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Abstract

We show that, consistent with empirical evidence, access to order flow information
allows traders to supply liquidity via contrarian marketable orders. An informational
friction resulting from lack of market transparency can, however, make liquidity demand
upward sloping, inducing strategic complementarities: traders demand more liquidity
when the market becomes less liquid, fostering market illiquidity. This can generate
instability with an initial dearth of liquidity degenerating into a liquidity rout (as in a flash
crash), an event that is more likely to occur when market opacity hampers liquidity supply
via marketable orders. Our theory also predicts that, when the market is fragile, traders
faced with the largest price impact are those consuming more liquidity at equilibrium. An
increase in order flow transparency and/or in the mass of dealers who are in the market
at all times has a positive impact on total welfare
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Introduction

Concern for the stability and resilience of financial markets has recently revived, in the wake of

the sizeable number of “flash events” and other disruptions that have occurred in recent years.1

Disrupted markets impair policy makers’ ability to implement stabilizing macroeconomic poli-

cies, which compromises their capacity to pursue their mandate.2 The debate over the ultimate

cause at the root of these episodes is still open. However, some consensus seems to have gath-

ered around the hypothesis that they are related to the overall liquidity and welfare enhancing

process of “electronification” that has affected different types of securities’ markets over the

past two decades. Indeed there’s a suspicion that this has occurred at the cost of increased

fragility: small changes in market parameters may have large effects on liquidity.3 At the same

time, episodes of extreme market turbulence, where liquidity seems to inexplicably disappear

and markets become somewhat inelastic have also occurred in the past. As the experience of

the stock market crash of October 19, 1987 makes clear, (apparently) fundamentals-unrelated

crashes have been a worrying, regular feature of financial markets.4

A unifying characteristic of these episodes seems to be the jamming of the “rationing”

function of market illiquidity. In “normal” market conditions, traders perceive a lack of liquidity

as a cost, while arbitrageurs and liquidity suppliers regard it as an opportunity. Thus, an

illiquidity hike leads the former to limit their demand for immediacy, and the latter to increase

their supply of liquidity (i.e., the demand for and supply of liquidity, are respectively decreasing

and increasing in the illiquidity of the market). In normal conditions, then, an illiquidity hike

leads the net demand for a security to abate, producing a stabilizing effect on the market.

However, on occasions, a bout of illiquidity, which can hardly be construed as fundamentals-

driven, has a destabilizing impact, and fosters a disorderly “run for the exit” that is conducive

to a rout. In these cases, traders attempt to place orders despite the liquidity shortage, and

arbitrageurs flee the market, foregoing profitable (but risky) opportunities. In such conditions,

liquidity is fragile. What can account for such a dualistic feature of market illiquidity?

In this paper, we argue that lack of transparency about relevant market conditions is an

1A “flash event” is a situation in which market liquidity suddenly evaporates in conjunction with a rapid
increase in liquidity demand and the occurrence of extreme price changes, in the absence of fundamentals
news, over a short time interval. Flash events have hit different markets. Starting with the May 6, 2010 U.S.
“flash-crash” (equity, centralized) where the Dow Jones Industrial Average dropped by 9% in the middle of the
trading day, and partially recovered by the end of trading; moving to the October 15, 2014 Treasury Bond crash
(bonds, mainly OTC), where the yield on the benchmark 10-year U.S. government bond, dipped 33 basis points
to 1.86% and reversed to 2.13% by the end of the trading day; to end with the August 25, 2015 ETF market
freeze (ETF and equity, centralized), during which more than a fifth of all U.S.-listed exchange traded funds
and products were forced to stop trading. More evidence of flash events is provided by NANEX and Bank of
International Settlements (2017).

2The fragility in the US Treasury market has attracted attention recently, increasing the odds of a financial
accident. See, e.g. “Fed Frets About Shadow Banks and Eyes Treasury Liquidity in New Report,” New York
Times, November 4, 2022

3See Foucault (2022).
4See https://en.wikipedia.org/wiki/List of stock market crashes and bear markets and also Ian Do-

mowitz’s “Will the real market failure please stand up?” for an account of a 1962 flash-crash forerunner.
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important ingredient in the answer to this question. In current markets, trading automation

arguably creates informational frictions by hampering some traders’ access to reliable and timely

market information (Ding et al. (2014)), thus impairing their ability to potentially enhance the

risk-bearing capacity of the market. Furthermore, participation of some liquidity suppliers

is variable (for technical or regulatory reasons).5 The upshot is that accessibility to market

information is vital to trade. In less automated markets, impaired access to market information

arose because of different reasons. For example, in the 80s, access to the NYSE trading floor

was crucial to have a good view of market conditions, but obviously constrained by physical

limitations. Importantly, such frictions seem to have a bearing on episodes of liquidity crashes.

Several accounts of the August 24, 2015 “flash-crash,” point to the fact that uncertainty over

the price of ETF constituents contributed to a huge investors’ sellout, and sidelined the actions

of arbitrageurs, exacerbating the liquidity dry-up in some ETFs.6

We use a stylized model of liquidity provision to show that, access to order flow information

allows traders to supply liquidity via marketable orders, thereby improving the risk-bearing

capacity of the market.7 This is consistent with empirical evidence.8 Conversely, the absence

of reliable order flow information limits the participation of non-standard liquidity providers,

which can seriously dent the ability of a market to absorb risk, to the extent that, in extreme

conditions, it can cause a market crash. We also find that both an increase in market trans-

parency and/or in the participation of liquidity providers who are continuously in the market,

has a positive effect on total welfare. However, the latter could have a negative impact on

market stability when market transparency is low.

More in detail, we analyse a two-period (trading rounds) model of a market in which a

5Ding et al. (2014) argue that in the U.S. “[n]ot all market participants have equal access to trade and quote
information. Both physical proximity to the exchange and the technology of the trading system contribute
to the latency.” In the EU the situation is possibly even worse, as testified by the lack of a consolidated
tape in a market environment displaying an even higher degree of market fragmentation than in the US (see,
e.g. European Commission progress update on action 14 of the capital markets union 2020 action plan. Action
14: Consolidated tape., see also EU faces last-ditch challenge from exchanges over trading reforms, Financial
Times, 18 April, 2023.).

6In the morning of August 24, 2015, the Dow dropped roughly 1,100 points in the first five minutes of
trading, and trading in several stocks was halted due to unusual market turbulence. The ensuing lack of reliable
price information allowed profitable, but risky, arbitrage opportunities to go unexploited, leading to a widening
of spreads and a thinning of market depth. For example, during the event, the spread between the SPDR
S&P500 (SPY) and the Guggenheim S&P 500 Equal Weight ETF (RSP), two very similar ETFs whose prices
are normally in sync, at one point reached $21 (see What The E-T-F Happened On August 24? Forbes, 28
August, 2015). In a similar vein, in their account of the May 10, 2010 “Flash Crash” Easley et al. (2011)
state: “This generalized severe mismatch in liquidity was exacerbated by the withdrawal of liquidity by some
electronic market makers and by uncertainty about, or delays in, market data affecting the actions of market
participants.” Amihud et al. (1990), in their analysis of the 1987 “Black Monday,” argue that a number of
operational issues affected the opening trade session on the day of the event “[O]rders could not be executed,
and information on market conditions, and on order execution was delayed.” This impaired the ability of traders
outside of the market to provide liquidity, restricting total liquidity supply.

