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Using lattice-theoretical methods, we analyze the existence and order structure of Nash 
equilibria of non-cooperative games where payoffs satisfy certain monotonicity properties (which 
are directly related to strategic complementarities) but need not be quasiconcave. In games with 
strategic complementarities the equilibrium set is always non-empty and has an order structure 
which ranges from the existence of a minimum and a maximum element to being a complete 
lattice. Some stability properties of equilibria are also pointed out. 

1. Introduction 

In this paper, we propose a powerful yet simple approach to study Nash 
equilibria in non-cooperative games. The central idea of this approach is to 
exploit order and monotonicity properties of the game using lattice- 
theoretical methods. With this new box of tools we are able, in the first 
place, to obtain results regarding the existence of Nash equilibria in games 
where payoff functions need not be quasiconcave. Those are out of reach 
when using the prevalent topologically-oriented techniques. In the second 
place, the lattice approach provides an order structure on the equilibrium set 
and some (tatonnement) stability properties independently of whether payoff 
functions are quasiconcave or not. The analysis is based on a fixpoint 
theorem due to Tarski (1955) and builds on the work of Topkis on the 
subject [Topkis (1979)]. 

The class of games where the lattice approach is most powerful is 
described by the presence of strategic complementarities, which yield mono- 
tone increasing best replies. In a differentiable setting the actions of two 
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players are said to be strategic complements if the marginal profitability of a 
player increases with the action of the rival [see Bulow et al. (1983)]. 
Economic models where complementarities are important provide an 
environment conducive to strategic complementarities. Typical examples in 
differentiated oligopoly models include price competition with substitute 
products and quantity competition with complementary products. In macro- 
economic models with imperfect competition strategic complementarities 
arise also naturally. In this context the ranking of the multiple equilibria will 
be very important. The economy can get stuck at a low activity equilibrium 
and there may exist a role for policy to move to a better equilibrium. [See 
Cooper and John (1985) and Heller (1985).] 

The plan of this paper is as follows. Section 2 deals with lattices and 
Tarski’s theorem. Section 3 with the monotonicity of optimal solutions in 
lattice programming. Section 4 considers abstract games in normal form and 
presents the basic existence results and order properties of the equilibrium 
set. Section 5 presents a note on (tatonnement) stability and section 6 
considers Bayesian games. Section 7 gives examples and applications, 
including oligopoly games. 

2. Lattices and Tarski’s theorem’ 

Let 2 be a binary relation on a non-empty set S. The pair (S, 1) is a 
partMy ordered set (poset) if 2 is reflexive, transitive and antisymmetric.’ 
A poset (S, 2) is (completely) ordered if for x and y in S either xzy or yzx. 
A lattice is a partially ordered set (S, 2) in which any two elements have a 
least upper bound (supremum) and a greatest lower bound (infimum) in the 
set. For example, let SC R2, S= {(l,O),(O, l)>, then S is not a lattice with the 
vector ordering since (LO) and (0,l) have no joint upper bound in S. A 
lattice (S, 2) is complete if every non-empty subset of S has a supremum and 
an intimum in S. Let T cS, where S is a complete lattice, and denote the 
least upper bound of T in S by sup,T and the greatest lower bound of T in 
S by inf,T. A subset L of the lattice S is a sublattice of S if the supremum 
and intimum of any two elements of L belong also to L. 

Let (S, 2) be a poset. A function f from S to S is increasing (decreasing) if 
for x, y in S, x 2 y implies that f(x) 2 f(y) (f(x) s f(y)). The following lattice- 
theoretical lixpoint theorem is due to Tarski (1955). 

Theorem 2.1 (Tarski). Let (S, 2) be a complete lattice, f an increasing 
function from S to S and E the set of fixpoints off, then E is non-empty and 
(E, 2) is a complete lattice. In particular, this means that sup,E and inf, E 
befong to E. 

For the theory of lattices see Birkhoff (1967). 
‘The binary relation 2 is antisymmetric if for x,y in S, xzu and y2.x implies that x =y. 
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One may wonder whether a similar theorem holds for decreasing func- 
tions. It is trivial to see that, unfortunately, this is not the case. 

Notice that Tarski’s theorem is not asserting that the set E of fixpoints of 
f:S-+S is a sublattice of S. That is, if x and y belong to E, it is not 
necessarily true that sup, { x, y} and inf, (x, y} also belong to E. What is true is 
that x and y have a supremum and an infimum in E. The following example3 
will clarify the issue. Let S be a finite lattice in R2 consisting of 
the nine points (i,j) where i and j belong to {0,1,2}. Let f: S-+S be such 
that all points are fixpoints except (1, l), (1,2) and (2,l) which are mapped 
into (2,2). S is a complete lattice and f is increasing. Consider 
H= ((0, l), (LO)}, H c E. Sup, H =( 1,l) is not a fixpoint of f and therefore E 
is not a sublattice of S but certainly sup, H = (2,2) does belong to E. 

