand and constant marginal 

costs where firms compete in a common foreign market with the help of the domestic 

government imposing a quadratic export tax and a linear subsidy.68 If the amount of 

subsidy is uncertain and the domestic firm receives a private noisy signal about it, we can 

conclude (Proposition 2 when 0  ) that increasing noise in the signals softens 

                                                 
65  Situations where the product, be it a hotel room, airline flight, generated electricity or tickets for a 

concert, has an expiration date and capacity is fixed well in advance and can be added only at high 
marginal cost.  

66  Talluri and Van Ryzin (2004, p. 523) state: “A typical booking process proceeds as follows. An airline 
posts availability in each fare class to the reservation systems stating the availability of seats in each 
fare class.” This is indeed like a supply function.  

67  More in general, strategic agency models where an owner provides incentives to the manager to 
compete in the market place have typically a reduced form which is a supply function. This is similar 
to the presence of adjustment costs in certain industries committing the firms to supply functions (e.g. 
internal incentives in management consulting). See Vickers (1985), Fersthman and Judd (1987) and 
Faulí-Oller and Giralt (1995). 

68  The quadratic tax makes steeper the slope of the effective marginal cost schedule of a firm softening 
competition (this would determine the  in our model) and the subsidy allows the domestic firm to 
capture a larger share of the profits. Grant and Quiggin (1997) study the case in which firms are 
competitive. Whenever supply functions are linear the authors find an equilibrium in tax-subsidy 
schedules with quadratic trade revenue taxes.  
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competition. It follows that the disclosure policy of the government towards national 

firms can affect also competitiveness. 

 

6.2 Demand schedule competition 

Legacy loans auctions 

They were envisioned in the US Public-Private Investment Program (March 2009) to 

remove bad loans from the balance sheet of banks. Basically, the banks would nominate 

pools of legacy loans that meet certain criteria and that they wish to sell. Approved 

private investors bid for the pools of loans and receive a non-recourse loan having as 

collateral the same securities to be acquired. The winning bid for each pool then is either 

accepted or rejected by the bank. In terms of our model the marginal valuation of a bidder 

will depend on the collateral that it can post. Using the same securities as collateral of the 

non-recourse loan to finance the purchase is equivalent to providing a subsidy to bidders 

that decreases the slope of their marginal valuation. Our model would rationalize then the 

subsidy scheme of the Treasury since it would reduce the discount of the auction price 

(Proposition 6).69 

 

Liquidity auctions 

In an open-market central bank operation the (often inelastic) supply of funds is met by 

bank’s demand bids. The marginal unit value i  of funds for bank i  is idiosyncratic, with 

a common component   related to the interest rate/price in the secondary interbank 

market, and is assessed imperfectly by the bank (for example, due to uncertainty about 

future liquidity needs). Banks’ marginal valuations are positively correlated, declining 

with   reflecting the structure of  their pool of collateral (see e.g. Ewerhart et al. (2010)). 

A bidder bank prefers to post illiquid collateral in exchange for funds, and with an 

increased allotment the bidder must offer more liquid types of collateral which have a 

higher opportunity cost. 

                                                 
69  The supply function model can also account for Paulson's reverse auction plan to extract toxic assets 

from the banks: it would serve a price discovery purpose but the Treasury would be suject to  
overpricing. Any information the Treasury has on average valuations should be released (Proposition 
9). (See Section 5 in Vives (2010)). Ausubel and Cramton (2009) propose to combine the forward 
auction with a reverse auction as in the Paulson plan. 
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The model illustrates the impact in the auction discount and in the efficiency of liquidity 

distribution of changes in key parameters such as those happening in a crisis situation. 

The more severe the information problem (a larger   or 2 2
   ) or the more costly to 

part with more liquid collateral (higher ), the steeper demand functions are, the larger 

the equilibrium margin, and the inefficiency in funds allocation (and the equilibrium may 

break down in the inelastic case; propositions 1, 2, 3 and 4, and Section 5.1). The effects 

have been corroborated empirically.70 The central bank can try to reduce the inefficiency 

in the distribution of liquidity, which can be substantial when   and/or 2 2
    are large, 

accepting lower quality collateral from the banks in the repo auctions. This is equivalent 

to provide a quadratic subsidy to the banks that lowers effectively  . The amount of the 

subsidy will be increasing with   and 2 2
    and decreasing with n  (Proposition 6 and 