7A marketable (limit) order is a priced order with the limit price set at, or better than, the opposite side
quote (bid price for sell orders and ask price for buy orders).

8Several authors find that liquidity is provided by (contrarian) marketable orders both at high trading
frequencies (Brogaard et al. (2014) and Biais et al. (2017)) and at lower frequencies (Biais et al. (2017), Anand
et al. (2021), Anand et al. (2013)).

3

https://ec.europa.eu/info/business-economy-euro/growth-and-investment/capital-markets-union/capital-markets-union-2020-action-plan/action-14-consolidated%20tape_en
https://ec.europa.eu/info/business-economy-euro/growth-and-investment/capital-markets-union/capital-markets-union-2020-action-plan/action-14-consolidated%20tape_en
https://www.ft.com/content/745ac93f-b25e-4c4c-b09c-1db932c2b144
https://www.forbes.com/sites/greatspeculations/2015/08/28/what-the-etf-happened-on-august-24


risky security is traded by dealers and traders who hedge an endowment shock. Liquidity

demand comes from two cohorts of risk-averse liquidity traders who submit market orders. The

first cohort observes its endowment shock exposure to a non-tradable good (whose value is

perfectly correlated with that of the risky security) prior to the first period and trades at both

rounds. The second cohort enters the market at the second period, observes its endowment

shock exposure, which is independent from the first period traders’ one, possibly a signal about

the first period order imbalance (which reflects that period endowment shock), and trades.

Liquidity is supplied by a continuum of risk-averse dealers who post limit orders at both rounds

and are thus able to efficiently rebalance their risk exposure.9

Being in the market at both rounds, first period traders split their hedging (liquidity de-

mand) across periods: when they receive a positive (negative) endowment shock, they sell (buy)

the risky security in both periods. With full transparency, second period traders perfectly ob-

serve the first period imbalance (endowment shock), and take a contrarian position against first

period liquidity traders’ second period order–in this way de-facto providing liquidity to them.

In this case we show that traders’ demand for liquidity is a decreasing function of the price im-

pact it induces–that is, higher illiquidity discourages liquidity demand and illiquidity works as a

rationing device. Additionally, a unique equilibrium obtains. Along this equilibrium, we show

that at the first round, dealers supply liquidity and also speculate on the anticipated impact of

first period traders’ order at the second round. Indeed, due to their ability to be in the market

in both periods, dealers also demand liquidity by trading in the same direction as first period

liquidity traders, thus exploiting these traders’ demand predictability. At the second round,

dealers absorb the orders of both cohorts of liquidity traders. First period liquidity traders’

split liquidity demand is also responsible for the positive return autocovariance that obtains at

equilibrium. That is, in our model, returns are positively autocovariant in the absence of any

fundamentals information.

A deterioration of second period traders’ information (about the first period order imbal-

ance) impairs these traders’ ability to supply liquidity via contrarian orders. This reduces the

risk-bearing capacity of the market and can increase market fragility. Specifically, we find that,

for some plausible parameterizations, the model displays multiple equilibria with different levels

of market depth. In this case, a larger price impact leads traders to demand more liquidity

and higher illiquidity incentivizes liquidity demand. There is strategic complementarity in liq-

uidity demands and price impact. A drop in liquidity may increase the demand for liquidity,

thus generating a further drop in liquidity. When the market is opaque, an increase in the

price impact of cohort 2 liquidity traders’ orders hikes the execution risk faced by the traders

belonging to cohort 1. This lowers (increases) the liquidity demand and consumption of the

latter (former).10 Thus, the initial second period illiquidity spike leads second period traders

9In a related paper (Cespa and Vives (2019)), we considered the case in which first period liquidity traders
have a short-term trading horizon, obtaining qualitatively similar results.

10This is because a higher execution risk faced by first period liquidity traders limits these traders’ liquidity
demand, allowing dealers to offer “more” liquidity to second period traders who, because of such a liquidity
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to demand more (rather than less) liquidity.

We show that when dealers’ risk bearing capacity is small, liquidity traders have an urge

to trade (because the dispersion of their endowment shock is large and they have a low risk

tolerance) and the security’s payoff volatility is large, if the market is fully opaque (second

period traders have no information on the first period imbalance), the above described loop

generates three equilibria, which can be ranked in terms of market liquidity. Indeed, in these

conditions dealers cannot count on the additional risk sharing provided by liquidity traders’

contrarian orders. When traders’ demand for liquidity spikes, this widens the gap between

liquidity demand and supply, making the market fragile. We also prove that only the extreme

equilibria are stable and that trading costs for traders at the second round are heterogeneous.11

At the two stable solutions of the model, first and second period traders’ price impact (of

endowment shocks) and their liquidity consumption are negatively correlated. Thus, a spike in

liquidity consumption by second (first) period traders crowds out first (second) period traders’

liquidity consumption.

Importantly, in this situation, illiquidity stops working as a rationing device of liquidity

consumption. That is, at equilibrium the trader cohort facing the highest price for liquidity

is also the one consuming more of it (hedging a larger proportion of the endowment shock).

We show that, as long as the market is fully opaque, an increase in the risk-tolerance of

liquidity traders or a reduction in the dispersion of their endowment shock, weakens strategic

complementarities, leading to a unique equilibrium. However, in such equilibrium liquidity

demand is still positively related to illiquidity. Thus, even when strategic complementarities

are not strong enough to generate multiple equilibria, order flow opaqueness jams the rationing

role of illiquidity.

In the last part of the paper, we consider the effect of three extensions to the baseline model.

We first allow second period traders to observe a noisy signal about the first period endowment

shock. In this context we show, by way of numerical simulations, that a low precision of such

signal delivers equilibrium multiplicity, generalizing the results we obtain in the “fully opaque”

case. We also show that an increase in the precision of such signal leads to a unique equilibrium

in which second period traders’ liquidity demand and price impact are higher than the ones

of their first period peers. Thus, an increase in order flow transparency makes the market less

fragile, but allows second period traders’ liquidity demand to crowd out that of first period

traders. Interestingly, an increase in the transparency of order flows seems to be in line with

a recent proposal by the US Treasury department to make public the transactions for “on-the

run” bonds from 2023 to improve market resilience.12

In the second extension, we consider the case in which liquidity is also supplied by a mass of

demand decline, are instead faced with a lower execution risk. This feedback loop, which works through the
link between illiquidity and dealers’ risk exposure, is reminiscent of the purported risk faced by dealers in US
Treasury markets due to a potential increase in yield volatility (see Duffie (2020)).

11Stability is with respect to the best response stability criterion.
12See Financial Times, 16, November, 2022.
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dealers who are in the market only at the first round, which we refer to as “restricted” dealers.

The analysis of this case allows us to show that an increase in the mass of the dealers who are

always in the market may, for low levels of order flow transparency, has a non-linear effect on

market stability, moving the market from a unique equilibrium to a regime with multiplicity.

Finally, the third extension tackles welfare analysis. We compute the welfare functions of

market participants and use them to numerically measure total welfare. Our results show that,

when the equilibrium is unique, an increase in market transparency and in the mass of dealers

who are always in the market are both welfare enhancing.