The conclusion in Tarski’s theorem that the set of fixpoints E of f is a 
complete lattice is stronger than the assertion that inf, E and sup, E belong 
to E. Suppose that in our previous example all points in S are tixpoints with 
respect to a certain function g except (1,l) which gets mapped into (2,2). 
Then E would not be a complete lattice although inf, E = (0,O) and sup, E = 
(2,2) belong to E since (0,l) and (1,0) have no supremum in E. [(2,2), (1,2) 
and (2,l) are all upper bounds of (0,l) and (LO), but there is no least upper 
bound of (0,l) and (LO) in E since (1,1) is not a fixpoint of g.] Clearly g is 
not increasing since g(( 1,1)) =(2,2) but g(( 1,2)) = (1,2). 

Theorem 2.1 can be improved upon when (S, 2) is a completely and 
densely ordered lattice. That is, a completely ordered lattice for which for all 
x, y in S with4 x < y, there is a z in S such that x <z < y. A function f from S 
to S is quasi-increasing if for every non-empty subset X of S, f(sup 
X)Zinff(X) and f(infX)ssupf(X). (f(X)={y~S:y=f(x),x~X}). If a 
function is quasi-increasing it cannot jump down, all the jumps must be up. 
A somewhat simplified version of Theorem 3 in Tarksi (1955, p. 250) follows. 

Theorem 2.2 (Tarski). Let (S, 2) be completely and densely ordered lattice 
and f a quasi-increasing function on S to S. Denote the set of fixpoints off 
by E. Then E is non-empty and (E, 2) is a completely ordered lattice. 

3. Monotonicity of optimal solutions and lattice programming 

Consider the following family of optimization problems indexed by a 
parameter t, t E T, max {g(x, t), x E S}, where {S, 2 ,) and (17; 2 ,) are non-empty 
lattices and g: S x T+R. Let 4(t) be the set of optimal solutions to the 
problem. We say that the correspondence 4 from T to S is increasing if 
t zft’, t # t’, implies that for each s in 4(t) and each s’ in +(t’),szss’.’ If 4 is 

‘The example was suggested by Andreu Mas-Colell. 
4Let (S, 2) be a poset and a and b be elements of S, then a? b and a # b. This is equivalent to 

require a? b to hold while bza does not hold. 
‘When there is no risk of confusion we will drop the subindices of 2. 



308 X. Viues, Nash equilibrium with strategic complementarities 

a function our definitions are the usual ones. Note that 4 is increasing if and 
only if all selections of 4 are increasing. Topkis (1978) examines the 
monotonicity properties of 4 with respect to t. 

Let (S, 2) be a lattice and g a real valued function on S. We say that g is 
supermodular on S if for all x, y in S, 

&in (x, YN + g(max (x, YN &(x) + g(y). 

g is strictly supermodular on S if the inequality is strict for all pairs x, y in S 
which cannot be compared with respect to >= .6 

Let S and T be lattices and g: S x T+R. We say that g has (strictly) 
increasing differences in (s, t) if g(s, t) -g(s, t’) is (strictly) increasing in s for all 
t 2 t’ (t >= t’, t # t’). Decreasing differences are defined replacing ‘increasing’ by 
‘decreasing’. The concepts of supermodularity and increasing differences are 
closely related. As emphasized by Topkis the former is more convenient to 
work with mathematically while the latter is often more easily recognizable. 
They both formalize the idea of complementarity in a strategic setting. 
Supermodularity is a stronger property in general but for a function defined 
on a product of ordered sets the two concepts coincide [Topkis (1978, 
Theorems 3.1 and 3.2)]. 

For example, if g: R”-+R is twice-continuously differentiable then g is super- 
modular if and only if aiig(X) 2 0 for all x and i # j. If aijg(X) > 0 for all x and 
i# j, then g is strictly supermodular. The equivalence between the condition 
aijg(x) 20 and supermodularity for smooth functions can be motivated by 
thinking of the square with vertices (min (x, y), y, max (x, y), x} and rewriting 
the definition of supermodularity as: g(max (x, y)) -g(x) Lg(y) -g(min (x, y)). 

Lemma 3.1 below puts together some of Topkis’ results. 

Theorem 3.1. Let g: S x T-R be supermodular on S for each t in T. 

(i) Then 4(t) is a lattice for all t. 
(ii) Zf g has increasing (decreasing) differences in (s, t) and sup 4 and inf4 

exist and are selections of C$ they are increasing (decreasing). 
(iii) If g is strictly supermodular on S for each t in T, then 4(t) is ordered for 

all t. 
(iv) If g has strictly increasing diflerences in (s, t), then Cp is increasing. 

Proof. (i). Consider x and y in 4(t), then 

0 Zgbin (x, Y), t) -&, d Bdy, t) -dmax (x7 Y), t) L 0. 

The first and the last inequalities hold since x E 4(t) and y E 4(t) respectively, 

6That is, neither x 2y nor yzx holds. 
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the middle one since g is supermodular on S. We see that min(x, y) and 
max(x, y) belong to 4(t). Thus 4(t) is a lattice (in fact a sublattice of S). 
(ii). Consider the case of increasing differences first. Let x E 4(b) and y E $(t), 
t 2 6, we claim that min (x, y) E 4(b) and max (x, y) E 4(t). Consider the follow- 
ing string of inequalities: 

02gbax k Y), t) -dy, t) Ldy, t) 2dmax (x7 Y), b) -dy, b) 

>=g(x,b)-g(min(x,b),b)ZO. 