Section 5.1). Central banks in the crisis have enlarged acceptable collateral and some of 

them the qualifying participants in the auctions.71  

 

Treasury auctions 

The sources of private information in this context are different expectations about the 

future resale value of securities   (for instance, bidders with different forecast of 

inflation with securities denominated in nominal terms), and private values arising out of 

different liquidity needs due to idiosyncratic shocks.72 There is evidence of prices in 

Treasury auctions featuring a discount from secondary market prices, increasing with the 

noise in the signal of the bidders (as in Proposition 2), as well as aggregating information 

                                                 
70  The comparative static predictions of the auction discount with respect to the expected secondary 

market value  E s   are consistent with documented features of the ECB euro auctions. (See 

Ewerhart et al. (2010), and Vives (2010). Note however that the ECB auctions in the period studied are 
discriminatory while our model is uniform price.) Cassola et al. (2009) show that in ECB auctions after 
the subprime crisis in August 2007 marginal valuations for funds of banks increased, the aggregate bid 
curve was steeper with increased bid shading. In our model the level effect on valuations would be 
represented by an increase in  . 

71  For example, the Federal Reserve established the TAF auction facility (with a single-price format) to 
broaden the range of counterparties and the range of collateral in relation to regular open market 
operations. 

72  See Hortaçsu and Kastl (2008) and Bindseil et al. (2005). 
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(Proposition 1).73 Underpricing is thought to be a serious problem in uniform price 

auctions.74 There are also worries that in the financial crisis of 2007-8 margins and profits 

of (Wall Street) dealers may have grown dramatically at the expense of the Treasury and 

the Fed. Underpricing and high expected profits are consistent with our results 

(propositions 2 and 4). 

 

 

7. Concluding remarks 

In a model with private and common value uncertainty and without noise traders we find 

a unique privately revealing equilibrium where traders rely on their private signals (and 

where the incentives to acquire information are preserved). A main result is that private 

information generates market power over and above the full information level. Several 

testable implications derive from the analysis. An increase in the correlation of cost 

parameters or in the noise in private signals makes supply functions steeper and increases 

expected price-cost margins. The average margin may be above the Cournot level and get 

closer to the collusive level as correlation increases, with no coordination of sellers. 

When demand is uncertain an increase in noise will decrease expected margins.  

 

The results may help explain pricing patterns arising in electricity markets, revenue 

management, and auctions. For example, ignoring private cost information with supply 

function competition in electricity markets may underestimate the slope of supply; and 

the Treasury may overpay in reverse auctions for toxic assets which reveal their average 

value due to increased correlation of values for banks. The biases introduced by a 

Cournot model when competition is in fact in supply or demand schedules are also 

characterized. 

                                                 
73  See Cammack (1991) and Nyborg et al. (2002). Gordy (1999) argues that bidders in Treasury auctions 

submit demand schedules to protect against the winner’s curse and he associates larger bid dispersion 
with increased incidence of the winner’s curse. Bid dispersion in our model can be linked to the slope 
of the demand schedule, with a steeper slope with more noise in the signal. 

74  See the evidence provided by Kandel et al. (1999) and by Keloharju et al. (2005). US Treasury 
auctions are exclusively uniform price since October 1998, and only a limited number of primary 
dealers can submit competitive bids; in Treasury auctions in Sweden the range of participants is from 6 
to 15 (Nyborg et al. (2002)). 
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With regard to welfare, at the SFE sellers supply too little and too similar quantities; the 

efficient allocation can be obtained with price taking behavior; and typically the expected 

deadweight loss is increasing in the correlation of the cost parameters and in the noise of 

private signals. With regard to policy, price taking behavior may be induced with an 

optimal quadratic subsidy, and a precise enough public signal about the common value 

component may restore efficiency. The former explains, for example, how in a financial 

crisis loosening collateral requirements in central bank liquidity auctions may be part of 

an optimal subsidy scheme to banks, or how in the US PPIP scheme for legacy loans 

auctions a subsidy to bidders may be rationalized. 

 

The model and results have already been seen robust to a number of extensions 

maintaining the symmetry in the model. Further work should explore the role of 

asymmetries in technology and information structure.75 

 

                                                 
75  Rostek and Weretka (2010) present results in the latter vein. 
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Appendix: Proofs of propositions 1, 2, 3, 4, 5, and Remark 2. Statement and proof of 

Claims A.1, A.2, A.3 and of Lemma A.1. 