Related literature Our paper is related to–and has implications for–four streams of the

finance literature. First, it is related to the literature on liquidity fragility (see, e.g., Brunner-

meier and Pedersen (2009)). Most of the contributions in this framework focus on the possibility

that liquidity may evaporate because of self-sustaining loops that limit the ability of dealers to

meet customers’ demand, be it because of funding problems (Brunnermeier and Pedersen (2009)

and Gromb and Vayanos (2002)), lack of price information (Cespa and Foucault (2014)), or the

effect of retrospective learning about the security’s payoff (Cespa and Vives (2015)). In light

of such effects, scholars have argued that regulation impairing access to capital for financial

institutions may have a negative impact on the risk sharing capacity of the liquidity provision

sector, precisely when this is needed the most (see, e.g. Bao et al. (2018)). However, accounts

of market crashes often attribute the inception of these events to “aggressive” or “unusually

large” liquidity demand realizations which are not met by a sufficiently responsive increase in

liquidity supply.13 In this paper we thus propose a theory in which liquidity fragility arises

because of a self-sustaining loop affecting liquidity demanders, which exhausts liquidity sup-

pliers’ limited risk-bearing capacity. Indeed, in our model poor market information impairs

second period traders’ ability to speculate against the aggregate order imbalance, creating the

loop which impairs risk sharing.14 In view of the documented decline in quoted depth that has

occurred over the past twenty years, this should reinforce regulatory concerns over the paucity

of public, affordable order flow information in current markets.

Second, the paper is also related to the literature documenting liquidity provision via (con-

trarian) market orders. Several authors find this phenomenon at high trading frequencies

(Brogaard et al. (2014) and Biais et al. (2017)). There is, however, evidence that it also occurs

at lower frequencies (Biais et al. (2017)). Anand et al. (2021) provide evidence that far from

contributing to market fragility, some corporate bond mutual funds actively supply liquidity

during periods of market stress. A similar behavior is also found in equity mutual funds during

the recent financial crisis (see Anand et al. (2013)). In this respect, our paper argues that

informational impediments to liquidity provision via market orders can negatively affect risk

13For example, the CFTC-SEC report on the flash-crash attributes the inception of the crash to an aggressive
E-mini S&P500 futures sell order initiated by a large mutual fund identified as Waddell & Reed (see CFTC and
SEC (2010)), which appears to have persisted during the crash (see Aldrich et al. (2017)). See also Aquilina
et al. (2018) for evidence of market participants’ behavior during flash events in the UK.

14For evidence of demand driven “commonality” in liquidity, see e.g. Karolyi et al. (2012).
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sharing and make liquidity fragile.15

Third, the paper is related to the early literature on price crashes. Gennotte and Leland

(1990) provide a model tracing the 1987 stock market crash to traders not taking into account

the possibility of portfolio insurance affecting the security demand. Jacklin et al. (1992) also

analyse the crash-inducing effect of mis-estimating the actual magnitude of portfolio insurance

in a dynamic model à la Glosten and Milgrom (1985). Madrigal and Scheinkman (1997) study

a model in which traders have private fundamental information and together with noise traders

post orders who are accommodated by market makers who act strategically to control the

information flow implied by the security price. The authors show that, under some conditions,

the need to control the information flow conveyed by prices leads to crashes. All of the above

papers rely on some form of irrationality either due to the presence of noise trading, or to the

fact that some rational traders are unaware of one component of the aggregate demand for

the stock, to generate price discontinuities. In our model, as explained above, all traders are

rational expected utility maximizers, and the crash occurs because of the self-sustaining loop

triggered by traders’ liquidity demand.

Finally, the paper is related to the literature highlighting the impact of multi-dimensional

fundamentals for price discovery and the equilibrium properties of the market (see, e.g., Subrah-

manyam and Titman (1999), Cespa and Foucault (2014), Goldstein and Yang (2015), and Gold-

stein et al. (2021)). Differently from this literature, in this paper we assume that prices are

driven by multiple, independent, non-fundamentals-driven shocks (i.e., the hedging demands of

different liquidity traders’ cohorts) and show that, when liquidity demand reacts to prices, this

can have important consequences for market stability.

The rest of the paper is organized as follows. In the next section we present the model. In

Section 2 we study the fully transparent benchmark, in which we assume that second period

traders perfectly observe the endowment shock affecting their first period peers. In the following

section we assume that such information is not available (the fully opaque case) and prove that

this can generate multiple equilibria. In Section 5, we analyze the model’s extensions. The

final section contains concluding remarks. Most of the proofs are relegated to the Appendix.

1 The model

A single risky asset with liquidation value v ∼ N(0, τ−1
v ), and a risk-less asset with unit return

are exchanged in a market during two periods (we interchangeably also use the expression

“trading rounds”). Two classes of traders are in the market. First, a continuum of competitive,

risk-averse dealers of unit mass, active in both periods. Second, a unit mass of liquidity traders

15Li et al. (2021) modify Budish et al. (2015) to study competition for liquidity provision between HFTs and
“execution algorithms,” some of which can choose whether to trade via market or limit orders. They show that
under continuous pricing, at equilibrium HFTs provide liquidity via market orders to execution algorithms who
post aggressive limit orders.
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who enter the market at the first round and post their orders at round 1 and 2. In the second

period, a new cohort of liquidity traders (of unit mass) who enter the market and trade. The

asset is liquidated in period 3. We now illustrate the preferences and orders of the different

players.16

1.1 Dealers

A dealer has CARA preferences with risk-tolerance γ, and submits price-contingent orders xD
t ,

t = 1, 2, to maximize the expected utility of his final wealth: WD = (v − p2)x
D
2 + (p2 − p1)x

D
1 .

At each trading round dealers condition their positions on the sequence of equilibrium prices

up to that period. Thus, at the first round, they condition on p1 and at the second round on

{p1, p2}.17

1.2 Liquidity traders

The liquidity demand side of the model is represented by a unit mass of risk-averse traders who,

prior to entering the market at time t, learn about the value of an endowment shock ut in a

non-tradable security that they will receive at the liquidation date (t = 3). We assume that the

non-tradable security’s value is perfectly correlated with that of the risky security traded in the

market. This assumption, which is common in the literature (see, e.g. Wang (1994), Vayanos

and Wang (2012), and Llorente et al. (2002)), induces a hedging demand for the risky security.

More in detail, in the first period, a unit mass of CARA traders with risk-tolerance γH is in

the market. Traders learn the value of the endowment shock u1 and post a market order xt1,

at round t ∈ {1, 2} to maximize the expected utility of their wealth π1 = u1v + (v − p2)x21 +

(p2 − p1)x11:

E [− exp{−π1/γH}|Ω1] ,

where Ω1 ≡ {u1} denotes their information set. In period 2, a new (unit) mass of CARA

traders (with the same risk tolerance γH) enters the market, learns the realization of the non-

tradable endowment shock u2 that they will receive at t = 3, and observes a noisy signal of the

previous period endowment shock su1 = u1 + η. Second period traders submit a market order

to maximize the expected utility of their wealth π2 = u2v + (v − p2)x2:

E [− exp{−π2/γH}|Ω2] ,

where Ω2 ≡ {u2, su1} denotes their information set.We assume ut ∼ N(0, τ−1
u ), η ∼ N(0, τ−1

η )

and Cov[ut, v] = Cov[ut, η] = Cov[u1, u2] = 0, t = 1, 2.

