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Econòmica-CSIC, Barcelona, Spain

Received 5 April 2000; final version received 21 August 2003

Abstract

We compare steady states of open loop and locally stable Markov perfect equilibria (MPE)

in a general symmetric differential game duopoly model with costs of adjustment. Strategic

incentives at the MPE depend on whether an increase in the state variable of a firm hurts or

helps the rival and on whether at the MPE there is intertemporal strategic substitutability or

complementarity. A full characterization is provided in the linear-quadratic case. Then with

price competition and costly production adjustment, static strategic complementarity turns

into intertemporal strategic substitutability and the MPE steady-state outcome is more

competitive than static Bertrand competition.

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Much progress has been made in the study of dynamic interaction among firms,
particularly in the study of collusive behavior. Quite a few models of strategic
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noncollusive rivalry have been developed that also consider Markov perfect equili-
bria as solution concept. However, owing to the inherent difficulty of analyzing
fully dynamic models, two-stage models continue to be the workhorse of the
analysis.
In this paper we provide a taxonomy of strategic incentives arising in duopolistic

interaction over an infinite horizon in the presence of adjustment costs. Adjustment
costs are important in quite a few industries as evidenced by several empirical studies
at the micro level.1 Indeed, capacity (or the production run) is costly to adjust in
some industries; in others, because of menu costs, it is prices that are difficult to
adjust. Adjustment cost dynamics are typically rich in that they depart from the
repeated game framework, allow commitment possibilities, and make the steady-
state outcomes different from the outcomes of static competition. The presence of
adjustment costs, for example, must be taken into account when estimating the
degree of product differentiation in a market. This is so because the standard
hypothesis of static Bertrand pricing will not hold if either production or prices are
costly to adjust and estimation results that take no account of this adjustment will be
subject to bias. Dynamics with adjustment costs are also critical for characterizing
such macro phenomena as the dynamics of aggregate investment or the effect of
monetary policy on price levels and inflation.2

The analysis is cast in the context of a differential game of a duopoly market with
differentiated products. The presence of adjustment costs will imply that a firm will
have incentives to behave strategically (e.g., trying to condition rival’s responses) and
to depart from the naive optimization of a firm that does not try to influence future
market outcomes. Strategic incentives will be characterized by comparing
trajectories and steady states of open loop and Markov perfect equilibria (MPE)
of the dynamic game. Our aims may be listed as follows.

* Establish an infinite-horizon differential game counterpart of the classification by
[21] of strategic incentives in two-stage games.3

* Provide a complete characterization of the linear-quadratic case-extending
previous work of [38,14], who examined the case of Cournot competition with
production adjustment costs.

* Explain the role of adjustment costs in preserving, or reversing, short-run (static)
strategic substitutability or complementarity in the intertemporal framework.

* Provide a dynamic equilibrium rationalization of the ‘‘Stackelberg warfare point’’
[46], showing that the outcomes of dynamic interaction need not lie between the

ARTICLE IN PRESS

1See, for example, [24]. Hall [23] provides recent evidence on adjustment costs. For the empirical

implementation of dynamic models with adjustment costs (and evidence of adjustment factors in the rice

and coffee export markets) see [27–29]. Slade [44] provides estimates of price adjustment costs in the retail

grocery sector.
2See, for example, [7,40].
3See also [9]. Lapham and Ware [31] provide a taxonomy of the strategic incentives in discrete time

dynamic games for small adjustment costs. Benoit and Krishna [4] and Davidson and Deneckere [12]

analyze strategic incentives in the choice of capacity followed by collusive pricing supported with repeated

competition.
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Cournot and Bertrand points when firms compete in prices and production is
costly to adjust.

* Examine the comparative statics of steady states as well as comparative dynamics
issues (e.g., whether there is increasing or decreasing dominance, or whether there
is overshooting of the steady state).

We study first a general (nonlinear) symmetric duopoly model with adjustment costs
and compare MPE with open-loop equilibria (OLE). The general model allows for
either Cournot or Bertrand competition with production or price adjustment costs.
Mixed cases, where the adjustment cost falls on a variable different from the strategic
variable of the firm, are also allowed. A firm controls the rate of change of its
strategic variable (price or output) at any point in time. The open-loop strategies are
those in which the firms commit to a path for the game. Markov strategies depend on
the payoff-relevant variables, that is, the state variables. At a MPE strategies are
optimal for a firm for any state of the system given the strategy of the rival. Hence an
MPE captures the strategic incentives that firms face.
The OLE provide a benchmark against which the strategic incentives at an MPE

can be compared. We note first that the steady states of OLE are in one-to-one

correspondence with the (interior) static Nash equilibria yN of the duopoly game,
provided that adjustment costs are minimized when there is no adjustment. Consider
a symmetric and locally stable MPE with steady state y� and assume that the static

Nash equilibrium yN is unique. We show that if an increase in the state variable of

firm j hurts firm i; then the sign of fy� � yNg is positive or negative depending on
whether there is intertemporal strategic substitutability or complementarity at y�—
that is, whether (respectively) an increase in the state variable of firm i decreases or
increases the action of firm j:
Equipped with these results, we turn to the linear-quadratic model and provide a

complete characterization of the stable symmetric linear Markov perfect equilibria
(LMPE). Our contribution completes the map of possible strategic interaction in
continuous-time dynamic duopoly models with one strategic variable per firm and
adjustment costs.
We find that, if production (resp., price) is costly to adjust then there is

intertemporal strategic substitutability (resp., complementarity) and that the steady
state of the LMPE is more (resp., less) competitive than the static outcome (and this
holds irrespective of whether competition is in prices or quantities). The results build
on work by Reynolds [38] and Driskill and McCafferty [14] for the Cournot model
with production adjustment costs, on a duality result that yields the case of Bertrand
competition with price adjustment costs, and the novel analysis of this paper, which
studies the ‘‘mixed’’ case of price competition with production adjustment costs
(again, by duality, the result for quantity competition with price adjustment costs
follows). Our study of the mixed cases pushes the frontier in deriving explicit results
in linear-quadratic differential games by allowing the adjustment cost of a firm to
depend on the controls of both firms.
The rest of the paper is devoted to the mixed case of price competition with

production adjustment costs. It is assumed that firms are committed to supply

ARTICLE IN PRESS
B. Jun, X. Vives / Journal of Economic Theory 116 (2004) 249–281 251



whatever demand is forthcoming at the set price and that there are no inventories. In
other words, we consider the classical Bertrand competition4 where a firm faces an
adjustment cost of changing production to meet the demand that is determined
jointly by prices set by the firm and its rival. The production adjustment cost comes
typically from the cost of altering the short-run use of capital and labor. We find (a)
that the steady-state LMPE outcome with price competition and costly production
adjustment is more competitive than static Bertrand competition, and (b) that
LMPE price trajectories involve lower prices uniformly than the OLE trajectory. By
cutting its price today, a firm will make its rival smaller (and hence less aggressive in
the future) because the rival’s short-run marginal cost will have increased owing
to costly production adjustment. That is, in order to raise the rival’s cost a firm
must cut prices today. This will push the rival firm toward setting higher prices.
When firms face symmetric (or not too asymmetric) production adjustment costs,
this incentive to cut prices is self-defeating and the firms become locked into a
price war.5

Price leadership can be understood as an attempt by one firm to soften the price
policy of its rival (or rivals). When firms are symmetric (and thus have symmetric
commitment capacities), the leadership attempt by each firm turns into Stackelberg
warfare and yields a steady-state outcome that is more competitive than static
Bertrand competition. The strategic complementarity of the static price game is
transformed into an intertemporal strategic substitutability in the presence of costly
production adjustment. As a consequence, the MPE steady state of our dynamic
market provides an equilibrium story for the ‘‘Stackelberg warfare point’’, where
each firm in a duopoly attempts to be leader in a quantity-setting game.6

The plan of the paper is as follows. Section 2 provides a general framework and
derives the results on the steady state of OLE and the relationship between steady
states of OLE and MPE. Section 3 examines a linear-quadratic specification of the
game and provides a complete characterization of strategic incentives, extending the
results of the literature with the results obtained in this paper. Section 4 is devoted to
studying price competition with production adjustment costs. The concluding
remarks of Section 5 close the paper. Most of the proofs are gathered in the
Appendix.

ARTICLE IN PRESS

4This may arise because of an (implicit) contract with customers or because of regulation. For example,

common-carrier regulation in utilities (e.g., electricity, gas, and local phone) typically stipulates an

obligation to serve, and firms must fulfill all the demand forthcoming at the set price [45].
5The basic force is present also when there is a learning curve (with no industry spillovers). Then a

decrease in the price charged by a firm raises its output and lowers its rival’s output, with the effect of

lowering the marginal cost of the firm and increasing the marginal cost of its rival. For a strategic analysis

of the learning curve, see [10,11,20]. The dynamic pricing implications of the learning curve are considered

in [3], which builds on the work of [16]. Miravete [36] examines a differential game model where learning

by doing reduces fixed costs of production.
6Stackelberg [46, pp. 194–195] thought that his leader–follower solution ‘‘is unstable, for the passive

seller can take up the struggle at any timey: It is possible, of course, that the duopolists may attempt to

supplant one another in the market so that ‘cut-throat’ competition breaks out.’’ There are several

attempts in the literature to endogenize leadership; see [13,25,32].
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2. A general dynamic duopoly framework

Consider a duopoly market in which each firm, i ¼ 1; 2; produces a differentiated
variety. Time is continuous, indexed by tA½0;NÞ; and firms compete over an infinite
horizon, discounting the future at rate r: The flow of revenue (net of production
costs) for each firm is given by Riðy1; y2Þ; where ðy1; y2Þ are state variables. For
example, the variables ðy1; y2Þ would be capacities or quantities in a Cournot market
and prices in a Bertrand market. The action (‘‘control’’) of firm j; ujðtÞ 	 ’yjðtÞ 	
dyj

dt
; j ¼ 1; 2; belongs to a subset of the real line Uj:

7 In a Cournot (Bertrand) market,

firm i would control the rate of output (price) change. We make the convention that
the state variables in Cournot competition are quantities whereas in Bertrand
competition they are prices. Firm i also faces an adjustment cost of the form Fð’ziÞ;
where the variable zi is a (smooth) function of the state variables ðy1; y2Þ which we
denote, with some abuse of notation, by ziðy1; y2Þ: The instantaneous flow of profit

of firm i is then given by piðy1; y2; u1; u2Þ ¼ Riðy1; y2Þ � Fð’ziÞ where ’zi ¼
@zi