The proofs of propositions 7, 8 and 9 as well as complementary material, simulations, 

and the analysis of information acquisition can be found in the Supplement (Vives 

(2011a)). 

 

Proof of Proposition 1: (i) Suppose that sellers other than i  use the 

strategy  ,j jX s p b as cp   . From the market clearing equation and from the point of 

view of seller i  (provided  1 1 0n c   ) the price is informationally equivalent to 

    1 1 1 j ii i jh b n n c p x a s              . The pair  ,is p  is 

informationally equivalent to the pair  ,i is h , hence , ,i i i i iE s p E s h         . From our 

Gaussian information structure  
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and the projection theorem for normal random variables we obtain 
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Using the F.O.C.  ,i i ip E s p d x       ,  ,i iX s p b as cp    and 

 1i ih p nc nb as        , we obtain the following  
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Identifying coefficients, letting
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with    11 1d n c
    and where c  is given by the equation 

   1 1M nc

n
c d




      

 
 or, equivalently, the quadratic  ;g c M  with: 

 
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For 1n   there is a unique solution to the quadratic equation. For 2n   and 0   the 

discriminant of   ;  0g M   is positive, and therefore the equation has two real roots, 

but only the largest root  

         
  

2 2 22 2 2

2

2 2 2 2

2 1 1

n M Mn n M n n M n n M n M n

n n M
c

     



            

 
  

is compatible with the second order condition 2 0d   . 

 

It is easily checked also that    1
1 ; 0g M M n M


    and therefore for the largest 

root we have    1
1c M M n


    because of convexity of the parabola   ;  g M . It 
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follows also that     1 1
1c M M n n 

       and therefore1 0nc   and 

 1 1 0n c    either for 0c   or 0c  , and 0 d n  . Furthermore, 0a   

since 1  . (Note also that 1c   when 0   since then 0M   

and     1 1 1c d M n c          since 0 d  and   1
0c n   .) We show that c  

decreases in  . Direct computation shows that  
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because 1 0M    and the numerator in the fraction is positive since
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The largest root of   ;  0g M   decreases with M  since 0g M    for   1
c n   . 

This is so since it can be checked that g M   is a convex parabola in c  with largest root 

  1
n  . It follows that for   1

c n    we have that 0g M   . As M   we have 

that 1 0nc   and   1
c n    since otherwise from    1 1M nc

n
c d




  

    and 

0 d n   we would have that c   which contradicts 1 0nc  . It follows that as 

M  ,   1 1 1n c n    or d n . As 1M  ,    1
1M M n


    and 

therefore c   and 0d  . 

(ii) If 0   we have that at the candidate SFE    2 3d n n M M n     (and 

    0 2c c n M n M n      ). Then 0d   (fulfilling the S.O.C.) if and only if 

2 0n M   .  
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Claim A.1: Let 2 0  , then the absolute value of the weight on ih  in ,i i iE s h    

increases in   and 2 2
   . 

Proof: The coefficient of ih  in ,i i iE s h   equals  d M n   and is increasing 

in M since d  is increasing in M . If follows that when 2 0   the coefficient is 

increasing in   since then M  is increasing in   and when 0M   ( 0M  ) it is 

increasing (decreasing) in 2 2
    since then M  is increasing (decreasing) in 2 2

   . The 

result follows. 

 

Claim A.2: When 2 2
      we have that 0a   and c c 

,  where 
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
 is decreasing in  . 

 

Proof: Note that if 2 0   we have that 0M   and c  is given by the positive root of 
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2 2
      it is immediate that 0a  , and since  1M n    from the expression 

for 2c  we obtain c c 
, where  with fc c  for 0  ,   1
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 for 

  1
1n    , and c


 decreasing in  . 

 

Claim A.3: If 2 0n M    then as 0  , c   and if 2 0n M    then as 0  , 

0c c .  
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Proof: It is immediate from the expression for 2c  that when 2 0n M   , 20
lim c


  , 

and when 2 0n M    using l’Hôpital rule we find that 
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Proof of Proposition 2:  

(i) The slope c  decreases with M  which, when 2 0  , increases with   

and 2 2
   .76 When 0  , M  decreases with 2 2

    and c  increases in 2 2
   .  As   

ranges from   1
1n

   to 1, M  ranges from 1  to   and c  ranges from   to 1 n , 

and d  ranges from 0  to n  (from Proposition 1).  