16In Section 5, we show that our results are qualitatively robust to a generalization of the model which
includes a class of “Restricted Dealers” who can only trade at the first round.

17We assume, without loss of generality with CARA preferences, that the non-random endowment of dealers
is zero. Also, as equilibrium strategies will be symmetric, we drop the subindex i.
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For examples of the “non-tradable” security, one can think of a portfolio of assets that

traders are unwilling to liquidate (or that are intrinsically illiquid). In view of the assumed

correlation structure, protection against changes in the non-tradable value is then obtained by

taking an offsetting position in the risky security. For instance, traders could be long in a

portfolio of stocks that tracks the market, say a fund, and hedge by shorting a market-tracking

ETF; alternatively, they could be long on a S&P500 ETF, like the SPY, and setup a hedge

by trading the Emini (while the former trades from 6am to 8pm, including extended trading

hours, the latter trades 24/7, thus allowing overnight hedging).18

To simplify notation, in the following we denote by ED
t [Y ], and VarDt [Y ], the conditional

expectation and variance that a dealer forms about Y , in period t = 1, 2. Note that since

dealers submit limit orders, at a linear equilibrium they will infer the endowment shocks hitting

hedgers’ budget constraints. Similarly, Et[Y ], Vart[Y ], and Covt[X, Y ] denote the conditional

expectation, variance, and conditional covariance that a period-t hedger forms about Y and X.

1.3 Market clearing

We will restrict attention to equilibria in which prices are linear functions of the endowment

shocks and the error term affecting second period traders’ signal. With hindsight, these will

have the following form:

p1 = −Λ1u1 (1a)

p2 = −Λ2u2 − Λ21u1 − Λ22η, (1b)

where Λ1, Λ2, Λ21, Λ22 are coefficients which will be pinned down at equilibrium. The intuition

for (1a) and (1b) is as follows. At equilibrium, dealers absorb the orders of first period traders:

xD
1 + x11 = 0. (2)

Traders know u1, while, at equilibrium, dealers infer it from the price, which justifies (1a).

Consider now the second period equilibrium condition. First period liquidity traders split

their hedging needs by posting an order x21 together with second period traders. Additionally,

dealers rebalance their position at the second round. Formally, from the second period market

clearing equation we have

(xD
2 − xD

1 ) + (x21 − x11) + x2 = 0 ⇐⇒ xD
2 + x21 + x2 = 0, (3)

where the expression on the right hand side in (3) follows from using the first period market

18For an example involving SPY, see https://money.stackexchange.com/questions/54373/why-dont-spy-spx-
and-the-e-mini-sp-500-track-perfectly-with-each-other, and http://tastytradenetwork.squarespace.com/tt/blog/equating-
futures-to-etfs, and for other ETF related examples, see https://investorplace.com/2017/10/portfolio-hedge-
fund-consider-etfs/.
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clearing condition (2). At equilibrium, dealers’ and traders’ strategies are a function of their

information sets–{p1, p2} for dealers and Ω2 for second period traders. As a consequence, the

price will load on {u1, u2, η}, justifying (1b).

Note that since liquidity traders have the possibility to retrade at the second round, to

hedge their endowment shock, both the first and second period price depend on u1. This, in

turn, suggests the following alternative way to write the second period equilibrium price:

p2 = −Λ2θ2 − Λ22η, (4)

where θ2 = u2 + βu1 and β = Λ21/Λ2. The expression in (4) shows how our model can be

made equivalent to models postulating noise trading as an AR(1) process, thus endogenizing

the persistence coefficient β and relating it to the relative weight that endowment shocks receive

in the second period price.19

Figure 1 displays the timeline of the model.

1

− Liquidity traders
receive u1 and
submit market
order x11.

− Dealers submit
limit order xD

1 .

2

− 1st period liquid-
ity traders submit
market order x21.

− New cohort of
liquidity traders re-
ceives u2, observes
su1 , and submits
market order x2.

− Dealers submit
limit order xD

2 .

3

− Asset liquidates.

Figure 1: The timeline.

2 Fully transparent benchmark

We start the analysis by assuming that second period traders observe a perfectly informative

signal of u1 (i.e., τη → ∞). This assumption implies that the market is fully transparent and

has a direct impact on the second period equilibrium condition, since with a perfect signal,

the information set of second period traders is given by Ω2 = {u2, u1}. Therefore, the second

period price only reflects endowment shocks:

p2 = −Λ2u2 − Λ21u1

= −Λ2θ2, (5)

19Several authors have assumed this form for noise trading. Among others: Campbell et al. (1993), He and
Wang (1995), Cespa and Vives (2015), Cespa et al. (2021).
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while the first period price is as in (1a).

Due to the linearity assumption for prices, equilibrium strategies will also be linear. Specifi-

cally, we assume x11 = a1u1, x21 = a21u1, x2 = a2u2+ bu1, where the posited coefficients a1, a21

and a2 denote the hedging intensity of liquidity traders and the corresponding absolute values

of such coefficients denote their hedging “aggressiveness.” The coefficient b denotes second

period traders’ “speculative” aggressiveness (see below). In the Appendix, we show that in this

case the equilibrium is identified by the unique solution to a system of simultaneous equations

in Λ1,Λ21,Λ2. We thus obtain the following:

Proposition 1. When the market is fully transparent, there exists a unique equilibrium in

linear strategies. The coefficients of equilibrium prices p1 = −Λ1u1 and p2 = −Λ2u2 − Λ21u1,

are given by:

Λ2 = − 1

γτv
a2 > 0 (6a)

Λ1 = − 1

γτv

γ + γH
γH

a1 > 0 (6b)

Λ21 = − 1

γτv

(
b+ a21

)
> 0. (6c)

The coefficients of traders’ strategies x11 = a1u1, x21 = a21u1, x2 = a2u2 + bu1 are as follows:

a1 = −γH
Λ21 − Λ1

Var1[p2]
∈ (−1, 0), a21 =

γHτvΛ21 − 1

τvVar1[v − p2]
∈ (−1, 0), (7a)

a2 =
γHτvΛ2 − 1

τvVar2[v − p2]
∈ (−1, 0), b = γHτvΛ21 > 0, (7b)

where Var1[p2] = Λ2
2τ

−1
u , Var1[v − p2] = Λ2

2τ
−1
u + τ−1

v and Var2[v − p2] = τ−1
v . Furthermore,

−1 < a21 < a1 < 0, 0 < Λ1 < Λ21 < Λ2 (explicit expressions for the price coefficients are

in (A.33a), (A.35a) and (A.35b)).

According to (7a), first period liquidity traders demand liquidity by hedging part of their

risk exposure at both trading rounds. Comparing their hedging intensities: a21 − a1 < 0.

Hence, if u1 > 0, they hedge their exposure shorting at the first round, and increasing their

short position at the second round (that is, their second period trade is a sell), when second

period traders are in the market.