@y1
ðy1; y2Þu1 þ @zi

@y2
ðy1; y2Þu2: If the variable that is costly to adjust is the same as the

control, as with Cournot (Bertrand) competition with output (price) adjustment
costs, then zi ¼ yi and pi ¼ Riðy1; y2Þ � FðuiÞ: Those situations we term the ‘‘pure’’
cases. We also consider ‘‘mixed’’ cases, where the adjustment cost falls on a variable
different from the control of the firm—for example, there is price competition and
output is costly to adjust.
The control variables ui yield the law of motion of the system with initial values

yið0Þ ¼ y0i for i ¼ 1; 2: We assume that the duopoly game is symmetric except

possibly for the initial conditions y0i ; i ¼ 1; 2 : U1 ¼ U2; z1ðy1; y2Þ ¼ z2ðy2; y1Þ; and
R1ðy1; y2Þ ¼ R2ðy2; y1Þ: Furthermore, we assume that Ri is smooth and concave in yi

and that F is smooth and convex in ’zi; with F 040; F 0040; F 0ð0Þ ¼ 0 and Fð0Þ ¼ 0
for i ¼ 1; 2: The first assumption (subject to standard boundary conditions) implies
that there is a Nash equilibrium of the static simultaneous-move game in which firm i

has payoff Ri and strategy yi; i ¼ 1; 2: The second assumption implies that pi is
concave in ui and that adjustment costs are minimized when there is no adjustment.
We assume further that pi is concave in yi: These assumptions are satisfied by the
linear-quadratic model, the focus of our analysis in Section 3 and beyond.
Our formulation encompasses both quantity or price competition with quantity or

price adjustment costs. Let us see this more explicitly. To ease notation, suppose that
production costs are zero. We have Cournot competition for Ri ¼ Piðx1; x2Þxi;
where Piðx1; x2Þ is the inverse demand of firm i and ui ¼ ’xi is the rate of change of its
output (the state variable yi ¼ xi). We have Bertrand competition for Ri ¼
piDiðp1; p2Þ; where Diðp1; p2Þ is the demand of firm i and ui ¼ ’pi is the rate of
change of its price (the state variable yi ¼ pi).

8 Adjustment costs are given by Fð ’xiÞ
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8 It is assumed that the firms must supply all the demand at the going prices; the products are not

storable or the cost of holding inventory is infinite.
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when production is costly to change and by Fð ’piÞ when price is costly to change.9 In
the pure cases, firm i’s adjustment cost depends only on its own rate of adjustment.
That is, with quantity competition there are production adjustment costs Fð ’xiÞ; and
with price competition there are price adjustment costs Fð ’piÞ: In the mixed cases
there is quantity (price) competition and price (quantity) is costly to adjust. For
example, suppose that firms compete in price but that production is costly to adjust.
Then for firm i we have yi ¼ pi; ui ¼ ’pi; and adjustment costs given by Fð ’xiÞ: Since
xi ¼ Diðp1; p2Þ it follows that Fð ’xiÞ ¼ Fð@Di

@p1
’p1 þ @Di

@p2
’p2). The mixed case with quantity

competition and price adjustment costs is analogous.
We will study both the OLE and MPE of this (stationary) differential game. When

a firm’s strategy is a function only of time, it is called an open-loop strategy. An OLE
is an open-loop strategy profile such that each firm’s strategy is a best response to the
other’s choice. The open-loop strategy space for firm i will consist of the piecewise
continuous functions of time. In general, firms’ strategies can depend on past
histories. Markov strategies are those that depend only on payoff-relevant state
variables (in our case, the vector ðy1; y2Þ). A MPE is a Markov strategy profile such
that each strategy is a best response to the others for any state. Hence, a Markov
perfect equilibrium is a subgame-perfect equilibrium. We will restrict attention to
Markov strategies that are stationary (i.e., time-independent), continuous, and
(almost everywhere) differentiable functions of the state variables. With some abuse
of notation we will denote them by uiðy1; y2Þ; i ¼ 1; 2:
At an MPE, firm i chooses uið:Þ to maximize the discounted sum of profits,R

N

0 piðy1ðtÞ; y2ðtÞ; uiðtÞ; ujðy1ðtÞ; y2ðtÞÞÞe�rt dt; given ujð:Þ; for any possible initial

condition y1ð0Þ ¼ y01; y2ð0Þ ¼ y02; where ’yiðtÞ ¼ uiðtÞ and ’yjðtÞ ¼ ujðy1ðtÞ; y2ðtÞÞ:
From the necessary conditions for uiðy1; y2Þ; i ¼ 1; 2 to form an MPE, we easily
obtain under our assumptions (see Appendix A) that, at a steady state for i; j ¼ 1; 2

with jai; r � @uj

@yj
a0 and

@Ri

@yi

þ

@Ri

@yj

@uj

@yi

r � @uj

@yj

¼ 0: ð�Þ

Now, at an OLE, firms do not take into account the effect of changes of the state
variables on the strategies; that is, there is no feedback from state variables and
@uj

@yi
¼ 0 for i; j ¼ 1; 2: A (interior) static Nash equilibrium is characterized under our

assumptions by the first-order conditions @Ri

@yi
¼ 0; i ¼ 1; 2: It follows that stationary

states of OLE are in one-to-one correspondence with interior Nash equilibria of the
static duopoly game. The intuition for this result is based on the fact that adjustment
costs are minimized when there is no adjustment. At a stationary state, the strategy
of rival firm j is not to change its current action. Firm i can make the marginal cost
of adjustment arbitrarily small by choosing ui small enough. It follows that not
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changing is a best response only if the net marginal revenue of a change in action

(namely, @Ri

@yi
) is equal to 0. This holds only at a static interior Nash equilibrium.

At an MPE there is generally feedback from state variables, and the steady state
differs from the stationary OLE or static Nash equilibrium. It is difficult to
characterize MPE in differential games. However, it is possible to ascertain the
effects of strategic incentives at a locally stable steady state of an MPE, at least in the
symmetric version of the model (with symmetric product differentiation and
symmetric adjustment costs).
Consider a symmetric MPE uiðy1; y2Þ (i.e., with u1ðy1; y2Þ ¼ u2ðy2; y1ÞÞ and a

symmetric steady state y1 ¼ y2 ¼ y� of the dynamical system ’yj ¼ ujðy1; y2Þ; j ¼ 1; 2:

We assume that the steady state ðy�; y�Þ is a regular point of u; in other words, that
the Jacobian of u ¼ ðu1; u2Þ at the steady state is nonsingular. In addition we assume

that @ui

@yj
ðy�; y�Þa0 for jai and i ¼ 1; 2: If the static game is symmetric and the Nash

equilibrium is unique then the equilibrium will be symmetric also. At the symmetric

(interior) equilibrium, @Ri

@yi
ðy1; y2Þ ¼ 0 for i ¼ 1; 2: Now consider the set Y defined by

Y ¼ fðy1; y2Þ j yiX0; Siðy1; y2ÞX0; i ¼ 1; 2g;

where Sið:Þ ¼ Pið:Þð¼ Dið:ÞÞ in Cournot (Bertrand) competition. We assume that Y

is compact. If we regard the function vðyÞ ¼ ð@R1

@y1
ðyÞ; @R2

@y2
ðyÞÞ as a vector field (defined

on Y ), then the static Nash equilibrium corresponds to the steady state of the
dynamical system ’y ¼ vðyÞ: We assume that v points inward at all boundary points
of Y :10 The assumptions are fulfilled in the linear-quadratic model and in regular
models with demand choking off at finite prices.11 We say that a symmetric Nash
equilibrium of the (symmetric) static game is regular if it is a regular point of v:Using
Eq. (�), strategic incentives at a locally stable MPE can be characterized as follows
(see Appendix A for a proof).

Proposition 2.1. Suppose that there is a unique Nash equilibrium ðyN ; yNÞ of the static

game and that it is regular. Consider a locally stable, regular, and symmetric steady

state ðy�; y�Þ of a given symmetric MPE of the dynamic game uiðy1; y2Þ; where
@ui

@yj
ðy�; y�Þa0 for i ¼ 1; 2: Then signfy� � yNg ¼ signf@Ri

@yj
ðy�; y�Þ@uj

@yi
ðy�; y�Þg:

The proposition extends the taxonomy of strategic behavior due to Fudenberg and
Tirole [21] to the differential game duopoly. Strategic incentives to under- or over-
invest in a state variable at a locally stable MPE, with respect to the OLE
benchmark, depend (a) on whether there is intertemporal strategic substitutability

ð@uj

@yi
o0Þ or complementarity ð@uj

@yi
40Þ; and (b) on whether ‘‘investment’’ of a firm in its

state variable makes the rival worse off ð@Ri

@yj
o0Þ or better off ð@Ri

@yj
40Þ: In the Cournot

case we have that @Ri

@yj
o0; in the Bertrand case, that @Ri

@yj
40: In the linear-quadratic
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11See, for example, [19].
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model we will see that intertemporal strategic substitutability (complementarity)
obtains when production (price) is costly to adjust.
What determines whether intertemporal strategic complementarity or substitut-

ability prevails? In order to answer this question, we need to characterize MPE.
Let ðu�

i ; u�
j Þ be a (smooth) MPE and consider the following heuristic characteriza-

tion. In equilibrium, the value function for firm i;Viðy1; y2Þ; is the present discounted
value of profits at the MPE with initial conditions ðy1ð0Þ; y2ð0ÞÞ ¼ ðy1; y2Þ and law of
motion ’yj ¼ u�

j for j ¼ 1; 2: Given u�
j ; the Bellman equation for firm i ði ¼ 1; 2Þ is

given by

rViðy1; y2Þ ¼ maxui
Hi

@Vi

@yi

ðy1; y2Þ;
@Vi

@yj

ðy1; y2Þ; y1; y2; ui; u�
j ðy1; y2Þ

� �
: ð1Þ

The maximand on the right-hand side is the current Hamiltonian:

Hi ¼ pi þ
@Vi

@yi

ui þ
@Vi

@yj

u�
j ;

where piðy1; y2; u1; u2Þ ¼ Riðy1; y2Þ � Fð’ziÞ; ’zi ¼ @zi

@y1
ðy1; y2Þu1 þ @zi

@y2
ðy1; y2Þu2 is the

instantaneous profit, and @Vi

@yk
is the shadow value of state variable yk for firm i:

Eq. (1) must hold for any state variable vector (owing to the perfection requirement).
Since u�

i is a maximizer of the current Hamiltonian, the first-order condition

@Hi

@ui

¼ @pi

@ui

þ @Vi

@yi

¼ 0 ð��Þ

must hold for i ¼ 1; 2 and jai:

In the pure cases, ’zi ¼ ui and
@pi

@ui
¼ �F 0ðuiÞ: Hence equation F 0ðuiÞ ¼ @Viðy1;y2Þ

@yi
holds

for all ðy1; y2Þ: By partially differentiating with respect to yj; we obtain F 00ðuiÞ @ui

@yj
¼

@2Vi

@yi@yj
: Since F 0040; it follows that sign @ui

@yj
¼ sign @2Vi

@yi@yj
: When

@2Vj

@yj@yi
oðresp:;40Þ 0 we

can say that contemporaneous strategic substitutability (complementarity) prevails.
We thus have that intertemporal strategic substitutability (complementarity) prevails
if and only if contemporaneous strategic substitutability (complementarity) does.
The mixed cases are not so simple and in fact in the next section we shall see that, for
the linear-quadratic model, the result is actually reversed.