 (ii) In equilibrium,  p E s d x      
    and from the demand function we obtain 
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1

max n
i i

n

iix
E s




 
   

where 
1

n

ii
E s


 
    2

1 1 12

n n n

i i i ii i i
px E s x x


  

     , with (sufficient) F.O.C.  

 
1

2 0
n

i i ii
x E s x   


    , 1i  , …, n . 

Adding up across sellers we obtain  

  1n np E MC

p 


 . 

It is immediate that the average collusive output is    2mx E s n       
  . At the 

SFE as 1   (when 2 0  ) we have that d n , and for given s  the  aggregate 

                                                 
76  Note that the equilibrium depends only on the ratio 2 2

   .  
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interim Lerner index converges to the collusive level 1  and mx x  . Similarly, as 

  1
1n    we have that 0d   and    ox x E s n        

   , the average 

competitive output. 

(iii) We have that        1

np E MC dE x d n d          , which is increasing 

in d , and therefore with   or 2 2
    (when 0  ).  From Claim A.4 below d   

decreases with n  when 0   and 0c  . The same happens with the expected price since 

    1
p d n d             is increasing in d . The opposite results for 

2 2
    when 0   since then d  is decreasing in 2 2

   .  

(iv) We have that     2
var varx n d E s          

   where  1E s s        
    

and  2 1var var n           
  . It follows that 

     
   

22

2 2

2 1 1

1 1
var var var

n

n n
E s s 

 

 

  
   

 

  
          

    increases in   (since 

  1
1n    ) and 2

 , and decreases in 2
 . We conclude that price volatility 

     2
var varp n x   decreases with 2

  and increases with 2
  when 0  ) (since 

d increases with 2 2
    when 0  ). 

 

Claim A.4: d decreases with n  when 0   and 0c  . 

Proof: At the equilibrium 0g c    and it is possible to check that 
c g n

n g c

  

  
    

     
  

      

         

1 1

1 1

1

1 1 1
2 1 2

1 1

2 1 1 1 1

d cn Mn M
c Mn c M n

n n

c n M M Mn n
.

   
   


    

 
 



   
     

 
       

  

It follows that     1 1 c
n n

c n n c 
 

      

            
    

11 11 1 1 1 1

1 1
0

d n Mn Mn c M c M

n g c

     
 

        
   

  
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when 0c   since 0g c   , and when 0   we have that 0M   

and  1 1 0Mn    . Note that for 0  , fd d  and therefore fd ( fc ) is decreasing 

(increasing) in n . 

 

Proof of Proposition 3: 

 (i) Considering a Taylor series expansion of TS  (stopping at the second term due to the 

quadratic nature of the payoff) around the efficient allocation, which 

maximizes E TS t   ,77 it follows that 

          22 1; ;0 ; ;0 2i ii
E DWL t = n n x t d x t n x t d x t          . 

To supply an average quantity x  the market solves the program 

    
1

1

1 1
ˆmin ,  . . n  n

i i

n n

i i ii ix
E C x t s t x x




 

       

yielding    1
ˆi ix x t t d      , 1i  , …, n .78  If x  and 0x are supplied in a cost-

minimizing way then  0 0 1
i i ix x x x t t        and 0 0

i ix x x x    . Since 

     ;x t d t n d      , it follows that aggregate inefficiency is given by 

                
22 21 1

; ;0 2 2n n x t d x t n n n n d t                   
 

 
 

and it is increasing in d . The residual in the deadweight loss is due to distributive 

inefficiency. Letting    ; ;i iu x t d x t d   ,    ;0 ;0o
i iu x t x t   , and 

 22 1
t ii

n t t    , and noting that    i iu t t d   and  o
i iu t t   , distributive 

inefficiency is given by 

    22 11 22 2o
i i ti

u u n d         , 

and it is increasing in d . 

                                                 
77  The result holds true, in fact, comparing an efficient allocation with any another allocation which is 

based on weakly coarser information. See Lemma 1 in Vives (2002).  

78  Note that 1 1

1 1

n n

i ii i
E s n E s n t t  

 
            . 
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 (ii) Let    ;i it d E t  , where i  are profits at the SFE, and 

   1; ;ii
t d n t d   , then it can be shown that in equilibrium 

    2

2
; ;i it d d x t d

    
 

 where        1
; ;i ix t d x t d t t d      . It follows that 

    
 

2

2

2

2
; ; t

d
t d d x t d








      
  


   and  

    
 3

2 2;
; t

t d n d d

d n d d
x t d

 

  
 

   
 


  . 