The first and the last inequalities hold since XE~(L) and ye 4(t) respectively, 
the second since g has increasing differences on S x T, the third since g is 
supermodular on S. The claim follows. 

Suppose now that sup4 and inf$ exist and are selections of 4. We show 
that sup 4 is increasing, that is, tz b implies that sup 4(t) zsup 4(b). We 
claim that sup 4(t) 1 x, for all x E 4(b). If x E 4(b) then max(x, sup 4(t)) E 4(t) 
since sup 4(t) E 4(t). Suppose it is not true that sup 4(t) 2x. Then 
max (x, sup 4(t)) 2 sup 4(t) and max (x, sup 4(t)) #sup 4(t), which is a contra- 
diction, since max (x, sup 4(t)) E 4(t). Similarly one shows inf 4 is increasing. 

With decreasing differences the proof is analogous noticing that the claim 
above follows if b 2 t. 
(iii). Suppose now g is strictly supermodular on S. Let x and y belong to 
4(t) and suppose they are not comparable with respect to 2. Since g is 
strictly supermodular on S we have 

0 2 g(max b, Y), t) -A t) > g(y, t) -gWn (x, Y), t) 2 0, 

which is a contradiction. Therefore, 4(t) is ordered for all t. 
(iv). We show that t 2 b, t # b implies y 2 x for x E 4(b) and y E 4(t). Suppose 
it is not true that yzx. Then max (x, y) zy and x #y. Therefore the second 
inequality in the string considered in the proof of the claim in (ii) is strict 
because of strictly increasing differences, which provides the desired 
contradiction. Q.E.D. 

Remark 3.1. If g is (strictly) supermodular on S+ T then it has (strictly) 
increasing differences on S x T and, obviously, g is (strictly) supermodular on 
S for any t in T. 

Under what conditions will inf 4 and sup 4 exist and be selections of $? 
For this matter we need to introduce some topological concepts. If (S, 2) is 
a lattice its interval topology is defined by taking the sets of the type 
{z E S: z i x} and {z E S: x 5 z} to form a sub-basis for closed sets. The interest 
of this topology lies in the following result: a lattice is compact in its interval 
topology if and only if it is complete [Birkhoff (1967, Theorem 20)]. 
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Lemma 3.1. Let g: S x T+R be supermodular on S for each t in T. If S is a 
lattice which is compact in a topology finer than its interval topology and g is 
upper semicontinuous (u.s.c.) on S then 4(t) is a non-empty compact and 
complete lattice for all t and sup C$ and inf 4 are selections of I$. 

Proof. d(t) is non-empty and compact since g is U.S.C. on S and S is 
compact. We know 4(t) is a lattice from Theorem 3.1(i). According to the 
result of Birkhoff it will be complete since it is compact. Therefore sup 4 and 
inf4 exist and are selections of 4. Q.E.D. 

4. Abstract games 

Consider an n-player game in normal form where Ai is the strategy set of 
player i, iEN, the set of players. We assume that (Ai, &) is a complete lattice 
for all i. Let A = Xl= I Ai and for any a, b in A say that a 2 b if a, 2 ibi for all i, 
then (A, 1) is a complete lattice. Player i has a payoff or utility function 
which gives rise to a best reply correspondence Yi. That is, Yi assigns a 
(non-empty) set of best replies for player i to any combination of strategies of 
the other player. Let a_i=(aj)j,i and A_i=Xj,iAj, Yi goes from A_i to the 
non-empty subsets of Ai. Recall that we say that Yi is increasing if for all 
j#i, ajzjbj, with strict inequality for at least one, implies that for each xi 
in !I’i(a_i) and yi in Yi(b_i), xiziyi. Let Y be the product of the best reply 
correspondences, Y = Xl= 1 Yi, Y goes from A to the non-empty subsets of A. 
Let E be the set of fixpoints of Y, that is the set of Nash equilibria of our 
game, E={a~A:a~y(a)}. 

If Yi is an increasing function for all i, then Y will be an increasing 
function from A to A, and from Tarski’s theorem we know that the 
equilibrium set E will be a non-empty complete lattice. Obviously, if Yi is a 
correspondence and has an increasing selection for all i then Tarski’s 
theorem can be used again to show that E is non-empty.7 Similarly, in a 
two-person game, if there is a decreasing selection for the best reply 
correspondence of any player, say gi of Yi, i= 1,2, then the composite best 

reply map, f:b-r& f=glogz, will be an increasing function, being the 
composition of two decreasing functions. The function f will have a tixpoint, 
say a,, according to Tarski’s theorem and (gl(a,),&) will be the desired 
tixpoint of g. 

The above arguments nevertheless are silent with respect to order structure 
of the equilibrium set E. Theorem 4.1 addresses this issue extending Tarski’s 
theorem to correspondences for the case of Abstract Games. 

‘An analogous argument shows that in symmetric games there will exist symmetric equilibria. 
That is, if (A,hi) =(Ajz j), Pi= Yj and Yi has an increasing selection for all i and j then there is 
a*E Y(a*) and ar=atfor all i and j. This follows by restricting Y to A={a~A:a,=a~, all i and 
j} and noticing that A IS a complete lattice. 
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Theorem 4.1. Assume that (Ai, &) is a complete lattice for all i, then 

(i) if inf ‘Pi and sup ‘Pi are increasing selections of Yi for all i, then E has a 
largest and a smallest element; 

(ii) if for all i Yi is increasing and for all a in A, Y’i(a_i) has a smallest 
element and Yi(U -i) n {Xi E Ai: ai 2 iXi> has a largest element if non-empty, 
then E is a (non-empty) complete lattice. 