3. The linear-quadratic model: overview of results

In the remainder of this paper we examine the linear-quadratic specification of the
model. Let (net) revenues for firm i be given by Ri ¼ ða � byi þ cyjÞyi with b4jcjX0:

Then the unique (and symmetric) Nash equilibrium of the static game is given by

yN ¼ a=ð2b � cÞ: Adjustment costs are quadratic: Fð’ziÞ ¼ lð’ziÞ2=2 for l40:12 If the
adjustment costs are borne by the strategic variable of the firm (e.g., production in a
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Cournot model or price in a Bertrand model), then ’zi ¼ ’yi ¼ ui: In the mixed case,
the adjustment cost borne by firm i depends also on the control of the rival firm j

(but in the linear case it is independent of the state variables): zi ¼ �bui þ cuj: For

example, with price competition ðyi ¼ pi; ui ¼ ’pi;Ri ¼ ða � bpi þ cpjÞpiÞ and produc-
tion adjustment costs, Fð ’xiÞ ¼ lð ’xiÞ2=2 with ’xi ¼ �b ’pi þ c ’pj: It is worth noting that,

for quantity competition ðyi ¼ xi; ui ¼ ’xi;Ri ¼ ða � bxi þ cxjÞxiÞ; the case of

homogenous product and increasing marginal cost of production can be

accommodated. Indeed, let co0 and note that Ri ¼ ða � bxi þ cxjÞxi ¼ ða þ cðxi þ
xjÞÞxi � ðb þ cÞðxiÞ2: The slope of marginal cost is 2ðb þ cÞ:
We shall investigate LMPE; namely, equilibria in which the strategies are linear

(or affine, to be precise) functions of the state variables.13 We provide in Proposition
3.1 a complete characterization of strategic incentives in LMPE of the linear-
quadratic model. This characterization is based on the following building blocks:

* The study by [14,38,39] of Cournot dynamic duopoly games with homogenous
product and production adjustment costs.

* An extension of their results covering the case of Bertrand competition with
differentiated products and price adjustment costs.

* The results for mixed cases based on the analysis developed in Section 4 on the
study of price competition with production adjustment costs.

We will say that a steady state is ‘‘more competitive’’ when it involves a lower
(higher) price (quantity) in Bertrand (Cournot) competition.

Proposition 3.1. In the linear-quadratic model there is a unique (globally) stable

symmetric LMPE. The strategies are given by ui ¼ aþ byi þ gyj for i; j ¼ 1; 2 and

jai; where bo0 and jbj4jgj40: The steady state is symmetric and is given by y� ¼
a=ð2b � cð1� gðb� rÞ�1ÞÞ: When production (price) is costly to adjust, go0 ðg40Þ
and y� is more (less) competitive than the static Nash equilibrium a=ð2b � cÞ:

Proof. First of all, given MPE strategies ui ¼ aþ byi þ gyjði; j ¼ 1; 2 and jai) with

bo0 and b2 � g240; the steady state is symmetric and is given by y� ¼ a=ð2b �
cð1� gðb� rÞ�1ÞÞ: This follows from ð�Þ by first setting @Ri

@yj
ðy; yÞ ¼ cy;

@uj

@yi
¼ g; @uj

@yj
¼ b;

and @Ri

@yi
ðy; yÞ ¼ a � ð2b � cÞy and then obtaining a � ð2b � cÞy þ ðcgy=ðr � bÞÞ ¼ 0:

Obviously, the equilibrium parameters b and g depend on the exogenous parameters
of the model ðb; c; l and r; a is a scale parameter and does not affect b or g). We also

have from Proposition 2.1 that signfy� � yNg ¼ signfcgg: Let us consider in turn the
cases of (i) Cournot competition and production adjustment costs, (ii) Bertrand
competition and price adjustment costs, and finally (iii) the mixed cases.
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strategies used in finite-horizon games. In a linear-quadratic differential finite-horizon dynamic game, the

linear solution is unique in the class of strategies that are analytic functions of the state variables [37]. We

do not explore potential nonlinear equilibria in our model.
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(i) Refs. [14,38,39] have characterized the case of Cournot competition with
homogenous product, quadratic production costs ðco0Þ; and production adjustment
costs. (As we have seen, this is equivalent to our linear-quadratic model.) Those
authors show the existence of a unique stable symmetric LMPE.14 They find
that go0; indeed, the steady-state output is larger than the Cournot static output
a=ð2b � cÞ; according to Proposition 2.1, because cg40:
(ii) Using the duality between price and quantity competition in the duopoly

model with product differentiation (see [43]), we can characterize price competition
with price adjustment costs. In fact, this case is formally identical to case (i) but with
c40: The effect of this is that now, at the unique stable LMPE, the rate of change of
prices of each firm is increasing in the price of the rival ðg40Þ and cg40: This makes
the steady-state price larger than the Bertrand static price.
In (i), the result go0 follows because the static strategic substitutability

of the Cournot model ð @2pj

@yj@yi
o0Þ translates into contemporaneous strategic

substitutability in the dynamic game (with
@2Vj

@yj@yi
o0Þ: Similarly, in (ii) the result

g40 follows because the static strategic complementarity of the Bertrand model

ð @2pj

@yj@yi
40Þ translates into contemporaneous strategic complementarity in the

dynamic game (with
@2Vj

@yj@yi
40Þ:

(iii) In Section 4 we consider the ‘‘mixed’’ case in which there is price
competition ðc40Þ and production is costly to adjust. This case introduces further
complexity in the analysis because now the action of a firm affects the adjustment
cost of the rival. We show that there is a unique stable LMPE. At this equilibrium
the rate of change of price of each firm is decreasing in the price of the rival ðgo0Þ;
see Proposition 4.2. Now the steady-state price is smaller than the Bertrand static
price because cgo0: A duality argument gives us the results for Cournot competition
ðco0Þ with costly price adjustment. Then, at the unique stable LMPE, the rate of
change of production of each firm is increasing in the output of the rival ðg40Þ and
cgo0:15 &

For the mixed cases we easily obtain, from (n n) and using the equation ’zi ¼
�bui þ cuj; that uiðy1; y2Þ ¼ 1

lbðb2�c2Þðb
@Vi

@yi
þ c

@Vj

@yj
Þ and @ui

@yj
¼ 1

lbðb2�c2Þðb
@2Vi

@yi@yj
þ c

@2Vj

ð@yjÞ2
Þ:

Stability of the equilibrium requires that� @2Vj

ð@yjÞ2
4j @2Vi

@yi@yj
j (because �b4jgj). In

Section 4 we show that the own effect c
@2Vj

ð@yjÞ2
always dominates the cross effect

bj @2Vi

@yi@yj
j; hence when c40 (price competition), even though there is contemporaneous
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14Reynolds [38] needed some restrictions on parameter values in order to prove existence and

uniqueness of a stable LMPE. Driskill and McCafferty [14] introduced a graphical apparatus that enabled

an analysis without parameter restrictions. We follow a similar method in Section 4.
15The duality can be seen from Figs. 1 and 2 in the Appendix (Proof of Proposition 4.2). As the sign of

C changes the graphs change symmetrically with respect to the b-axis. The same is true for part (ii).
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strategic complementarity ð @2Vj

@yj@yi
40Þ; intertemporally strategic substitutability

prevails and @ui

@yj
o0:

We thus see that what determines the competitiveness of a market is whether the
(symmetric) adjustment costs are supported by prices or rather by quantities. With
price adjustment costs, intertemporal strategic complementarity ðg40Þ prevails and
this pushes prices up. With production adjustment costs, intertemporal strategic
substitutability ðgo0Þ prevails and this pushes prices down.
Consider the case of production adjustment costs. With Cournot competition, a

larger output by firm i today leads the firm to be more aggressive tomorrow. With
symmetric adjustment costs, both firms are in the same situation and quantities are
pushed beyond the Cournot level. Perhaps more interestingly, as we will see in the
next section, with price competition intertemporal strategic substitutability also
prevails. A firm must cut its price in order to induce the rival to price softly in the
future and since both firms do this they end up with prices that are lower than the
static Bertrand level. A cut in prices makes the rival softer in the future because it
makes the rival smaller, and thus facing a higher marginal adjustment cost to
increase output. The softening effect on the rival happens even though the original
price-cutting firm has become more aggressive (because it is larger and hence its
marginal production adjustment cost is smaller). The increase in the rival’s marginal
costs dominates the indirect effect through the decrease in marginal costs of the
original firm. In contrast, with price adjustment costs intertemporal strategic
complementarity prevails. If there is price competition, then a firm that prices high
today will elicit high prices from the rival tomorrow. The cost of adjusting the price
lends credibility to this strategy.
Our results for a standard model show that the outcomes of dynamic competition,

even when firms condition only on payoff-relevant variables, need not be bounded
between the Cournot and Bertrand static long-run outcomes. Indeed, with price
competition and production adjustment costs we have seen how the steady-state
LMPE price is actually below the static Bertrand price. This result may come as a
surprise if one supposes that static strategic complementarity or substitutability will
translate, respectively, into intertemporal strategic complementarity or substitut-
ability. This happens only in the ‘‘pure’’ cases of Cournot competition with
production adjustment costs and of Bertrand competition with price adjustment
costs, as we have just seen. The results in those pure cases have a parallel in the
literature. Fershtman and Kamien [17] consider a quantity-setting game with slowly
adjusting prices in which the steady-state price is below the Cournot price. In their
model, there is intertemporal strategic substitutability (a higher output of firm 1
today leads to lower prices and lower output from firm 2 tomorrow). Similarly, in the
alternating-move quantity-setting duopoly game of [33], the (MPE) dynamic
reaction functions of the firms are monotone decreasing and there is intertemporal
strategic substitutability. In the price competition models with switching costs,
Markovian equilibria yield steady-state prices above the one-shot level [2]. The
reason is that intertemporal strategic complementarity holds because a higher price
today increases the rival’s market share and hence makes the rival price more softly
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tomorrow.16 Our mixed case provides an example where static strategic comple-
mentarity (substitutability) is turned into intertemporal strategic substitutability
(complementarity).
An interesting comparative statics result is the following.