This implies that 0d    for d  small and  0d    for d  close to n .  

 

Proof of Proposition 4: Let  ;i ix x t d  and  ;0o
i ix x t . From the proof of Proposition 

3(i) we obtain 

      2 2
=E E = 2o o

i iE DWL DWL t n nE x x E x x                  
  , 

and the corresponding decomposition  

        2 2
2o o

i iE DWL n n E x x E u u               
  , 

with i iu x x    and o o o
i iu x x   , where the first term corresponds to aggregate 

inefficiency and the second to distributive inefficiency. 

 

(i) We have that         
22 21 1oE x x n n d E t                  

  . We know 

that increases in   or 21   increase the variance of the prediction t E s   
   (see 

proof of Proposition 2(iv)), and therefore  2
E t  

  increases in   and decreases in 

2
 . Since d  increases in   (for 2 0  ) we can conclude that aggregate inefficiency 

increases with  . We have also that d  increases in 2
  if 0   and it can be checked 

that aggregate inefficiency may be non-monotonic with respect to 2
 . If 0   then d  is 

weakly decreasing in 2
  and aggregate inefficiency decreases in 2

 . 
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(ii) We have that       
22 211o

i i iE u u d E t t             
 . I claim that  2

iE t t  
  

is decreasing in   and 2
  when 1  . Noting that 

 
             

2 2 2

2 2 2 2 2 2

1

1 1 1 1i i i i
n

n
t E | s ,s s s  

     

    
        

   
         

      
 

and  
            

2 2 2

2 2 2 2 2 2

1

1 1 1 1
n

( n )
t s s  

     

    
        

  
      

       ,  

we obtain 
 
    

2

2 2

1

1
i it t s s

 

 

  



 
     and  2

vari iE t t t t       
   

 
    

2

2 2

2
1

1
var is s

 

 

  



 

 
 

 
 . Since      2 2 1var 1 1is s n n          we 

conclude that      
  

2 4

2 2

2 1 1

1
i

n

n
E t t 

 

 

  

 

 
   

 , which is decreasing in   and 2
  (and 

increasing in n ) when 1  . The effect of   ( 2
 ) on  2

iE t t  
  is particularly strong 

when 2
  (  ) is small (close to 0 ), while d  increases in   and 2

  (when 0  ). The 

total effect can go either way. If 2 0   then d  is independent of   and distributive 

inefficiency decreases in  . If 0   then d  is weakly decreasing in 2
  and distributive 

inefficiency decreases in 2
 . 

(iii) From the proof of Proposition 3 (ii) we have that  

   
 

 
 
 

2 2

2 2
2

; ;
i

i

E t E t t

n d d
E t d E t d d



  
 

 


  

                         

 
 . 

When 1   and 2 0   we know (from Proposition 2) that d n  (and 

   , ,mx t d x x t n    ). Furthermore, as 1  ,  2
0iE t t   

 , 

   1

i ix x t t d       tends in mean square to 0  and productive inefficiency at the 

SFE vanishes. (Note that    1m m
i ix x t t     and therefore as 1   m m

i ix x x    in 

mean square.) It follows that  ;iE t d    converge to the collusive level as 1  : 
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 
 

2

22 2

E t

n
n



 






     
 


. When   1

1n     and 2 0  , then 0d   

(    , ,0ox t d x x t     and    , ,0o
i i ix t d x x t  ), and  ;iE t d    converge to the 

competitive level  ; 0iE t d    . (Note also that var 0t     as   1
1n    .)  

When 2 0  ,  iE   is linear and decreasing in    since  then 

        2 2 2sgn sgn 0iE n d d               . If 0   then d  is weakly 

decreasing in 2
  and an increase in 2

  leads to a decrease in both  2
E t  

  and 

 2

iE t t  
 . 

Proof of Remark 2 : Similarly as in the proof of Proposition 4 we obtain 

      2 2
2o f f o f o

i iETS ETS n n E x x E u u                
  , 

and since neither   nor 2
  affect fd  it follows that both aggregate and distributive 

inefficiency decrease in 2
  and therefore the deadweight loss is decreasing in 2

 , and 

aggregate (distributive) inefficiency increases (decreases) in  .  