The liquidity that accommodates such demand is offered by dealers. In the Appendix

(see (A.27)), we show that a dealer’s strategy is given by:

XD
1 (p1) =

γ

VarD1 [p2]
ED

1 [p2]− γ

(
1

VarD1 [p2]
+

1

Var[v]

)
p1

= −γ
Λ21 − Λ1

VarD1 [p2]
u1 − γτvp1. (8)

11



According to the above expression, a dealer’s strategy reflects two trading motives: liquidity

supply (captured by the price dependent component in (8), −γτvp1), and short-term return

speculation (captured by the component −u1γ(Λ21 − Λ1)/Var1[p2]). That is, due to their

ability to infer traders’ endowment shock and the fact that they know these traders repeatedly

hedge such shock, dealers exploit the anticipated effect the shock has on expected returns. To

see this, note that at the second round dealers in aggregate hold (see (A.10))

XD
2 (p1, p2) = γ

ED
2 [v − p2]

VarD2 [v − p2]
=

= −γτvp2

= γτvΛ21u1 + γτvΛ2u2, (9)

where the expression at the third line in (9) originates from substituting (1b) in dealers’ second

period aggregate position. Expression (9) implies that at the second round dealers hold γτvΛ21

of the first period endowment shock. Based on (8), at the first round their position is given by

xD
1 = γ

(
τu
Λ1 − Λ21

Λ2
2

+ τvΛ1

)
u1.

Hence, keeping the assumption u1 > 0, at the first round dealers provide liquidity by absorbing

part of first period traders’ endowment shock (Λ1 > 0). Additionally, they consume liquidity

by taking a short position in the risky security (Λ1 − Λ21 < 0).

At the second round, based on what said above, they provide liquidity to the additional sell

order of first period traders: their trade with respect to the latter is given by

γτvΛ21u1 − xD
1 = γ

τu + Λ2
2τv

Λ2
2

(Λ21 − Λ1)u1,

i.e., a buy order. Thus, because of their ability to anticipate returns, dealers gain from short

term speculation at the first round (selling at a higher price at the first round and buying back

at a lower price at the second round).20 At the second round, their activity is instead limited

to liquidity provision (see (9)).

At the second round, based on (7b), liquidity traders hedge their risk exposure (a2 ∈
(−1, 0)). Additionally, because of their ability to perfectly infer the direction of the demand

pressure due to first period traders’ second round trade, they also post a contrarian market

order (b > 0), which provides additional risk-sharing.21

20This is akin to “order anticipation” which, according to SEC (2010), occurs when “. . . a proprietary firm
seeks to ascertain the existence of one or more large buyers (sellers) in the market and to buy (sell) ahead of
the large orders with the goal of capturing a price movement in the direction of the large trading interest (a
price rise for buyers and a price decline for sellers).”

21Because of the informativeness of the signal they observe about u1, at equilibrium, second period traders are
able to perfectly infer the first period endowment shock and thus p2. This makes their order akin to a contrarian
marketable order. Indeed, based on (7b), we have x2 = (γHτvΛ2−1)u2+γHτvΛ21u1 = γHτv(Λ2u2+Λ21u1)−u2 =

12



Corollary 1. When the market is transparent, second period liquidity traders supply liquidity

by posting a contrarian market order with aggressiveness b > 0 (see (7b)).

In our setup, trading occurs because liquidity traders are exposed to a non-tradable en-

dowment shock which induces a hedging demand. Due to risk aversion, dealers have a limited

capacity to bear risk. This implies the following

Corollary 2. The price coefficients in (6a)–(6c) capture the risk-tolerance weighted risk com-

pensation dealers require to absorb the aggregate liquidity demand.

To see this note that at the first round a1 reflects the marginal position of liquidity traders,

that is their “liquidity demand”:

a1 =
∂x11

∂u1

= −γH
Λ21 − Λ1

Var1[p2]
. (10)

As observed above, dealers also demand liquidity, since they speculate on the price impact of

u1 and their aggregate liquidity demand is given by

−γ
Λ21 − Λ1

Var1[p2]
= γ

a1
γH

.

Aggregating across liquidity traders’ and dealers’ demands yields the aggregate liquidity de-

mand at the first round:

a1 + γ
a1
γH

=
γ + γH
γH

a1.

At equilibrium, replacing dealers and liquidity traders’ equilibrium strategies (respectively, (8)

and the first in (7a)) in the first period equilibrium condition (2), we have:

xD
1 + x11 = 0 ⇐⇒ γ

a1
γH

u1 − γτvp1 + a1u1 = 0

⇐⇒ γ + γH
γH

a1u1 = γτvp1 (11)

At a linear equilibrium the price is proportional to the aggregate endowment shock u1: p1 =

−Λ1u1. Identifying −Λ1 in the latter expression yields:

1

γτv

γ + γH
γH

a1︸ ︷︷ ︸
−Λ1

u1 = p1. (12)

Thus, −Λ1 measures the price impact of a marginal increase in the endowment shock hitting

first period traders and market illiquidity at the first round is given by:

Λ1 = − 1

γτv

γ + γH
γH

a1. (13)

−γHτvp2 − u2.

13



According to (13), Λ1 captures the risk-weighted compensation that liquidity suppliers demand

to absorb the aggregate marginal position of liquidity traders and dealers (the aggregate “liquid-

ity demand”). Since this covers a “cost” incurred to supply immediacy, we interpret (somewhat

loosely) Λ1 as the first period “liquidity supply” function.

At the second round, liquidity demand comes from first and second period traders coeffi-

cients a21 and a2:

x21 = γH
E1[v − p2]

Var1[v − p2]
− Cov1[v, v − p2]

Var1[v − p2]
u1

=
(γHτvΛ21 − 1)τu

τu + Λ2
2τv︸ ︷︷ ︸

= a21

u1. (14)

and

x2 = γH
E2[v − p2]

Var2[v − p2]
− Cov2[v, v − p2]

Var2[v − p2]
u2

= (γHτvΛ2 − 1)︸ ︷︷ ︸
= a2

u2 + γHτvΛ21︸ ︷︷ ︸
= b

u1. (15)

We can interpret the expressions for a21 and a2 in the following way. A liquidity trader

hedges a larger fraction of his shock (demands more liquidity), the lower is the impact the

endowment shock has on p2 (as a larger price impact reduces a trader’s expected return from

hedging), and the lower is the return uncertainty he faces (as a higher return variance dents

his utility since he is risk averse). Consider now the second period market clearing condition:

(xD
2 − xD

1 ) + x21 − x11 + x2 = 0 ⇐⇒ xD
2 + x21 + x2 = 0

⇐⇒ −γτvp2 + a2u2 + (a21 + b)u1 = 0

⇐⇒ p2 =
a2
γτv︸︷︷︸

= −Λ2

u2 +
a21 + b

γτv︸ ︷︷ ︸
= −Λ21

u1. (16)

At the second line of the above expression we make use of the first period market clearing

equation: xD
1 + x11 = 0. We then replace strategies with their equilibrium expressions and

finally solve for p2, identifying the price coefficients.

Similarly to Λ1, the coefficients Λ2 and Λ21 reflect the risk-weighted compensation that liq-

uidity suppliers demand to absorb first and second period liquidity traders’ aggregate demand.