Proposition 3.2. As the adjustment cost l tends to zero, y� � yN does not tend to zero;

and as the discount rate r tends to infinity, y� tends to yN:

The comparative statics result of y� with respect to r is intuitive. The discrepancy

between y� and yN is governed by jgj=ðr � bÞ: When the discount rate is low, the
future matters more and the strategic incentive increases. Thus it is not surprising
that, when r grows unboundedly and the future does not matter, the steady state
converges to the static Nash level. The other result (that when l tends to zero, y�

does not tend to yN) needs more explanation. One effect is that when l is low, the
strategic incentive (as measured by jgj) should be larger. This follows because for low
l it will be less costly for the rival firm to change its action and then firm i has more
incentive to change its own state variable to influence the rival’s behavior. However,
a low l should also increase the response to the own state variable, jbj: In fact, as l
tends to zero both jbj and jgj tend to infinity whereas jgj=jbj; and so jgj=ðr � bÞ; tend
to a number between 0 and 1.17

Finally, we explore briefly the effect of asymmetric adjustment costs. In the pure
cases, with Cournot (Bertrand) competition and production (price) adjustment costs,
whether those costs are symmetric or asymmetric does not make a difference for
strategic incentives. In the Cournot (Bertrand) case there is intertemporal strategic
substitutability (resp. complementarity) independently of whether adjustment costs
are symmetric or asymmetric. In both cases, furthermore, if the adjustment cost of
firm 2 is very small then the LMPE steady state is close to the Stackelberg outcome
with firm 1 as leader. These results show the emergence of the Stackelberg
equilibrium (the first with quantity leadership and the second with price leadership)
as the steady state of dynamic competition, where the leader is the firm that faces an
adjustment cost and hence can commit.18 However, for the mixed cases the strategic
incentives with symmetric or asymmetric adjustment costs may differ. In Section 4.2
it is shown that, with production adjustment costs and price competition, if the
adjustments costs are sufficiently asymmetric intertemporal strategic complementar-
ity can be restored.
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16However, in [34] alternating-move Markov price game with homogenous product of different types of

equilibria can be supported because the (equilibrium) dynamic reaction function of a firm is not

monotonic. See also [15] for results with product differentiation.
17When l ¼ 0 there does not exist a LMPE but there does exist a nonlinear MPE yielding yN (firm i

jumps to yN if its state variable is not at the Nash level and stays put otherwise). There is thus a

discontinuity of LMPE as the friction in the market disappears (this has been found also in [14,17,38]).
18The result is based on simulations; [26] shows it for the Cournot case and we have done it for the

Bertrand case. In both cases, at the steady-state firm 2 will necessarily be very close to its static best

response function, since the firm faces almost no adjustment cost (and has almost no commitment power).

Firm 1 will optimize accordingly and hence will be close to its Stackelberg level.
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4. Price competition with costly production adjustment

The rest of the paper concentrates on the mixed case of the linear-quadratic model
with Bertrand competition and production adjustment costs.
Let us set the notation for this model. The instantaneous profit of firm i is given by

pi ¼ piDiðp1; p2Þ � Fð ’xiÞ; for i ¼ 1; 2 where Diðp1; p2Þ ¼ a � bpi þ cpj with b4cX0

and where Fð ’xiÞ ¼ lð ’xiÞ2=2 for l40 with ’xi ¼ �b ’pi þ c ’pj: The state variables are

prices ðp1; p2Þ: We require that the initial state ðp1ð0Þ; p2ð0ÞÞ ¼ ðp01; p02Þ belong to the

region in price space P for which the demand for both firms is nonnegative.19 In this
model firm i controls the rate of change of its price ui ¼ ’pi; and the output of the firm
must adjust to clear the market because the firm must fulfill the forthcoming demand
at the set prices. The magnitude of the output adjustment depends also on the rival’s
rate of price change, ’pj: ’xi ¼ �b ’pi þ c ’pj: That is, the rate of change of a firm’s output

is only partially controlled by the firm itself. In any case this output adjustment is

costly, Fð ’xiÞ ¼ lð ’xiÞ2=2; and the cost is incurred by firm i:
Demands can be derived from the maximization problem of a representative

consumer who has a quadratic and symmetric utility function for the differentiated

goods (and utility is linear in money): Uðx1;x2Þ ¼ Aðx1 þ x2Þ � ðBðx2
1 þ x2

2Þ þ
2Cx1x2Þ=2: This yields both inverse demands Piðx1; x2Þ ¼ A � Bxi � Cxj and

demands Diðp1; p2Þ ¼ a � bpi þ cpj: Then a ¼ A=ðB þ CÞ; b ¼ B=ðB2 � C2Þ; and

c ¼ C=ðB2 � C2Þ with B4jCjX0: When B ¼ C the two products are homogeneous
from the consumer’s view point, when C ¼ 0 the products are independent, and
when Co0 they are complements.
We deal first with OLE and then with MPE.

4.1. Open-loop equilibria

Let ui 	 ’pi: We know from Section 2 that the Bertrand equilibrium pi ¼ pB 	
a=ð2b � cÞ; i ¼ 1; 2; is the unique stationary state of OLE. We claim now that there
is a unique OLE that yields a stable trajectory. The following proposition states the
result (the proof is standard and is omitted).20

Proposition 4.1. There is a unique pair of OLE strategies that yield stable price

trajectories. These strategies are given by, for i ¼ 1; 2;

uiðtÞ ¼ ððp0i þ p0j Þ=2� pBÞf1e
f1t þ ððp0i � p0j Þ=2Þf2e

f2t;

where f1 ¼ 1
2

r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 4ð2b�cÞ

lbðb�cÞ

qn o
and f2 ¼ 1

2
r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 4ð2bþcÞ

lbðbþcÞ

qn o
: We have that

f1of2o0: Whenever ðp01; p02Þ is in P; it follows that ðp1ðtÞ; p2ðtÞÞ is also in P for all t:
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19The region P is just region Y (as defined in Section 2, when Sið:Þ ¼ Dið:Þ) and is given by the

intersection of a cone-shaped region with vertex ða=ðb � cÞ; a=ðb � cÞÞ and the nonnegative orthant:

a � bpi þ cpjX0 with iaj; i ¼ 1; 2; and piX0:
20A similar result can be derived when adjustment costs are asymmetric. See [18] for related results on

stability of the OLE of Cournot-type models.
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4.2. Markov perfect equilibria

Markov strategies depend only on payoff-relevant variables, the level of prices
in our case. We restrict attention to strategies that are stationary (i.e., time-
independent), continuous, and (almost everywhere) differentiable functions
uiðp1; p2Þ; i ¼ 1; 2; of the prices.
Let ðu�

i ; u�
j Þ be an MPE and consider the associated value function for firm

i; Viðp1; p2Þ: The first-order condition (n n) from the Bellman equation in Section 2
is given for i ¼ 1; 2 and jai by

@pi

@ui

þ @Vi

@yi

¼ lbð�bu�
i þ cu�

j Þ þ
@Vi

@pi

¼ 0:

This is immediate from ’xi ¼ �b ’pi þ c ’pj ¼ �bui þ cuj and pi ¼ piDiðp1; p2Þ �
lð�bui þ cujÞ2=2: This first-order condition defines i’s instantaneous best response

(and is also sufficient for a maximum given the concavity of the objective function
with respect to ui). We can therefore derive the equilibrium of the instantaneous
game given p1 and p2; i ¼ 1; 2:

u�
i ðp1; p2Þ ¼

1

lbðb2 � c2Þ b
@Vi

@pi

ðp1; p2Þ þ c
@Vj

@pj

ðp1; p2Þ
� �

: ð2Þ

We will characterize stable LMPE by following a standard approach and finding a
quadratic value function for the optimization problem that firms face.21 The key
steps of the characterization are as follows.
(i) Posit a quadratic value function for firm i (and a symmetric function for firm j):

Viðp1; p2Þ ¼ z þ vpi þ wpj þ
m

2
p2i þ npipj þ

s

2
p2j : ð3Þ

(ii) Obtain a system of partial differential equations substituting the instantaneous
equilibrium u�

i and u�
j in the necessary conditions for equilibrium (1):

rVi ¼ piDi �
1

2lb2
@Vi

@pi

� �2

þ 1

lbðb2 � c2Þ b
@Vi

@pi

þ c
@Vj

@pj

� �
@Vi

@pi

þ 1

lbðb2 � c2Þ b
@Vj

@pj

þ c
@Vi

@pi

� �
@Vi

@pj

: ð4Þ

Both the left- and the right-hand sides are functions of ðp1; p2Þ: If Vi is a quadratic
function, then the right-hand side of (4) will also be a quadratic function.
Furthermore, the equation must hold for any pair ðp1; p2Þ according to the definition
of MPE.
(iii) Find the coefficients of the value function by taking derivatives of Vi and Vj

with respect to pi and pj; substituting the result in the right-hand side of (4), and

comparing the coefficients using (3). Candidate LMPE strategies follow from (2). If
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21For examples of computation and characterization of LMPE see [14,22, Chapter 13; 38], [47].
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we write

u�
i ¼ aþ bpi þ gp

then we obtain a ¼ v=ðlbðb � cÞÞ; b ¼ ðbm þ cnÞ=ðlbðb2 � c2ÞÞ; and g ¼
ðcm þ bnÞ=ðlbðb2 � c2ÞÞ: In terms of the utility parameters A;B;C and normalizing

so that B ¼ 1; we have that a ¼ l�1ð1� C2Þð1þ CÞv; b ¼ l�1ð1� C2Þðm þ CnÞ; and
g ¼ l�1ð1� C2ÞðCm þ nÞ: The exercise, after tedious computations summarized in
Appendix B.1 yields six solutions in closed form (listed in Table 2) that correspond to
the six candidate value functions. It can be checked that v; and therefore a; is linear
in A:
(iv) Identify a unique stable solution. This necessarily is a MPE because the stable

solution to the partial differential equation system (4) fulfills the transversality
condition. In Appendix B.2 we show (using a method similar to [14]) that only one of
the solutions generates a stable stationary state. The unique LMPE that generates a
stable solution has a40 and bogo0:
(v) Check that when the initial state belongs to P; the LMPE path stays in P: The