Proof. (i). By assumption inf Yi is an increasing selection of Yi, and 
therefore inf Y is an increasing selection of Y. From Tarski’s theorem, we 
know that z=inf {x E A: inf Y(x) sx} belongs to E. We claim that x =inf E. 
Let a E E, then a E Y(a) and a zinf Y(a) 2 x. Similarly with sup E. 
(ii). We construct an increasing selec%& g of Y with the property that 
E = {a~ A: a=g(a)}. The result then follows from Tarski’s theorem since A is 
a complete lattice. Given any a E A let 

gita) = 

max{Yi(u_i)n{XiEAi:ai~iXi}} if aiziminYi(U_i) 
min Yi(a_i) otherwise. 

Now, E = {a E A: a =g(a)} since by construction g is a selection of Y and if 
a E E, a E Y(a) or UiE Yi(a_J for all i and then g{(U) =Ui for all i. Furthermore 
g is increasing, that is, a 2 b implies that g(u) zg(b) for any a and b in A. If a 
and b are such that for some i ajzjbj9 j #i, with strict inequality for at least 
one, then gi(a)~igi(b) since Yi is increasing. If a and b are such that 
U_i=b_i,Ui>ibi for some i, then gin igi(b) according to our 
construction. Q.E.D. 

Remark 4.1. A similar theorem could be stated for general correspondences, 
providing thus an extension of Tarski’s theorem. Nevertheless, the analog of 
result (ii) for general correspondences would not be useful in the context of 
Abstract Games since even if all individual best reply correspondences Yi are 
increasing the product of them Y =XiY, will not be necessarily increasing. 
This is easily understood. If for some i U_i=b_i and Ui>ibi then Yi(a_i)= 
Yi(b -J and, obviously, it is not true that Xi 2 iyi for each xi in Yi(a_i) and yi 
in Yi(b_i). Therefore Y cannot be increasing unless it is a function. 

Remark 4.2. If we endow the complete lattice (Ai, 2 i) with a topology finer 
than its interval topology (note that this makes Ai compact) and assume 
Yi(U_1) to be closed and ordered for all U-i in Xjzi Aj then Yi(a_j) has a 
smallest element and Yi(U_i) n {xic Ai: ai 2 iXi> has a largest element if 
non-empty. This is clear. (a) Yi(a_J is compact since it is a closed subset of 
the compact set Ai. (b) Yi(a_i) n {X~E Ai: ail iXi> is also closed (being the 
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intersection of closed sets) and therefore compact; furthermore, it is ordered 
since Yi(U_i) is ordered. Both sets are compact ordered sets and therefore 
have smallest and largest elements. 

We can now put together the results on games with monotone best 
responses with the characterization of payoffs which yield the appropriate 
monotonicity conditions. 

Theorem 4.2. Let Ai be a lattice compact in a topology finer than its interval 
topology and 71i: A+R, A=Xy= 1 Ai, upper semicontinuous on Ai, for all i. 
Then 

(i) if 71i is a supermodular on At and has increasing dtrerences in (ai,a_J the 
equilibrium set is non-empty and a largest and smallest equilibrium point 
exist; 

(ii) if xi is strictly supermodular on Ai and has strictly increasing differences in 
(ai, a-t) the equilibrium set is a non-empty complete lattice; 

(iii) if n =2 and for i= 1,2 xi is supermodular on Ai and has decreasing 
dtrerences in (ai, aj), j # i, then an equilibrium exists. 

Proof. Under the assumptions the best response correspondence of player i, 
Yi, is compact valued. 

(i) According to Theorem 3.1 and Lemma 3.1 sup Yi and infY, are 
increasing selections of Yi. Thoerem 4.1(i) implies then that a largest and 
smallest equilibrium point exist. 

(ii) Theorem 3.1 implies that Yi is increasing and that Yi(a-i) is ordered for 
all a_iEXjgiAj. Theorem 4.l(ii) and Remark 4.2 imply then that E is a 
(non-empty) complete lattice. 

(iii) From Theorem 3.1 and Lemma 3.1 we know that sup Yi will be a 
decreasing selection of Yi, For n=2 then Tarski’s theorem can be used 
on the composite best reply map to yield the existence of an equilibrium 
point. Q.E.D. 

Remark 4.3. Part (i) of the theorem is due to Topkis (1979). 

Remark 4.4. If each Ai is a product of compact intervals of the reals and pi 
is smooth (twice continuously differentiable) then ni will be supermodular on 
A if and only if for all a in A. 

~2~i/~ai,aai,~0 for all k#h and 

a2~Jdai,,Jaj, 20 for all j # i and for all h and k.* 

*ai,, denotes the h action of player i. 
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If the condition is satisfied (i) . I the theorem will hold. If the inequalities are 
strict then ni will be strictly supermodular on A and (ii) in the theorem will 
hold. For (iii) to hold reverse the second set of the above inequalities. 