To understand the numerator of Λ21, note that first period liquidity traders’ demand at the

second round (i.e., the marginal position a21), is not absorbed by dealers in its entirety. Indeed,

at the second round part of first period liquidity traders’ endowment shock exposure is absorbed

by second period traders’ speculation (the coefficient b). Similarly to what we have done for

Λ1, we interpret Λ21 and Λ2 as the second period liquidity supply functions to first and second
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period traders.

2.1 Liquidity demand and supply in a transparent market

In this section we focus on the behavior of liquidity demand and supply in the fully transparent

benchmark. In Proposition 1, we show that the hedging intensities a1, a21 and a2 are negatively

valued functions (ranging between −1 and 0) since they capture first and second period liquidity

traders’ reaction to the endowment shock they receive. To ease the exposition, we measure

liquidity traders’ demand for liquidity via their “hedging aggressiveness,” that is the absolute

values of a1, a21, and a22. Because of the way they are defined, liquidity supply functions are

instead positively valued. In sum, the liquidity demand and supply functions are given by the

following expressions:

|a2| = |γHτvΛ2 − 1|, Λ2 = − a2
γτv

(17a)

|a21| =
∣∣∣∣(γ + γH)

2(γHτvΛ21 − 1)τuτv
1 + (γ + γH)2τuτv

∣∣∣∣ , Λ21 = − a21
(γ + γH)τv

(17b)

|a1| = | − γHτu(γ + γH)
2τuτ

2
v (Λ21 − Λ1)|, Λ1 = −γ + γH

γγHτv
a1. (17c)

Inspection of the above expressions shows that:

Corollary 3. When the market is transparent, liquidity demand is decreasing in the price

impact it induces and liquidity supply increases in traders’ aggregate demand.

Therefore, in a transparent market, price impact works as a rationing device: the pricier

liquidity becomes, the less traders choose to hedge. Conversely, an increase in traders’ liquidity

demand prompts dealers to make the market less liquid (i.e., make liquidity pricier). In Figure 2

we plot the liquidity supply and demand functions (respectively, in blue and green) for second

period traders. The unique equilibrium corresponds to the crossing point between the two

curves.
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Figure 2: Second period traders’ liquidity demand (in green) and supply (in blue) at the second
round with a fully transparent market.

Summarizing, when the market is transparent, liquidity demand decreases in price impact

coefficients and price impact coefficients increase in liquidity demand. In these conditions, a

unique equilibrium obtains. In this equilibrium dealers speculate on short-term returns and

second period liquidity traders hedge their risk exposure and provide liquidity via contrarian

market(able) orders, sharing with dealers the risk exposure of first period traders.

3 The opaque market

Suppose now that second period traders observe a noisy signal of the first period order imbalance

(τη ∈ (0,∞)). In this case, Ω2 = {u2, su1} which implies that second period traders cannot

perfectly anticipate p2. As a consequence, their strategy is affected by their return uncertainty

(see (A.6)):

x2 =
γHτvΛ2 − 1

Var2[v − p2]︸ ︷︷ ︸
a2

u2 + γH
Λ21τη + Λ22τu

(τu + τη)Var2[v − p2]︸ ︷︷ ︸
b

su1 , (18)

with Var2[v − p2] = τ−1
v + (Λ21 − Λ22)

2(τu + τη)
−1, and the second period price is as in (1b).

Intuitively, traders’ inability to exactly infer u1 impacts their return uncertainty, exposing

their strategy to execution risk. This, in turn, affects both their hedging and speculative

aggressiveness (|a2| and b) and the price impact of their order. Given the risk-sharing enhancing

role of traders’ speculation, this impacts market stability. To see this, it is useful to start from

the extreme case in which τη → 0.
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3.1 The fully opaque market

Suppose second period traders’ signal becomes unboundedly noisy (i.e., τη → 0). In this case,

we obtain the following result:

Proposition 2. When the market is fully opaque, the expressions for the equilibrium price

coefficients Λ2 and Λ1 are as in (6a) and (6b), while

Λ21 = − a21
γτv

, (19)

The coefficients of traders’ strategies are as follows:

a1 = −γH
Λ21 − Λ1

Var1[p2]
< 0, a21 =

γHτvΛ21 − 1

Var1[v − p2]
∈ (−1, 0) (20a)

a2 =
γHτvΛ2 − 1

Var2[v − p2]
∈ (−1, 0), b = 0, (20b)

where Var1[p2] = Λ2
2τ

−1
u , Var1[v− p2] = τ−1

v +Λ2
2τ

−1
u and Var2[v− p2] = τ−1

v +Λ2
21τ

−1
u . Further-

more, at equilibrium Λ21 > Λ1 > 0 and Λ2 > 0.

According to (19) and the second expression in (20b), when the market is fully opaque,

second period traders do not speculate. This is because their signal on u1 is infinitely noisy,

which makes it impossible for them to predict the direction of the first period imbalance. As a

consequence, Λ22 = 0 and we have:

Corollary 4. When the market is fully opaque, second period liquidity traders do not supply liq-

uidity via contrarian market orders and the second period price only reflects traders’ endowment

shocks.

According to (20a) and (20b), liquidity traders’ second period hedging aggressiveness,

|a21|, |a2| depends on two forces: the expected return from holding the endowment shock,

and the variance of the second period return v − p2 (respectively captured by the terms at the

numerator–which is negative–and denominator of the expressions in (20a) and (20b)).22 For

given return variance, a higher price impact of the t-period traders’ endowment shock, increases

the expected returns from holding the endowment shock of the t-period traders, decreasing their

hedging aggressiveness. For given expected profit from holding the endowment shock, a higher

price impact of the t-period traders’ endowment shock increases s ̸= t-period traders’ execution

risk, lowering the latter hedging aggressiveness. Therefore, changes in the price impacts of the

trades of different cohorts have opposite effects on the execution risk faced by each cohort,

and this effect, when second period traders are not informed about u1, can be responsible for

self-sustaining demand loops.

22In the Appendix we show that E2[v − p2] = Λ2u2, Var2[v − p2] = τ−1
v + Λ2

21τ
−1
u , E1[v − p2] = Λ21u1,

Var1[v − p2] = τ−1
v + Λ2

21τ
−1
u , Cov1[v, v − p2] = Cov2[v, v − p2] = τ−1

v .
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To see this, assume that the market impact of the second period traders’ endowment shock

(Λ2) increases. This reduces these traders’ expected profit from hedging the endowment and

heightens the cohort 1 traders’ execution risk, leading them to scale down their liquidity de-

mand (|a21| decreases). All else equal, this reduces the price impact of cohort 1’s endowment

shock (Λ21 decreases), because liquidity providers need to absorb a smaller share of cohort 1’s

endowment shock. This in turn lowers the execution risk faced by cohort 2 traders, potentially

leading them to scale up their liquidity demand (|a2| increases), and further boosting Λ2, be-

cause dealers need to absorb a larger share of cohort 2’s endowment shock, which reinforces the

initial spike (see (19)).