LMPE path can be obtained by solving the differential equations u�
i ¼ aþ bpi þ gpj

for i; j ¼ 1; 2 and iaj: It is given by

pMP
i ðtÞ ¼ p� þ

p0i þ p0j

2
� p�

 !
eðbþgÞt þ

p0i � p0j

2

 !
eðb�gÞt; ð5Þ

where p� is the stationary state of the stable LMPE path, p� ¼ �a=ðbþ gÞ ¼
a=ð2b � cð1� gðb� rÞ�1ÞÞ; the last equality following from Proposition 3.1. That
ðp1ðtÞ; p2ðtÞÞ belongs to P can be shown as follows: ðp1ðtÞ; p2ðtÞÞ is contained in the

rectangle formed by the lines p1ðtÞ þ p2ðtÞ ¼ p01 þ p02; p1ðtÞ þ p2ðtÞ ¼ 2p�; p1ðtÞ �
p2ðtÞ ¼ p01 � p02; and p1ðtÞ � p2ðtÞ ¼ 0: Since the rectangular region lies inside P when

the initial state belongs to P; it follows that ðp1ðtÞ; p2ðtÞÞ belongs to P whenever

ðp01; p02Þ belongs to P:
Proposition 4.2 summarizes the characterization of the stable LMPE. A stable

LMPE generates a stable stationary state starting from any initial condition in P:
The proof is provided in Appendix B.

Proposition 4.2. There exists a unique symmetric stable LMPE:

u�
i ¼ aþ bpi þ gpj

with bogo0 and a40: It corresponds either to solution #3 or solution #5 in

Table 2. The steady state is symmetric, with prices equal to p� ¼
a=ð2b � cð1� gðb� rÞ�1ÞÞopB ¼ a=ð2b � cÞ:22

Remark. Table 2 in Appendix B provides closed-form expressions for the LMPE
parameters a; b and g as functions of the underlying parameters of the model. The
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22 In terms of the utility parameters we have p� ¼ AðB � CÞ=ð2B � Cð1� gðb� rÞ�1ÞÞopB ¼
AðB � CÞ=ð2B � CÞ:
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stable LMPE switches between ‘‘labels’’ of the solution depending on parameters
(see Result B.1 in Appendix B).

Remark. The described LMPE remains an equilibrium when the law of motion of
the system is subject to additive shocks with mean zero. Suppose, for example, that
the demand intercept is time-dependent according to a shock that follows a
Brownian motion, aðtÞ ¼ a þ swðtÞ; where dwðtÞ is normally distributed with mean
zero and variance dt: If we consider outputs as the state variables, then the law of
motion is given by dxiðtÞ ¼ ð�buiðtÞ þ cujðtÞÞ dt þ sdwðtÞ; i ¼ 1; 2; where s40:

Under these conditions our deterministic LMPE is also an equilibrium for the
stochastic game (and is independent of s).23

Remark. It is possible to compare the OLE and the LMPE price paths using
numerical simulations. We find that prices at the stable LMPE trajectory are
(strictly) lower than prices at the OLE trajectory for all initial states that belong to P:
We have verified the property in the fine parameter grid considered, that is, in a
parameter set that covers an extensive range and has a fine grid.24

Firms are more aggressive at the LMPE than at the OLE owing to a strategic
incentive. Firm i would like rival firm j to price softly, but the rate of price change uj

depends negatively on pi (since, in equilibrium, go0) and hence there is an incentive
to cut prices. This happens to both firms, which become trapped in trying to elicit
soft behavior from the rival by cutting prices. To reiterate: if firm i cuts prices today
then its rival ð jÞ is made softer tomorrow because j is smaller, which raises j’s (short-
run) marginal cost of increasing output (because of the production adjustment cost).
This happens even though firm i has become more aggressive, because the firm is
larger and therefore its (short-run) marginal cost is lower. The first effect (the
increase in firm j’s marginal costs) dominates the indirect effect through the decrease
in marginal costs of firm i:
If the initial state is the static Bertrand equilibrium then both firms have an

incentive to decrease prices. This did not happen at the OLE because in that case j

would not react to i’s price cut over an interval (and then such a move would not
have a first-order effect on profit). At the LMPE, a price cut represents a
commitment because of costly production adjustment. Once a firm has deviated
from the Bertrand equilibrium, it is costly to recover that equilibrium. A firm then
has the incentive to cut prices to make the rival softer tomorrow, transforming the
strategic complementarity of static price competition into intertemporal strategic
substitutability. Given that both firms have symmetric commitment capacities
(adjustment costs), this leadership attempt is self-defeating and the outcome is price
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23See, for example, [1, Section 6.5].
24The parameter range and grid considered are the following: B ¼ 1;C is between 0.001 and 1, and lr2 is

between 0 and 1000 with step size 0.1 for C and 10 for lr2: See Appendix C for details of the numerical

simulation results.
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warfare. In this sense the steady state represents the ‘‘Stackelberg warfare point’’ in
which the leadership attempt of both firms turns into highly aggressive behavior.25

4.3. Comparative dynamics

4.3.1. Comparative statics of the steady state

A number of comparative statics and comparative dynamics results can be

obtained. Recall that p�opB: The following proposition is proved in Appendix C.

Proposition 4.3. As c 	 lr2 tends to infinity, pB � p� tends to zero; and as c tends to

zero, pB � p� tends to a strictly positive number.

If the adjustment cost is large (or if the future does not matter much), the strategic
incentive of a firm is small because it is costly for the rival to change prices. We have
in particular that the more costly it is to adjust output, the closer we are in steady
state to the Bertrand equilibrium.26 The explanation for the result obtained when c
tends to zero was provided in Section 3.

Remark. Using numerical methods, we can check that the ratio ðpB � p�Þ=pB is

decreasing in c 	 lr2 and increasing in the degree C of product substitutability. We
have verified the property in a parameter set that covers an extensive range and has a
fine grid.27

Products that are closer substitutes yield larger (relative) strategic incentives, because
a cut in prices is more effective in inducing softer behavior of the rival (as C

increases, jgj=jbj also increases). The ratio ðpB � p�Þ=pB can be as large as 35% when

c is close to zero and C is close to unity. Table 1 gives ðpB � p�Þ=pB for different

values of C and lr2: For example, even with high adjustment costs ðl ¼ 100Þ and
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25With sufficiently asymmetric commitment capacities intertemporal strategic complementarity may be

preserved and soft pricing induced. Consider a two-period version ðt ¼ 0; 1Þ of the game with production

adjustment costs equal to Fiðxt
i � xt�1

i Þ ¼ liðxt
i � xt�1

i Þ2=2 for liX0: Suppose that l140 and l2 ¼ 0: At

the last period (period 1), firm 2 will price according to its static Bertrand best reply function, since neither

firm can manipulate the costs of firm 2. However, an increase in the price of firm 1 in period 0 induces a

decrease in its output and therefore an increase in its marginal cost in period 1. This moves the best

response function of firm 1 outward in period 1. The outcome is higher prices for both firms, giving a

strategic incentive for firm 1 to raise its price in period 0. The described incentives will be the same

whenever l2 is close to zero, in which case the period-1 best reply of firm 2 will also be affected by changing

prices in period 0.
26This seems to provide a counterpoint to the idea that ‘‘quantity precommitment and price competition

yields Cournot outcomes’’ [30] since the source of the precommitment value of quantity is that quantity is

more costly to adjust than price. However, in our model firms have only one strategic variable (the rate of

price change) whereas firms in [30] make both quantity/capacity and price choices.
27The parameter range and grid considered are the following: B ¼ 1; C is between 0.001 and 1, and lr2

is between 0 and 1000 with step size 0.1 for C and 10 for lr2:
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r ¼ 10% (yielding c ¼ 1), we have that ðpB � p�Þ=pBE21% if C ¼ 0:95; if C ¼ 0:7;
the ratio drops to about 7.6%.28

4.3.2. Price dynamics

Price changes at the OLE (rewriting the strategies in terms of state variables29) are
given by

uiðtÞ ¼f1ðððp1ðtÞ þ p2ðtÞÞ=2Þ � pBÞ þ f2ððpiðtÞ � pjðtÞÞ=2Þ

¼f1 þ f2

2
ðpiðtÞ � pBÞ þ f1 � f2

2
ðpjðtÞ � pBÞ

and at the LMPE by

u�
i ðtÞ ¼ bðpiðtÞ � p�Þ þ gðpjðtÞ � p�Þ

¼ ðbþ gÞðððp1ðtÞ þ p2ðtÞÞ=2Þ � p�Þ þ ðb� gÞððpiðtÞ � pjðtÞÞ=2Þ:

The OLE and LMPE trajectories have the following four properties:
(i) A higher adjustment cost or discount rate slows down convergence to the

steady state. Indeed, a price change toward the steady state today increases
adjustment costs today but decreases them in the future and, when r increases, the
future is discounted more (�f1 and �f2 as well as �ðbþ gÞ and �ðb� gÞ decrease
with l and r).30