Remark 4.5. Under the assumptions of (i) in the theorem if the payoff to a 
player is increasing in the strategies of the other players then the payoffs 
associated to the largest (sup,?) and smallest (infE) equilibrium points 
provide bounds for equilibrium payoffs for each player. If (ii) holds then 
tighter bounds on payoffs associated to any subset of equilibria, A c E, may 
be provided by sup,,4 and inf,A, which are themselves equilibria since E is 
a complete lattice. 

5. A note on stability 

Equilibria of games with supermodular payoffs, yielding monotone increas- 
ing best responses, have nice stability properties. This contrasts with the 
possible ‘chaotic’ dynamics associated with games with non-monotone best 
responses. [See, for example, Rand (1978) for an analysis of duopoly models.] 

A Cournot tatonnement is defined by the process: a”E A, a’E Y(a*-‘), 
t=l,2,..., where, as before, Y is the product of the best reply correspon- 
dences of the players. We make the convention that if for some t and i, 
a’Jil = a’_ i then player i chooses a, ‘+’ = a!+ ’ That is, if the rivals of player i I . 
choose the same strategies in t and t + 1 then player i also chooses the same 
strategy in t+2 as in t+ 1. 

Let 

A+ = {ae A:a,zsup Yi(api)}, A; = (a E A: a, 2 inf Yi(a _ i)}, 

A++’ and A- = fi A;. 
i=l i=l 

The following theorem establishes monotone convergence to an equili- 
brium point of the game whenever the starting point is ‘below’ or ‘above’ all 
the best reply correspondences of the players, that is whenever a0 E A- 
or a’EA+. 

Theorem 5.1. Let Ai be a lattice compact in a topology finer than its interval 
topology and ni: A+R, A=Xy=, Ai, continuous on A (endowed with the 
product topology), supermodular on Ai and with strictly increasing differences 
in (ai, a_,) on Ai x A _i for all i. Then a Cournot tatonnement starting at any 
a0 in A’ (A-) converges monotonically downwards (upwards) to an equilibrium 
point of the game. 

Proof Let a”E A+, then for any i, a: 2 SUP Yi(a!i) za! since 0: E Yi(&!J. 
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Any best reply correspondence is increasing since payoffs show strictly 
increasing differences [Theorem 3.l(iv)]. Therefore uf 2 u: since ui E Y,(a! i), 
U~IG !Pi(a!i) and either a!izu?i, U!i#U’i or Uo_i=U’i and then u!=u~ 

according to our convention. We have therefore a0 zcz’ 2~‘. The Cournot 
tatonnement defines thus (reasoning by induction) a monotone decreasing 
sequence {a’}, ~‘2 a’+ ’ for all t. This decreasing sequence defines in turn a 
nested sequence of (non-empty) closed sets C’= {u E A: a su’} in the compact 
space A which satisfies the finite intersection property. Therefore the 
intersection of the collection of closed sets C’ is non-empty and equal to the 
intimum of the sequence. The point i =inf (a’} is a limit point of the 
sequence {a’>. This point must also be an equilibrium point, 2~ Y(h), by 
continuity of the payoffs. For any t, Iri(U:, U’Yi’) ~ni(Ui,ufYil) for all U, in A, 
since a;~ Yi(U~i'). Since ni is continuous on A and a’$ we have that 
~i(di,6_i)h~i(ai,~_i) for all ai in Ai, and therefore diE Yi(a_i). If uOEA- the 
proof follows along the same lines. Q.E.D. 

Remark 5.1. A similar argument was used in Vives (1985a,b). Topkis (1979) 
obtains related results. 

Remark 5.2. Suppose that strategy spaces are compact intervals and that 
best replies are strictly increasing continuously differentiable functions 
gi(‘),i=l,..., n (that is, we have ag,/au,>O, j#i). The results of Hirsch (1985, 
Theorem 5.1) imply then that the continuous Cournot tatonnement 

~=g,(U_i(r))-U,(t), i=l n, I’--, 

converges to an equilibrium point of the 
u” in A. When n =2 and best replies are 
decreasing convergence everywhere, as 
obtains [Hirsch (1985, Corollary 2.8)]. 

6. Bayesian games 

game for almost all starting points 
either strictly increasing or strictly 
opposed to almost everywhere, 

Let the action spaces be compact lattice subsets of Euclidean spaces and T 
the set of types of player i, a non-empty complete separable metric space. 
Denote by T the Cartesian product of the sets of types of the players, 
T= Xl= 1 T. The common beliefs of the players are represented by p, a 
probability measure on the Bore1 subsets of T. The measure pi will represent 
the marginal on T. The payoff to player i is given by Ki: A x T+R, Bore1 
measurable and bounded. A (pure) strategy for player i is a (Bore1 
measurable) map ci: Thai which assigns an action to every possible type of 
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the player. Let Ci(~i) denote the strategy space of player i when we identify 
strategies (Ti and ri if they are equal pi-almost surely (a.s.) 

Let 

The function Pi( .) is the expected payoff to player i when agent j uses 
strategy crj, j E N. A Bayesian Nash equilibrium is a Nash equilibrium of the 
game where player i’s strategy space is Ii(pi) and its payoff function Pi. 