Λ2 ↑ |a21| ↓

Λ21 ↓|a2| ↑

Execution risk for cohort 1 ↑
Expected return from hedging ↓

D’s Risk
exposure
to u1 ↓

Execution risk for cohort 2 ↓
Expected return from hedging ↑

D’s Risk
exposure
to u2 ↑

Figure 3: A diagrammatical representation of the self reinforcing loop between liquidity con-
sumption and illiquidity arising with market opacity.

The loop described above is diagrammatically sketched in Figure 3 and formally captured by

the “aggregate” best response function (21) which reflects the impact of an exogenous change

in Λ2 on traders’ strategies, yielding a new value for Λ2 (see (A.39) in the Appendix for its

formal derivation):

Λ2 = Φ(Λ2) ≡
((γ + γH)τu + γΛ2

2τv)
2

γτu + ((γ + γH)τu + γΛ2
2τv)

2(γ + γH)τv
. (21)

Differentiating (21), it is possible to see that

∂Φ(Λ2)

∂Λ2

=
4γ2Λ2((γ + γH)τu + γΛ2

2τv)τuτv
(γτu + ((γ + γH)τu + γΛ2

2τv)
2(γ + γH)τv)2

> 0,

which provides the formal counterpart to the heuristic argument developed above–that is the

existence of strategic complementarities in illiquidity with market opacity.

Because of the way it is defined, a fixed point of (21) corresponds to an equilibrium of

the market and in Figure 4 we show that, depending on parameters’ values, either a unique

equilibrium or multiple equilibria can obtain. Specifically, with the hypothesized parameteri-

zation, when the dispersion of the endowment shock is sufficiently low (case τu = 2, in Panel
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(a)), strategic complementarities are “weak” and a unique equilibrium arises (in which case

Λ21 = Λ2 = 4.61 and Λ1 = 0.01). Conversely, when the dispersion of the endowment shock

increases (case τu = 0.1, in Panel (b)), strategic complementarities are “strong,” and multiple

equilibria arise, where Λ2 ∈ {8.96, 1.98, 0.12}, and the corresponding values for the other price

coefficients are Λ21 ∈ {0.12, 1.98, 8.96}, Λ1 ∈ {0.1 × 10−2, 0.43, 8.84}. Our simulations sug-

gest that equilibrium multiplicity is more likely to obtain when payoff and endowment shock

dispersion are larger and liquidity traders are more risk averse.
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(a)
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(b)

Figure 4: Market opacity: single equilibrium (Panel (a)), and multiple equilibria (Panel (b)).

In fact, for τη → 0, the system of equations which pins down the price impacts becomes:

Λ2 =
τu

((γ + γH)τu + γτvΛ2
21)τv

(22a)

Λ21 =
τu

((γ + γH)τu + γτvΛ2
2)τv

(22b)

Λ1 =
(γ + γH)τuΛ21

(γ + γH)τu + γτvΛ2
2

. (22c)

Manipulating (22a) and (22b) in the Appendix we show that in this case the equilibrium obtains

as a solution to the following quadratic equation:

(γ + γH)γτvΛ
2
2 − γΛ2 + (γ + γH)

2τu = 0, (23)

which, thus, has a closed form solution. Note that in this case, the price impact of the first

period endowment shock (Λ1) does not affect the second period price coefficients (Λ2,Λ21) but

is determined by their equilibrium values. Formally, we obtain the following corollary of the

previous result:
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Corollary 5. When the market is fully opaque, at equilibrium

Λ1 = (γ + γH)τvΛ
2
21. (24)

If

0 < τuτv < γ/(4(γ + γH)
3), (25)

three equilibria arise, where

Λ2 =
γ ±

√
(γ − 4(γ + γH)3τuτv)γ

2(γ + γH)γτv
, Λ21 =

γ ∓
√

(γ − 4(γ + γH)3τuτv)γ

2(γ + γH)γτv
, (26a)

and Λ2 = Λ21 obtaining as the unique root of the following cubic

φ(Λ2) ≡ ((γ + γH)τu + γτvΛ
2
2)Λ2τv − τu = 0. (26b)

If τuτv ≥ γ/(4(γ + γH)
3), then there is a unique equilibrium where Λ2 = Λ21 is the unique root

of the cubic (26b).

Condition (25) defines the parameter restriction for the region where equilibrium multiplicity

occurs. According to such condition, multiplicity obtains when liquidity demand is likely to be

stronger, the volatility of the security’s payoff is larger and traders are more risk averse, i.e.

when the gap between liquidity demand and liquidity provision is likely to be wider. Indeed,

in these conditions traders need to hedge the most (due to the higher unpredictability of their

endowment shock and their higher risk aversion), while dealers are less willing to supply liquidity

(due to the higher volatility of the security’s payoff). Interestingly, an increase in dealers’ risk-

bearing capacity has a non-monotonic impact on the magnitude of this region. This is because

for given hedging aggressiveness (|a21| and |a22|), an increase in γ lowers the price impact

of trades (see (6a) and (19)) which, for low levels of risk tolerance, induces more liquidity

consumption on traders’ side (see (20a) and (20b)). However, as γ grows large this effect

becomes second order, and an increase in dealers’ risk tolerance reduces the magnitude of the

multiplicity region. Importantly, in the latter case, this implies that a decrease in dealers’ risk

bearing capacity can be responsible for an increase in market instability. Indeed for γ > γH/2

a lower γ enlarges the region of parameter values for which multiplicity obtains.

The expressions in (26a) show that with equilibrium multiplicity, the second period price

sensitivities to the endowment shock correspond to the two roots of the quadratic (23). This

implies that at the second round the trading costs faced by traders in different cohorts are

heterogeneous: the price impact of first and second period liquidity traders’ endowment shocks

are negatively correlated.

The next result characterizes the stability properties of the equilibrium and the liquidity

consumption patterns arising with multiple equilibria. For ease of exposition we denote by Λ∗
2

and Λ∗∗∗
2 the low and high root in the first of (26a), and with Λ∗∗

2 the unique real root of the

20



cubic (26b). Correspondingly, Λ∗∗∗
21 , Λ∗

21, and Λ∗∗
21, denote the low and high root in the second of

(26a), and the unique real root of the cubic (26b) (recall that in this case Λ2 = Λ21). Finally,

Λ∗∗∗
1 , Λ∗

1 and Λ∗∗
1 denote the first period price impact coefficient obtained via (24). Accordingly,

we rank traders’ hedging intensities in a similar way: a∗2 corresponds to the case where Λ2 = Λ∗
2

(and Λ21 = Λ∗
21), and so on.

Corollary 6. When the market is fully opaque, with uniqueness, the equilibrium is stable.

When multiple equilibria arise,

1. The two extreme equilibria are stable, while the intermediate equilibrium is unstable.

2. Equilibria can be ranked in terms of the price sensitivity to first and second period endow-

ment shocks:

Λ∗
2 < Λ∗∗

2 < Λ∗∗∗
2 , Λ∗∗∗

21 < Λ∗∗
21 < Λ∗

21, Λ∗∗∗
1 < Λ∗∗

1 < Λ∗
1. (27)

Thus, at a stable equilibrium we have either that p2 reacts more to u2 than to u1, or

the opposite. Correspondingly, in the former (latter) case the first period market is more

(less) liquid. Comparing liquidity across trading rounds, we have

Λ1 < Λ∗∗∗
21 < Λ∗∗∗

2 , or Λ1 < Λ∗
2 < Λ∗

21.