(ii) There is decreasing dominance. Starting from an asymmetric initial position,
the system converges to the symmetric steady state. This happens because the larger
firm is softer in pricing: ui � uj ¼ f2ðpi � pjÞ and u�

i � u�
j ¼ ðb� gÞðpi � pjÞ are

positive when pi � pjo0:31

ARTICLE IN PRESS

Table 1

Values of ðpB � p�Þ=pB in percentage

C ¼ 0:1 C ¼ 0:3 C ¼ 0:5 C ¼ 0:7 C ¼ 0:9 C ¼ 0:95

C ¼ 0 0.13 1.38 4.73 12.11 28.42 35.58

C ¼ 0:01 0.13 1.33 4.55 11.65 27.33 34.21

C ¼ 0:1 0.12 1.23 4.18 10.65 24.81 30.89

C ¼ 1 0.09 0.91 3.07 7.63 16.98 20.6

C ¼ 10 0.03 0.34 1.10 2.58 5.26 6.21

28Note that, a fortiori, p� is decreasing in C (equaling the monopoly price A=2B when products are

independent, C ¼ 0; and the competitive price 0 when products are perfect substitutes, C ¼ B).
29However, this yields the open-loop price changes only along the equilibrium price trajectories.
30The results for the LMPE equilibrium parameters are checked numerically in the following parameter

range: B ¼ 1 and C is between 0.02 and 0.99 for the graphs of �
ffiffiffi
l

p
ðbþ gÞ and �

ffiffiffi
l

p
ðb� gÞ as functions of

lr2 (with domain ranging from 0 to 10,000).
31Cabral and Riordan [10] find conditions for increasing dominance in a learning-by-doing model. See

also [8,41].
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(iii) Convergence to the steady state is slower in the LMPE than in the OLE case.
Indeed, we have that �ðbþ gÞo� f1 and �ðb� gÞo� f2:

32

(iv) There are trajectories for which there is overshooting with respect to the
steady-state prices. The initially larger firm is the one that overshoots the steady-state
level. For example, this happens for firm 2 both at the OLE and the LMPE when:
A ¼ B ¼ 1; C ¼ 0:5; r ¼ 0:05; l ¼ 0:1; p1ð0Þ ¼ 0:7; and p2ð0Þ ¼ 0:4: We have

then pB ¼ 1=3 and p� ¼ 0:3177: Firm 2 features a price that starts higher than the
steady-state value, decreases below it after a while (beneath 0.314), and then
increases again toward the steady state level.33

5. Concluding remarks

We have shown that what drives the competitiveness of a market in relation to the
static benchmark is whether production or prices are costly to adjust, not the
character of competition (Cournot or Bertrand). Indeed, when output (price) is
costly to adjust, the MPE steady state is more (less) competitive than the static Nash
equilibrium. In particular, the static strategic complementarity characterizing price
competition is turned into intertemporal strategic substitutability whenever firms
face similar adjustment production costs. The outcome is fierce competition and a
steady state that is below the static Bertrand benchmark.
The consideration of adjustment costs has implications for empirical work. The

importance of taking into account the dynamic structure of the market when
estimating product differentiation models cannot be underestimated. For example,
in the work of [5,6] it is assumed that firms compete according to a static Bertrand
model. From this assumption sophisticated estimates of patterns of elasticities and
cross-elasticities of substitution among products are derived, building on discrete
choice theory. An obvious problem is that if a dynamic structure exists in the
industry then there will be biases estimating the degree of product differentiation.
For example, if the true model of an industry corresponds to our case of price
competition with production adjustment costs, then the estimates based on static
Bertrand competition would systematically overstate the degree of substitutability of
the products. The lesson to draw is that, even when the modeler is reasonably certain
that industry collusion is not an issue, neglecting the dynamic structure is dangerous
because it can lead to biases in estimation.

Appendix A

Let Hi ¼ Riðy1; y2Þ � Fð’ziÞ þ miiui þ mijuj be the (current-value) Hamiltonian of

firm i; where mi ¼ ðmii; mijÞ is the vector of costate variables associated to the
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32See Appendix C.
33This contrasts with ‘‘switching costs’’ models, where convergence is monotone [2].
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maximization problem of firm i at an MPE where ’zi ¼ @zi

@y1
ðy1; y2Þu1 þ @zi

@y2
ðy1; y2Þu2:

The following are necessary conditions ði ¼ 1; 2Þ for ðu1; u2Þ to form an MPE pair:

@Hi

@ui

¼ �@F

@ui

þ mii ¼ 0; ðA:1Þ

’mii ¼ rmii �
@Hi

@yi

� @Hi

@uj

@uj

@yi

¼ rmii �
@Ri

@yi

þ @F

@yi

þ @F

@uj

� mij

� �
@uj

@yi

;

’mij ¼ rmij �
@Hi

@yj

� @Hi

@uj

@uj

@yj

¼ rmij �
@Ri

@yj

þ @F

@yj

þ @F

@uj

� mij

� �
@uj

@yj

: ðA:2Þ

At a steady state we have that ui ¼ ’mij ¼ 0 for i; j ¼ 1; 2 and so ’zi ¼ 0 and mii ¼ 0

(because F 0ð0Þ ¼ 0 and @F
@uj

¼ �F 0ð0Þ@zi

@yj

ðy1; y2Þ ¼ 0 for i; j ¼ 1; 2Þ: We have also that

@F
@yj

¼ F 0ð’ziÞð @2zi

@y1@yj
u1 þ

@2zi

@y2@yj

u2Þ ¼ 0 ði; j ¼ 1; 2Þ: Hence, at a steady state (A.2) may

be simplified to

@Ri

@yi

þ mij

@uj

@yi

¼ 0;

rmij �
@Ri

@yj

� mij

@uj

@yj

¼ 0: ðA:20Þ

Note that r � @uj

@yj
¼ 0 would be inconsistent with (A.20) at the steady state whenever

@Ri

@yj
a0: Solving for mij in (A.20), we obtain

@Ri

@yi

þ
@Ri

@yj

@uj

@yi

r � @uj

@yj

¼ 0 ð�Þ

for i; j ¼ 1; 2 and jai:

Proof of Proposition 2.1. Let g 	 @ui

@yj
ðy�; y�Þ and b 	 @ui

@yi
ðy�; y�Þ: If the steady state

ðy�; y�Þ is regular, then det b
g

g
b


 �
a0: This ensures, in particular, that ðy�; y�Þ is an

isolated rest point of the dynamical system. It follows then from Poincaré’s

linearization result that if ðy�; y�Þ is locally stable, then necessarily the matrix b
g

g
b


 �
has negative trace 2bo0 and positive determinant b2 � g240:34 Rewriting the
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34 Indeed, if the nonlinear dynamical system ’yi ¼ uiðy1; y2Þ; i ¼ 1; 2; has a locally stable steady state

ðy�; y�Þ then the trace (determinant) of the matrix of the linearized system is negative (positive) unless the

roots of the matrix are pure imaginary or the roots are real and equal (see, e.g. [48, pp. 405–411]). In our

case the roots of b
g

g
b


 �
are real and different: bþ g and b� g; with ga0: (Note also that the stated

conditions on the matrix are necessary and sufficient for a linear system to be stable.) This means that we

have two possible situations: either bogo0 or jbj4g40:
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necessary conditions (�) for the steady state of an MPE we obtain

@Ri

@yi

ðy�; y�Þ ¼ �
@Ri

@yj
ðy�; y�Þg
ðr � bÞ :

We show that signfy� � yNg ¼ signf@Ri

@yj
gg: Since there is a unique interior and

regular equilibrium that is symmetric, it is necessary (with a direct application of the
Poincaré–Hopf index theorem for the vector field �v defined on Y ; see [35, p. 35])

that ð @2Ri

ð@yiÞ2
Þ2 � ð @2Ri

@yj@yi
Þ240 at the equilibrium. Because @2Ri

ð@yiÞ2
o0 this means that @2Ri

ð@yiÞ2
þ

@2Ri

@yj@yi
o0 at the equilibrium. Hence, if we define fðzÞ 	 @Ri

@yi
ðz; zÞ; then f0ðyNÞ ¼

@2Ri

ð@yiÞ2
ðyN; yNÞ þ @2Ri

@yj@yi
ðyN; yNÞo0: Since yN is the unique solution to the equation

fðzÞ ¼ 0; we have signfy� � yNg ¼ signf�@Ri

@yi
ðy�; y�Þg: From this and the fact that

bo0 and so r � b40; the conclusion follows. &

Appendix B

B.1. Derivation of the LMPE

By substituting for the derivatives in (4) using (3) and then comparing
the coefficients (in terms of A;B ¼ 1; and C), we obtain the following
equations:

0 ¼ 2lþ lrð1� C2Þm � ð1� C2Þ2fð1þ C2Þm2 þ 4Cmn þ 2n2g; ðB:1Þ

0 ¼ lC � lrð1� C2Þn þ 1ð1� C2Þ2

� fðCm þ nÞs þ Cm2 þ ð2þ C2Þmn þ 2Cn2g; ðB:2Þ

0 ¼ lrs � ð1� C2Þf2ðm þ CnÞs þ 2Cmn þ ð1þ C2Þn2g; ðB:3Þ

0 ¼ lA � ð1þ CÞðlrv � ð1� C2Þ

� fð1þ C þ C2Þmv þ ð1þ 2CÞnv þ ðCm þ nÞwgÞ; ðB:4Þ

0 ¼ lrw � ð1� C2ÞfCmv þ ð1þ C þ C2Þnv þ ð1þ CÞsv þ ðm þ CnÞwg; ðB:5Þ

0 ¼ 2lrz � ð1� C2Þð1þ CÞfð1þ CÞv2 þ 2vwg: ðB:6Þ

In order to solve for linear strategies we need to solve for m; n; and v: Using (B.3),
one can substitute s out in (B.2) and (B.5). Also, using (B.5), one can substitute w out
in (B.4). Then transform the resulting equations into equations in a; b; and g; using
a ¼ l�1ð1� C2Þð1þ CÞv; b ¼ l�1ð1� C2Þðm þ CnÞ; and g ¼ l�1ð1� C2ÞðCm þ nÞ:
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The following system of equations emerges:

0 ¼ 2ð1� C2Þ þ lrðb� CgÞ � lb2 þ 2lCbg� lð2� C2Þg2; ðB:7Þ

0 ¼ rCð1� C2Þ � f2ð1� C2Þ � lr2gCb� lr2g� 3lrCb2 þ lrð4� C2Þbg

þ 2lCb3 � lð4� C2Þb2gþ lg3; ðB:8Þ

0 ¼Að1� C2Þð1þ CÞðr2 � 3rbþ 2b2Þ � lafð1� CÞðr3 � 4r2bþ 5rb2 � 2b3Þ

� r2ð1� C2Þgþ rð3� 2C2Þbg� ð2� C2Þb2g� rg2 þ 2bg2 � g3g: ðB:9Þ

Eq. (B.9) determines a from b and g:35 From (B.7) and (B.8) we can derive the
following equations for b and g