The first step to use the lattice machinery on the Bayesian game is to show 
that Ii is a complete lattice for some appropriate ordering. We will say 
that aisri if ai 5 ri(ti) for pi-a.s. T, and we will refer to this ordering as 
the natural ordering. We have to show that every non-empty subset of I 
has a supremum and an intimum under the natural ordering. This is not 
immediate since the supremum of an uncountable set of functions need not 
be measurable. Lemma 6.1 states the result. 

Lemma 6.1. Ci(cli) IS a complete lattice under the natural ordering. 

Proof. We have to show that every non-empty subset of Ci(~i) has a 
supremum and an intimum. Let CIcci(pLi) clearly sup Sz (let o =sup Q) exists 
since Ai is compact. We have to check that every component of w is 
measurable, then CO is measurable [see Hildenbrand (1974, p. 42)]. Let 
&,,(pi) = {CT,: T-+A,,,, oi,, Bore1 measurable} (identify functions which are 
equal pi a.s.) where Ai, is the projection of A, on the hth coordinate. Let 52, 
be the subset of &,(pi) consisting of the hth components of the functions of 
s2, then CO,, = sup 0,. Note that Ii c L’(~i) [L’(~i) stands for the quotient 
space of the set of pi-integrable real valued function on ZJ since pi = 1 
and Ai, is compact. L1(pi) is a conditionally complete lattice, that is, every 
bounded non-empty subset of I.‘&) has a supremum and an intimum [see 
Birkhoff (1967, p. 51 and p. 241)]. Also fi,,cL’(/~~) and therefore 
SUP 52 E Ci(cci). Similarly one shows that inf CJECi(pi). Q.E.D. 

The second step is to realize that supermodularity is preserved under 
integration. Theorem 6.1 states the result. 

Theorem 6.1. Let action sets be compact lattice subsets of Euclidean spaces, 
type sets be complete separable metric spaces and ‘its: A x T+R be bounded, 
upper semicontinuous on A, and Bore1 measurable for all i. Then 

(i) if for any i xi is supermodular on A for all t in T the equilibrium set is 
non-empty and has a largest and a smallest point; 
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(ii) iffn=2 Und gi(Ui, Uj, t) =?Ti(Ui, -Uj, t), j# i, i = 1,2, is supermodular on A for 
all t in T an equilibrium exists. 

Proof. T is a complete separable metric space and therefore it is a Bore1 
space (that is, there is a one-to-one map between T and some Bore1 subset of 
[O, l] which is Bore1 measurable in both directions). T_i is also a Bore1 space 
and consequently there exists a regular conditional distribution on T_i given 
tie [See Ash (1972, p. 265.1 Denote by cr_i(t_i) the vector (ol(tl),...,a,(t,)) 
except the ith component and let the expected payoff to player i con- 
ditional on ti when the other players use (T-i and player i uses a, be 
E{71i(Ui,a_i(t_i), t) 1 ti}. Let Yi(O_i) be the set of best responses of player i to 
the strategy profile of the other players, 0-i. The action o,(ti) maximizes over 
Ai the conditional payoff E{~i(Ui,a_i(t_i), t) 1 ti}CLi a.s. ‘&. E{~i(Ui,o_i(t~i), t) 1 ti} 
is upper semicontinuous on Ai since 7Ci is bounded and upper semicontinuous 
on Ai (this follows easily from Fatou’s lemma). Furthermore, it is super- 
modular on Ai since ~i(U, t) is supermodular in a, for all t and all a-, and 
supermodularity is preserved by integration. It follows from Lemma 3.1 that 
the set of maximizers given ti is a non-empty compact and complete lattice 
and its supremum and its infimum are themselves maximizers. We have then 
that sup Yi(a_i) and inf Yi(a_i) belong to Yi(o_i). In case (i) 7cn,(u,t) is 
supermodular in a for all t and Pi(o) is also supermodular in 0 
(GEC,C=Xy=1Ci, d an recall that 1 is a complete lattice). Theorem 3.l(ii) 
and Remark 3.1 establish then that sup Yi and inf Yi are increasing selections 
of Yi. Theorem 4.1(i) implies that there exist a largest and a smallest 
equilibrium point. In case (ii) xi(Ui, --a+ t) is supermodular on A for all t, and 
consequently Pi(gi, -oj) is supermodular on C, j# i, and Pi(oi, oj) has 
decreasing differences on xix cj. In that case, sup Yi is a decreasing 
selection of Yi [Theorem 3.l(ii)] and existence follows applying Theorem 2.1 
(Tarski) to the composite best reply map. Q.E.D. 

Remark 6.2. There are several results available in the literature on the 
existence of pure strategy equilibria in Bayesian games [e.g. Radner and 
Rosenthal (1982) and Milgrom and Weber (1985)]. In these papers restric- 
tions are put on the action space (Ai finite, for example) and on the 
distributions allowed. Furthermore the complete information counterpart of 
the games considered may not have pure strategy equilibria. By contrast, our 
conditions imply existence of pure strategy equilibria in the certainty games, 
and this translates, with no distributional restrictions, into the existence of 
pure strategy Bayesian equilibria. 

7. Applications and examples 

Models where complementurities, in a strategic sense, are fundamental 
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constitute the ground where the tools provided by the lattice approach prove 
useful. This should be clear since, precisely, we say that the actions of players 
in a game are complementary from a strategic point of view when best 
responses are monotone increasing.’ 