 

Proof of Proposition 5:  

(i) A price-taking SFE is Bayesian equilibrium where price-taking is imposed. The 

equilibrium strategy of seller i  is of the form  ,PT PT PT PT
i iX s p b a s c p    and it arises 

out of the maximization of expected profits taking prices as given but using the 

information contained in the price: 

  2

2
max ,

ix i i i ip E s p x x
       

. 

Following the same procedure as in the proof of Proposition 1 but with 0d   we obtain 

the equilibrium. In the equilibrium we have that     11 1PTc n M M     , 

1 0PTnc  , 0PTa  ,    1
1 PT PT PTp nc nb na s   


      and p  reveals s . 
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(ii) For a given    and induced slope of marginal cost 0   , we know that 

0c     since c  is decreasing in   (Proposition 1). It follows that  d   is decreasing 

in   up to   . However, the fixed-point equation  d    need not have a solution 

unless allowing for negative slopes of effective marginal costs. We have that 

     1 11 1PTc n M M        goes from   to    1
1M M n


   as   moves 

in the range  0, . Therefore given that    PTc c 
 
and that both are decreasing in 

 , for any 0   there is always a 0   such that    PTc c     provided that the 

range of  c   is the same as  PTc   (see Figure 4a). This is so if and only if 

2 0n M   . In this case as 0  ,  c   . If 2 0n M    then as 0  , 

  0c c  , where     0 2c n M n M n     . (See Claim A3.) Then only if   is 

such that   0
PTc c   we can find the desired 0   with 0   . Otherwise we need to 

induce 0    to obtain    PTc c    . This is feasible since if 2 0n M    

and ˆ 0   ,    ˆ 2 1 1n

M n
M n M n


      , then there are two linear SFE, 

with slopes of supply 1 2c c 1
0

lim c
 

  , 2 0
0

lim c c
 

 , and 

      
    1 2ˆ ˆ

1 1

1 1 2
ˆlim lim

n M M n M n

n M n n M
c c c

     

    

    
   , 1 0c     and 2 0c     (see 

Lemma A.1 below).  Therefore for 2 0n M    and   0
PTc c   we can always find a 

0   such that    PTc c    : If   ˆPTc c   take 0   such that 

   1
PTc c    ; if   ˆPTc c   then take 0   such that    2

PTc c    . (See 

Figure 4b.) The optimal subsidy is increasing in M  and   (since PTc  decreases with M  

and  ). This means in particular that *  increases with   and increases (decreases) with 

2
  when 0   ( 0  ).  
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Lemma A.1.  If 2 0n M    and ˆ 0   , where 

   ˆ 2 1 1M nn M n M n       , then there are two roots of  ; 0g c M   that 

fulfill the S.O.C., with 1 2c c , 1 0c    , 2 0c    , 1
0

lim c
 

  , 2 0
0

lim c c
 

 , and 

      
    1 2ˆ ˆ

1 1

1 1 2
lim lim

n M M n M n

n M n M n
c c

     

    

   
  . When ˆ   there is only one root and 

it fulfils the S.O.C.  

 

 Proof: Let 1c  denote the smallest root of  ; 0g c M   when 0  . We have that  

     
  

2 2 22 2 2

2 1

2 2
.

1 1

n M n n M n M n

n n M
c c

   



     

 
   

When  ˆ 0    the discriminant is also positive, and if 2 0n M    it can be checked 

that no root fulfils the S.O.C. while if 2 0n M    both roots do (and the largest 

solution is 1c ). When  ˆ   there is only one root and it fulfils the S.O.C. If 

2 0n M    then ˆ 0  . If  ˆ 0    and 2 0n M    then from the expression for 

1c , 1
0

lim c
 

   (and indeed 2 0
0

lim c c
 

 ). Direct computation yields that 

      
    1 2ˆ ˆ

1 1

1 1 2
lim lim

n M M n M n

n M n M n
c c

     

    

   
  . Furthermore,  

           

         

1

2 2 2 2 22 2 2

2 2 22 2 2 2

2 2 2 2

2 1 1 2 2
0

c

n n M M n n M n M n n M n M n

n M n M n n M n M n



     

    




            

       




 

whenever  2 0n M    since 

        2 2 2 2ˆ2 2n n M M n n n M M n               

         2 2 1 1 1 1 0n M n M n M n           

as              
22 2

2 1 1 1 1 1 1 2 0M n M n M n M n n M             . 
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