0 ¼ ��f8ð1� C2Þ þ lr2gC2

l3ð9� C2Þ2
þ 8ð8� 11C2 þ 5C4Þ þ 4lr2ð4� 3C2Þ þ l2r4

l2ð9� C2Þ2
g2

� 8ð18� 13C2 þ 3C4Þ þ 2lr2ð9þ C2Þ
lð9� C2Þ2

g4 þ g6; ðB:10Þ

b ¼ r

2
þ ð8� 10C2 þ lr2Þg� lð9� 5C2Þg3

2Cð1� 6lg2Þ : ðB:11Þ

We can solve (B.10) for explicit values of g because it is a cubic equation in g2: Next
we sketch how one obtains explicit solutions for a cubic equation when there are
three real roots.
Suppose a cubic equation is given in the form

a0 þ a1z þ a2z
2 þ z3 ¼ 0: ðB:12Þ

Define G ¼ 3a1�a2
2

9
;L ¼ a0

2
� a1a2

6
þ 2a3

2

27
; and D ¼ G3 þ L2; here D is the discriminant of

Eq. (B.12). If Do0; then this cubic equation has three real roots. The three roots are
given by

zk ¼ �a2

3
þ 2

ffiffiffiffiffiffiffi
�G

p
cos

yþ 2kp
3

ðk ¼ 0; 1; 2Þ; ðB:13Þ

where y ¼ arctanð
ffiffiffiffiffi
�D

p

�L ÞA½0; pÞ: Notice that �G40 if Do0: In our model D is a

complicated function of l; r; and C; which is given in Table 2. One can check

analytically that D is negative in our model (unless 39� 55C2 þ 6lr2 ¼ 0). The

solutions to (B.10) for g2 can be found according to formula (B.13); then the
solutions for g are obtained by taking positive and negative square roots. The six
solutions are summarized in Table 2.
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35 In order to check that v (and thus a) is linear in A; note that from (B.5) we can see that w is linear in v:

After substituting w out in (B.4), v can be checked to be a linear function of A:
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B.1.1. Bounds on g2

We want to compare the sizes of g2 for the six solutions. We will use this

information later. First, g2 can be rewritten as

g2 ¼ �a2

3
1þ t cos

yþ 2kp
3

� �
for k ¼ 0; 1; 2; ðB:14Þ

where t ¼ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�G=a22

q
and a2 is as given in Table 2. The parameter y is the angle

associated to the complex number �Lþ
ffiffiffiffiffiffiffi
�D

p
i: We have that 0pypp because
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Table 2

Solution # g Solution # g
1 g1 ¼ �g2 2

g2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a2

3
þ 2

ffiffiffiffiffiffiffi
�G

p
cos

y
3

r
3 g3 ¼ �g4 4

g4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a2

3
þ 2

ffiffiffiffiffiffiffi
�G

p
cos

yþ 2p
3

r
5 g5 ¼ �g6 6

g6 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a2

3
þ 2

ffiffiffiffiffiffiffi
�G

p
cos

yþ 4p
3

r

b ¼ rC þ ð8� 10C2 þ lr2Þg� 6lrCg2 � lð9� 5C2Þg3
2Cð1� 6lg2Þ

and

a ¼ �AðB � CÞðbþ gÞ
2B � Cð1� g

b�r
Þ ;

where

a2 ¼ �8ð18� 13C2 þ 3C4Þ þ 2lr2ð9þ C2Þ
lð9� C2Þ2

; y ¼ arctan
ffiffiffiffiffiffiffi
�D

p
=ð�LÞ


 �
A½0;pÞ;

G ¼ � f8ð648� 639C2 þ 383C4 � 321C6 þ 57C8Þ

þ 4lr2ð324þ 171C2 þ 215C4 � 95C6 þ 33C8Þ þ l2r4ð81þ 126C2 þ C4Þgf9l2ð9� C2Þ4g�1;

D ¼ � C2ð39� 55C2 þ 6lr2Þ2f64ð1� C2Þð256� 139C2 � 15C4 þ 31C6 � 5C8Þ

þ 16lr2ð512� 539C2 þ 169C4 � 17C6 þ 3C8Þ þ l2r4ð1536� 971C2 þ 214C4 � 11C6Þ

þ 4l3r6ð32� 9C2 þ C4Þ þ 4l4r8gf108l6ð9� C2Þ8g�1;

and

L ¼f8ð93312� 507627C2 þ 615087C4 � 197854C6 � 9810C8 þ 17433C10 � 2349C12Þ

þ 3lr2ð93312� 428409C2 þ 308772C4 � 78166C6 þ 17316C8 � 17433C10Þ

þ 48l2r4ð729� 2916C2 þ 945C4 � 218C6 � 12C8Þ

þ 2l3r6ð9þ C2Þð9� 18C þ C2Þð9þ 18C þ C2Þgf54l3ð9� C2Þ6g�1:
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ffiffiffiffiffiffiffi
�D

p
X0: Hence,

�1ocos
yþ 2p

3
p� 0:5pcos

yþ 4p
3

p0:5pcos
y
3
p1: ðB:15Þ

Since �a240 and t40; we know from (B.15) that solutions #3 and #4 are the
smallest in absolute value and that #1 and #2 are the largest.

B.2. There is a unique stable LMPE

We show that there is a unique solution to (B.7) and (B.8) that satisfies the
stability condition. First, (B.7) can be rewritten as

g ¼ Cðb� r=2Þ
2� C2

7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� C2Þf8ð1� C2Þ þ lr2g � 8lð1� C2Þðb� r=2Þ2

q
2
ffiffiffi
l

p
ð2� C2Þ

: ðB:70Þ

Using (B.7), we can derive the following from (B.8):

g ¼ 2Cð3� C2Þðb� r=2Þ
18� 7C2 þ C4

þ F1ðb� r=2Þ
F2ð18� 7C2 þ C4Þ; ðB:80Þ

where

F1 ¼ 8Cf24� 76C2 þ 46C4 � 11C6 þ C8 þ ð12� 7C2 þ C4Þlr2g;

F2 ¼ ð2� C2Þf8þ ð1� C2Þlr2g � 4lð18� 7C2 þ C4Þðb� r=2Þ2:

The graphs of (B.70) and (B.80), including the asymptotes, are drawn in Fig. 1 for the
case F140: The two graphs have six intersections corresponding to the six solutions
listed in Table 2. The graphs are symmetric with respect to the point ðr=2; 0Þ in the
b� g plane. The derivative of the second term on the RHS of (B.80) with respect to b
is either positive for all values of b or negative for all values of b: The sign of the
slope is the same as the sign of F1 in (B.80). In Fig. 1 the slope is positive. We deal
with the two cases separately. In both cases, all we need to show is that the two
graphs representing (B.70) and (B.80) intersect each other only once in the region
defined by the stability condition: namely, g4b and go� b:

Case 1: F1X0: The proof can be most clearly explained graphically, so the reader
should refer to Fig. 2 in the subsequent argument. Point A is the intersection of the
graph of (B.70) and that of g ¼ �b: Point B is the point on the graph of (B.80) that
has the same b-coordinate as A: Point C is the intersection of the horizontal
asymptote of (B.80) (the straight line represented by the first term on the RHS of
(B.80)) and the graph of (B.70). Point D is the intersection of the graph of (B.70) and
the graph of g ¼ b: Finally, point S is the intersection of the graphs of (B.70) and
(B.80) with the smallest b-coordinate. We claim that point S is the unique stable
solution. The claim is proved by checking that:

(1) point A lies to the left of the smaller vertical asymptote;
(2) point B lies below point A; and
(3) point C lies above the line g ¼ b:
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We omit the details. When point A lies to the left of the smaller vertical asymptote,
so does point D: Since the stable solution must lie on arc AD and since the graph of
(B.80) intersects arc AD only once, uniqueness follows.

Case 2: F1o0: Again the proof can be most clearly explained graphically; see
Fig. 3. Points A;C;D; and S are defined as before. Points E and F are the points on
the graph of (B.80) that have the same b-coordinate as D and A; respectively. Again
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Fig. 2.

Fig. 1.
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we prove that point S is the unique stable solution. The proof is done by showing
that:

(1) point D lies to the left of the smaller vertical asymptote;
(2) point E lies above point D; and
(3) if point A lies to the right of the smaller vertical asymptote, then point F lies

above point A:

Again, we skip the details. Claims (1)–(3) imply that point S is the only solution on
arc AD; which proves the uniqueness of the stable solution.

B.3. Result B.1 (Identifying the stable solution)

Let B ¼ 1: If C4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
39=55

p
and lr2oð�39þ 55C2Þ=6; then solution #5 in Table 2 is

the stable LMPE. Otherwise, solution #3 is the stable LMPE.
Derivation: We can check analytically that #3 is the stable solution when F1X0:

We sketch the proof (refer to Fig. 4). Point C is defined in the same way as in Fig. 2.
Points G and H are, respectively, the intersections of the graphs of (B.70) and (B.80)
with the b-axis on the left of the smaller vertical asymptote. Point I is the point on
the graph of (B.70) that has the same b coordinate as point H: Points K and L are the
intersections of the vertical asymptotes of (B.80) and the graph of (B.70). First one
can show that the b-coordinate of point H is larger than that of point G: This proves
that the g-coordinate of S is negative, since the slope of the graph of (B.80) is positive.
Second, one can check that the g-coordinate of point I is larger than the absolute
value of the g-coordinate of point C: Third, the g-coordinate of point L is larger than
that of point K ; because (B.80) is the sum of an ellipse with center at ðr=2; 0Þ and a
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straight line through ðr=2; 0Þ with positive slope. This proves that the stable solution
is the smallest in absolute value with negative g coordinate, namely #3.
We can also show analytically that the stable solution is either #3 or #5 when

F1o0: It is clear from Fig. 3 that S has go0 (i.e., S is either #1 or #3 or #5 in
Table 2). We can show also that the g-coordinate of S cannot be the largest in
absolute value. We sketch the proof (refer to Fig. 5). Point M is the intersection of
the graph of (B.80) and the graph of g ¼ b� r=2 on the left of the smaller vertical
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Fig. 5.