Oligopoly pricing and oligopolistic competition in general are examples 
where the lattice theory approach can be applied successfully. 

Non-existence of Nash equilibrium is a pervasive problem in oligopoly 
models. Examples of duopoly models where firms can produce at no cost 
and where demands arise from well-behaved preferences in which no Nash 
equilibrium (in pure strategies) exists are easily produced. In these examples 
payoffs are not quasiconcave and the best response correspondence of one 
firm (which gives the profit-maximizing response to the action of the other 
firms) is not convex-valued, that is, it has at least one jump.” 

There are several results available in the oligopoly literature about 
existence of Nash equilibrium without quasiconcave payoffs. In a homo- 
geneous product setting McManus (1964) and Roberts and Sonnenschein 
(1976) showed the existence of a symmetric Cournot equilibrium allowing for 
a general downward sloping demand when there are n identical firms with 
convex costs. In this context, the best response correspondence of a firm may 
slope up or down but all jumps up and the existence of a symmetric 
equilibrium is established. The essence of the McManus, Roberts- 
Sonnenschein result is a lixpoint theorem which says that a function from 
[0, l] to [0, 1) has a fixpoint if the only discontinuities it has are jumps up. 
This result follows quite directly from the work of Tarski: just let S = [0, l] in 
Theorem 2.2. Bamon and Fraysse (1985) and Novshek (1985) have shown, 
using a different approach from the one presented in this paper, existence of 
a Cournot equilibrium with n firms in a market for a homogeneous good if 
each firm’s marginal revenue is declining in the aggregate output of the other 
firms.’ 1 

7.1. Oligopoly games 

Consider an n-player oligopoly game where the strategy space of player 
(firm) i, Ai, is a compact interval, and where its payoff function, ni, can be 
decomposed as the sum of a revenue function Ri: A-R, and a cost function 
Ci: Ai-+R +: xi(a) = R,(a) - Ci(ai). Strategies can be prices, quantities or R&D 
or advertising expenditure levels, for example. 

Suppose for a moment that we are in a very nice case: 71i is twice- 

9Bulow et al. (1983) say then that actions are ‘strategic complements’. 
“See Roberts and Sonnenschein (1977) and Friedman (1983, p. 67-69) for non-existence 

examples. Dasgupta and Maskin (1986) give an argument to put the blame for non-existence on 
the lack of quasiconcavity of payoffs. 

“Nishimura and Friedman (1981) also examine the existence problem without quasiconcave 
payoffs. 
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continuously differentiable and the ith player best reply to u-i is unique, 
interior and equal to ri(a_i). We know then that the first-order condition for 
profit maximization will be satisfied: aini(ri(a_ i), LI _ i) = 0. Furthermore, if 
aiini(ri(o_i), U-J <O the best reply function ri is differentiable and &,/au,= 
-BiiRJd,,rci, j#i. We see that ri is monotonically increasing if and only if 
LJijRi 20. The profit function ni need not be single peaked in general but as 
long as dijRi 20 for all a in A, j # i, it will be supermodular and consequently 
an equilibrium will exist. Obviously the cost function need only be lower 
semicontinuous for the result to obtain. According to Theorem 4.2(i), 
aijRiLO, j#i, implies that the equilibrium set E is non-empty and a largest 
and a smallest equilibrium point exist. According to Theorem 4.2(ii), 
dijRi>O, j # i, implies that E is a complete lattice. If n = 2 or 3 it can be 
shown that E is in fact ordered. For the case n =2 and dijRi=<O, j#i, an 
equilibrium can be shown to exist since then Xi has increasing differences on 
Ai x Aj, j # i [Theorem 4.2(iii)]. 

These results extend in straightforward way to the case of multi- 
dimensional strategy spaces provided strategy sets are products of compact 
intervals and the cost function of any firm is additively separable. 

7.2. Examples 

7.2.1. Bertrand competition in differentiated markets 
Consider an n-firm oligopoly with product differentiation. Every firm 

produces a single product. Firm i’s strategy set is a compact interval of 
prices, [o, pi] and there are no fixed costs.12 Given a demand system 
Xi=hi(p), i=l,..., n,p E R”+, profits of firm i are given by q(p) =pihi(p) - 
Ci(hi(p)). Assuming that they are a smooth function of prices, the condition 
aijni 20, j # i, means that the marginal profitability of firm i increases with 
the prices charged by rival firms. This is reasonable if the goods are gross 
substitutes (ajhi> 0, j#i), demand is downward sloping (aihi <O) and costs 
are convex (Cy 2 0); since aijrci = (pi - C;)aijhi + (1 - aihiC;)ajhi, all that is 
needed is that the second summand (which is always positive) dominates the 
first. When a rival increases its price, firm i wants to increase its price too. 
Nevertheless, even with product differentiation, it is a strong assumption to 
suppose that revenues are smooth on the Cartesian product of the price 
spaces. Demands may have kinks when one firm is priced out of the market 
[see Friedman (1983)]. Supermodularity (increasing differences) again will be 
a natural assumption to make with gross substitutes.13 In a multiproduct 

‘*We take Bertrand competition to mean that when tin-n i announces a price pi, it is 
committed to sell whatever demand is forthcoming at that price, even if it has to produce where 
marginal cost exceeds pi. 

‘3Alternatively the condition dijn,zO, j#i, can be imposed on the set of prices for which all 
firms have positive demand and best reply correspondences characterized directly outside this 
region. An example of this approach is given in Vives (1985b, Proposition 1). 
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context the required conditions are more stringent. [See Spady (1984) for an 
example of price-setting multiproduct firms where best responses are 
increasing.] 

7.2.2. Cournot competition in dgferentiated markets 
Consider an n-firm oligopoly. Each firm produces one differentiated 

product. Costs of firm i are given by a lower semicontinuous increasing 
function Ci. (Notice avoidable fixed costs are allowed). The inverse demand 
system f satisfies: (a) fi: R”+ +R+ is a continuous function for all i. Let 
Xi={XER::fi(X)>O} and xi=SUp{XiER+:xEXi}. Assume that O<Xi<oO 
for all i. (b) fi is twice-continuously differentiable on Xi, aif,< and for j#i, 
a,fi < 0 if the goods are substitutes or a,fi < 0 if they are complements, for all 
i. Under (a) and (b), Ai= [O,XJ, Ri(x) =fi(X)Xi and Ri is twice-continuously 
differentiable on xi.i4 

If n=2 and aijRi(X)jO for all xeXi, j#i,i=1,2, then according to 
Theorem 4.2(iii) a Nash equilibrium exists. Notice that aijRi=ajf,+Xiaij~. 
This is likely to be non-positive if the goods are substitutes (ajfi<O). 

If aijRi(x) 20 for all x EX~, j # i, i6 N, then an equilibrium exists. If the 
inequality is strict then the equilibrium set E is a complete lattice. The cross 
partial aijRi is likely to be non-negative when the goods are complements 
(ajf, >O). In fact, Spence calls two complementary goods i and j strongly 
complementary if dijRi>O [Spence (1976, p. 220)]. There is always a Cournot 
equilibrium and the equilibrium set is a complete lattice if the goods are 
strongly complementary. 

7.2.3. Product selection and complementary products 
It is well known that complementary products tend to be undersupplied in 

a Cournot equilibrium, that is, there are too few products and quantities are 
too 10w.i~ Spence (1976) claims that if products are strongly complementary, 
then there should be an equilibrium in which all quantities are below the 
optimal quantities and some of the optimal products are not produced. 
Obviously, this proposition makes sense only if an equilibrium is guaranteed 
to exist. Spence did not address this issue. As we have seen existence follows 
from our approach though. 

Suppose that the inverse demand system comes from the following 

r4Note that Yi(x_J cXi for all x_~EA_~ since out of Xi firm i gets no revenue and by setting 
a smaller xi in a way that xoXi the revenue of firm i is positive and its costs are less since Ci is 
increasing. 

“‘The intuitive reason is that when a monopolistically competitive firm holds back output 
and raises price above marginal cost, it reduces the demand for other complementary products. 
That induces further quantity cast-backs and possibly the exit of products from the markets as 
well. That cycle reinforces itself and leads to an equilibrium where all outputs are below the 
optimum and some of the products in the optimal set are not produced at all.’ [Spence (1977, 
p. 220).] 
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maximization program, max {U(x) -px, x E RF}, where U( a) is a three times 
continuously differentiable concave utility function. The potential product set 
is N and the costs to firm i of producing a positive amount xi are Fi+ &(xi) 
where F,zO and y is a twice-continuously differentiable, increasing and 
convex variable cost function. If the firm decides not to produce Fi is 
avoidable. Furthermore, assume that revenue net of variable cost for firm i is 
strictly concave in Xi, that the goods are complementary and aijRi 20, j # i, 
so that the best reply map of firm i is an increasing function of the quantities 
produced by the rivals whenever the firm produces a positive amount. The 
following proposition strengthens Spence’s result and takes care of the 
existence problem. 

Proposition 7.1, Under the assumptions above there is a Cournot equilibrium 
with less products and less production than any welfare optimum. 

Sketch of Proof. Given any welfare optimum, Theorem 4.2(i) and an 
argument similar to Spence (1976, p. 221) and Vives (1985a, p. 172) ensures 
the existence of a Cournot equilibrium with less products and production 
than the welfare optimum. Theorem 4.2(i) ensures also that the equilibrium 
set has a smallest element. This is the desired Cournot equilibrium. See Vives 
(1985b) for a detailed account. 

7.2.4. Bertrand and Cournot equilibria 
Bertrand and Cournot equilibrium prices have been compared for a 

market with n differentiated products which are gross substitutes. The 
following proposition is a strengthening of Proposition 2 in Vives (1985a). 

Proposition 7.2. Suppose that xi(p) is strictly quasiconcave in pi for all p-i in 
Xj,i[O,pj] whenever the demand for the ith goods is positive and that the 
Bertrand best response functions ri are increasing for all i. Then there is a 
Bertrand equilibrium with lower prices than any interior Cournot equilibrium 
price vector. 

Proof. In Vives (1985a) it was shown that any interior Cournot equilibrium 
price vector one could find a Bertrand equilibrium with lower prices. Since 
the Bertrand best response map is increasing, Tarski’s theorem can be used 
and the smallest Bertrand equilibrium is the desired one. Q.E.D. 
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