Fig. 4.
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asymptote of (B.80). Point M 0 is the point on the lower part of (B.70) that has the
same b-coordinate as point M: Point N is the point on the graph of (B.80) whose b-
coordinate is the minimum of the points on the graph of (B.70). One can check that
the g-coordinate of point N is larger than that of point M (which in turn is larger
than that of point M 0) and that the slope of (B.80) at M is negative. These facts,
together with the fact that (B.80) is concave on the left of the smaller vertical
asymptote, proves that the g-coordinate of S is not the largest in absolute value.

Numerical analysis shows that #3 is the stable solution if lr24ð55C2 � 39Þ=6 and
that #5 is the stable solution otherwise. Fig. 6 summarizes the results. For

Co
ffiffiffiffiffiffiffiffiffiffiffiffiffi
39=55

p
E0:842075; solution #3 is the coordinate of S: For larger values of C

and for lr2oð�39þ 55C2Þ=6 (region III), #5 is the coordinate of S: Fig. 7 depicts

three solutions of (B.10), a cubic equation in g2; as functions of C for lr2 ¼ 1=100
and l ¼ 1: The stable branch starts out the smallest when C is small. As C increases
the stable branch increases and crosses one of the unstable branches, to become the

second largest. The crossing occurs when y ¼ 0; that is, when lr2 ¼ ð�39þ 55C2Þ=6:
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Fig. 6. Region I: F1X0; stable solution is #3. Region II: F1o0; stable solution is #3. Region III: F1o0;

stable solution is #5.

Fig. 7. Graphs of g2:
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Appendix C

C.1. Simulation results

Prices at the stable LMPE trajectory are (strictly) lower than the prices at the OLE
trajectory for all initial states that belong to P for B ¼ 1; where C is between 0.001

and 1 and lr2 is between 0 and 1000, with step size 0.1 for C and 10 for lr2:

We want to check that pOLi ðtÞ � pMP
i ðtÞ40ðtX0; i ¼ 1; 2Þ for prices in the region P:

From Proposition 4.1 we have

pOLi ðtÞ ¼ pB þ
p0i þ p0j

2
� pB

 !
ef1t þ

p0i � p0j

2

 !
ef2t: ðC:1Þ

We obtain pOLi ðtÞ � pMP
i ðtÞ by subtracting (5) from (C.1). First define a new set Pt for

a given t to be the set of prices ðp01; p02Þ for which pOLi ðtÞ � pMP
i ðtÞ40; i ¼ 1; 2: We

want to show that P is included in Pt for all tX0; which is illustrated in Fig. 8. In
order to prove the inclusion it is enough to show that (1) the coordinates of the
vertex N are larger than those of M and (2) the horizontal coordinate of point L is
larger than that of K :

The horizontal (and vertical) coordinate of N is ð1�exp½f1t�ÞpB�ð1�exp½ðbþgÞt�Þp�
exp½ðbþgÞt��exp½f1t� ; whereas

the horizontal (and vertical) coordinate of M is A: We want to show that ð1�
exp½f1t�ÞðpB=AÞ � ð1� exp½ðbþ gÞt�Þðp�=AÞ4exp½ðbþ gÞt� � exp½f1t�: Define the
function f ðtÞ by

f ðtÞ ¼ ð1� exp½f1t�ÞðpB=AÞ � ð1� exp½ðbþ gÞt�Þðp�=AÞ � ðexp½ðbþ gÞt� � exp½f1t�Þ:

We want to show that f ðtÞ40: First, f ð0Þ ¼ 0: Observe that f 0ðtÞ and hence f ðtÞ
would be positive if ðbþ gÞð1� p�=AÞof1ð1� pB=AÞ and f1obþ g: Since p� ¼
�a=ðbþ gÞ and, normalizing B ¼ 1; pB ¼ Að1� CÞ=ð2� CÞ; the first inequality is
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equivalent to

f1 � ð2� CÞða=A þ bþ gÞ40:

We check this inequality numerically.

The horizontal coordinate of L is 2fð1�exp½f1t�ÞpB�ð1�exp½ðbþgÞt�Þp�g
exp½ðbþgÞt��exp½f1t�þexp½ðb�gÞt��exp½f2t�; whereas the

coordinate of K is Að1� CÞ after normalizing B ¼ 1: The inequalities f1obþ g and
f2ob� g can be checked analytically.36 We then want to show that ð1�
exp½f1t�ÞðpB=AÞ � ð1� exp½ðbþ gÞt�Þðp�=AÞ þ ðð1�CÞ=2Þfexp½f1t� � exp½ðbþ gÞt� þ
exp½f2t� � exp½ðb� gÞt�g40:
In summary, we check that

(i) (numerically) f1 � ð2� CÞða=A þ bþ gÞ40;
(ii) (analytically) f1obþ g and f2ob� g; and
(iii) (numerically) ð1� exp½f1t�ÞðpB=AÞ � ð1� exp½ðbþ gÞt�Þðp�=AÞ þ ðð1� CÞ=2Þ

fexp½f1t� � exp½ðbþ gÞt� þ exp½f2t� � exp½ðb� gÞt�g40:

We describe the numerical method first. Note that pB=A is a function of C only,

while p�=A;
ffiffiffiffiffiffiffiffi
lf1

p
;

ffiffiffiffiffiffiffiffi
lf2

p
;

ffiffiffiffiffi
la

p
;

ffiffiffiffiffiffi
lb

p
; and

ffiffiffiffiffi
lg

p
are functions of C and lr2: For (i)

we check the graphs of
ffiffiffi
l

p
ff1 � ð2� CÞða=A þ bþ gÞg;

ffiffiffi
l

p
ff1 � ðbþ gÞg; andffiffiffi

l
p

ff2 � ðb� gÞg as functions of C (or lr2) fixing the value of the other variable.

Here lr2 ranges from 0 to 1000 and C ranges from 0.001 to 1. For (iii) we substitute

t ¼
ffiffiffi
l

p
tano (so that, e.g., exp½f1t� ¼ exp½

ffiffiffiffiffiffiffiffi
lf1

p
tano�) and check the graph of the

above expression as a function of o for various values of C and lr2; where

0:001popðp=2Þ � 0:0001 (which approximately corresponds to 0:001=
ffiffiffi
l

p
p

tp10; 000=
ffiffiffi
l

p
Þ; and 0plr2p1000: All the graphs are either monotone or single-

peaked and satisfy the required sign conditions.

Proof of Proposition 4.3. As lr2 tends to infinity pB � p� tends to zero; as lr2 tends to

zero pB � p� tends to a strictly positive number.

It is enough to show that (i) as lr2 tends to infinity both b and g tend to 0 and (ii)
as l or r tend to 0; g=ðb� rÞ converges to a number strictly between 0 and 1. We now
prove each of these statements separately.

(i) We show that, as lr2 tends to infinity, the graphs of (B.70) and (B.80) have the
following properties in the limit (see Fig. 1):

(a) the vertical asymptotes have positive b-coordinates;
(b) F1 in (B.80) is positive. Hence the graph of (B.80) is increasing in b;
(c) the graphs of both (B.70) and (B.80) go through ð0; 0Þ;
(d) the slope of (B.70) is larger than that of (B.80) at ð0; 0Þ:

These properties imply that among the six solutions five have positive b-coordinates
and one is ð0; 0Þ: Since we know that bogo0 for the stable solution (Proposition
4.2), it must be that ð0; 0Þ is the limit of the stable solution.
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The b-coordinates of the vertical asymptotes are the values of b that make F2 of

(B.80) equal to 0. As lr2 tends to infinity these asymptotes converge to

ðr=2Þ 17
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�C2Þð2�C2Þr2
18�7C2þC4

q� �
; which are positive. (b) This is trivial to check. (c) It is

easy to see that ð0; 0Þ lies on the positive part of the graph of (B.70) and on the graph
of (B.80) in the limit. (d) The slope of (B.70) at ð0; 0Þ is 1=C; which is larger than that

of (B.80), which is
Cð3�C2Þ
4�C2 in the limit.

(ii) First, define #g ¼
ffiffiffi
l

p
g and #b ¼

ffiffiffi
l

p
b; then rewrite (B.70) as

#g ¼Cð #b�
ffiffiffi
l

p
r=2Þ

2� C2

7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� C2Þf8ð1� C2Þ þ lr2g � 8ð1� C2Þð #b�

ffiffiffi
l

p
r=2Þ2

q
2ð2� C2Þ : ðB:700Þ

Eq. (B.80) can be rewritten as

#g ¼ 2Cð3� C2Þð #b�
ffiffiffi
l

p
r=2Þ

18� 7C2 þ C4
þ F1ð #b�

ffiffiffi
l

p
r=2Þ

F2ð18� 7C2 þ C4Þ; ðB:800Þ

where

F1 ¼ 8Cf24� 76C2 þ 46C4 � 11C6 þ C8 þ ð12� 7C2 þ C4Þlr2g;

F2 ¼ ð2� C2Þf8þ ð1� C2Þlr2g � 4ð18� 7C2 þ C4Þð #b�
ffiffiffi
l

p
r=2Þ2:

Comparing (B.700) and (B.800) with (B.70) and (B.80), one can see that #g and #b are the

solutions to Eqs. (B.70) and (B.80) when l ¼ 1 and r is replaced by r
ffiffiffi
l

p
: Hence all the

properties we show for g and b apply also to #g and #b; especially when #g and #b are
nonpositive in the limit. In the limit as l tends to 0, (B.700) becomes

#g ¼ C #b
2� C2

7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ð1� C2Þfð2� C2Þ � #b2g

q
2ð2� C2Þ

and (B.800) becomes

#g ¼ 2Cð3� C2Þ #b
18� 7C2 þ C4

þ 2Cð24� 76C2 þ 46C4 � 11C6 þ C8Þ #b
ð18� 7C2 þ C4Þf2ð2� C2Þ � ð18� 7C2 þ C4Þ #b2g

:

The same argument given in Appendix B applies here to show that #g and #b have finite
negative values such that #bo#go0 for the stable solution. Hence, limlr2-0 g=b ¼
limlr2-0 #g= #b belongs to the open interval ð0; 1Þ: Since #g ¼

ffiffiffi
l

p
g and #b ¼

ffiffiffi
l

p
b converge

to finite negative numbers as l tends to 0, it follows that g and b must tend to �N:

Hence liml-0g=ðb� rÞ ¼ liml-0g=b; and it is also clear that limr-0g=ðb� rÞ ¼
limr-0 #g=ð #b�

ffiffiffi
l

p
rÞ ¼ limr-0 #g= #b:
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