3. Traders’ hedging intensity is increasing in the price impact it induces: −1 < a∗∗∗2 < a∗∗2 <

a∗2 < 0, −1 < a∗21 < a∗∗21 < a∗∗∗21 < 0, and −1 < a∗1 < a∗∗1 < a∗∗∗1 < 0.

Therefore, only the extreme equilibria are stable. Additionally, at equilibrium the traders

belonging to the cohort that faces the highest market impact demand more liquidity. In other

words, with multiple equilibria, illiquidity no longer operates as a rationing device. This is be-

cause of the externality which makes an increase in the price impact induced by the endowment

shock (affecting traders in cohort) t, have a proportionally stronger effect on the execution risk

faced by cohort s ̸= t traders than on the expected return obtained by traders in cohort t.

An important implication of Corollary 6 is that when multiple equilibria arise, at the first

round of trade, dealers tend to speculate more aggressively (consume more liquidity) when the

market is more illiquid. Indeed, with opacity the first period strategy of a liquidity provider

is still as in (8), which implies that the equilibrium coefficient of the speculative component in

that strategy is given by:

−Λ21 − Λ1

Var1[p2]
= γ

a1
γH

.

Given part 3 of the above corollary, it then follows that dealers speculate more aggressively

along the equilibrium with the highest illiquidity. This prediction is consistent with the find-

ings in Brogaard et al. (2018) and Bellia et al. (2022). The former show that when extreme

price movements occur across different securities, high frequency traders step up their liquidity

demand. The latter argue that HFT consume liquidity during flash crashes, contributing to

trigger or exacerbate these events.
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3.2 Liquidity demand and supply in a fully opaque market

The discussion following the last result, suggests that when the market is opaque, liquidity

demand should be an increasing function of the price impact it induces, that is, its slope should

change compared to the case where the market is fully transparent. This is exactly what we

display in Figure 5, where we substitute (21) and (22a) into the second of (20a) and take the

absolute value of the resulting expression to obtain the hedging aggressiveness of first period

traders when they re-trade at the second round: |a2|. In the figure, we plot |a2| (in green)

as a function of the price impact it generates and the liquidity supply function (in blue) as a

function of the hedging intensity it induces, using the same parameter values of Figure 4. The

crossing points between the two curves occur at equilibrium. In Panel (a) and (b) we use the

same parameterizations of the corresponding panels in Figure 4, and, respectively, a unique

equilibrium and three equilibria obtain. As shown by the figure, and differently from what

shown in Figure 2 with a fully transparent market, a higher Λ2 leads second period traders to

demand more liquidity (|a2| increases), which leads to the positive association between liquidity

consumption and illiquidity at equilibrium when τη → 0.
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Figure 5: Liquidity demand and supply at the second round with a fully opaque market.

Figure 5 also illustrates an important prediction of our model. Suppose the market is at

a unique equilibrium and an unexpected shock boosts hedgers’ endowment uncertainty. Then,

the initial effect is that of reducing hedgers’ liquidity demand. To see this, note that since φ(Λ2)

is increasing in Λ2, from (26b) we obtain ∂φ(Λ2)/∂τu = (γ+ γH)Λ2τv − 1, which can be shown

to be negative, implying that at the intermediate equilibrium, a decline in τu reduces Λ2.
23

23Intuitively, a lower τu increases execution risk for 2nd period traders (the denominator in (20b)), lowering
|a2|, which reduces dealers’ exposure to u2 and thus Λ2. Formally, by chain rule, at the unique equilibrium
∂Λ2/∂τu = −(∂φ(Λ2)/∂τu)/(∂φ(Λ2)/∂Λ2) > 0, since the numerator in the expression is negative at the unique
equilibrium. This implies that when τu declines, the new aggregate best response moves to the left and below
the old one, implying that a decrease in τu lowers Λ2. If the shock to τu is large enough to induce multiplicity,
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When the shock is larger, however, the effect on execution risk overpowers that on expected

returns, which strengthens strategic complementarities, and yields multiple equilibria. As a

consequence, when such a shock occurs, all else equal, the old equilibrium value of illiquidity

Λ2 falls between Λ∗∗
2 and Λ∗∗∗

2 , and because of best response adaptive dynamics, is attracted by

the high illiquidity equilibrium. This yields the following result:

Corollary 7. When the market is fully opaque and a unique equilibrium obtains, a shock

increasing liquidity traders’ endowment volatility which is large enough to make condition (25)

satisfied, leads the market to gravitate towards the high illiquidity equilibrium at the second

round.

Remark 1. The above result implies that when the market is opaque, an unanticipated increase

to traders’ endowment shocks’ dispersion is conducive to a liquidity crash. One example would

be the case in which hedgers are investment banks with a position in the asset. If uncertainty

over their endowments increases unexpectedly (e.g. because of an unanticipated macro event

such as the Covid pandemic or the war in Ukraine), an opaque market triggers the loop we de-

scribed above leading to a crash, characterized by a much higher illiquidity. When the additional

uncertainty dissipates (the change in endowment shock dispersion is temporary), the market re-

covers, returning to the status quo ante, as in a “flash crash” (see, respectively, Figures 6

and 7).
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Figure 6: An unanticipated, permanent increase in endowment shock dispersion leading to a
liquidity dry up. Starting from the unique stable equilibrium when τu = 2 (panel (a)), an
unanticipated increase in hedgers’ endowment shock dispersion (with τu ↓ 1) shifts the best
response (21) to the left yielding three equilibrium points (panel (b)). Finally, best response
dynamics leads the market to gravitate towards the high illiquidity equilibrium (panel (c)).

Importantly, the positive relationship between liquidity consumption and illiquidity is pre-

served even when (25) is not satisfied and a unique equilibrium arises. In that situation, since

however, this also implies that the equilibrium obtained along the old best response falls in the field of attraction
of the high illiquidity equilibrium.
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Λ21 = Λ2, we have

a21 = a2 =
(γHτvΛ2 − 1)τu

τu + Λ2
2τv

. (28)

Rearranging (26b) to isolate Λ2
2τv yields:

Λ2
2τv =

(1− (γ + γH)Λ2τv)τu
γΛ2τv

,

which can be substituted at the denominator of (28) to obtain

a2 = −γτvΛ2.

This implies the following result.

Corollary 8. When the market is fully opaque and a unique equilibrium obtains, at the second

round both traders’ cohorts hedge the same fraction of their endowment shock, facing the same

illiquidity:

a2 = −γτvΛ2, (29)

where Λ2 is the unique real solution to (26b).
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Figure 7: An unanticipated, temporary increase in endowment shock dispersion leading to
a “flash crash.” Starting from the unique stable equilibrium when τu = 2 (panel (a)), an
unanticipated increase in hedgers’ endowment shock dispersion (with τu ↓ 1) shifts the best
response (21) to the left yielding three equilibrium points (panel (b)). Best response dynamics
leads the market to temporarily gravitate towards the high illiquidity equilibrium (panel (c)).
Once the endowment shock dispersion returns to its initial value (τu ↑ 2), the best response
mapping moves to the right, and the market returns to its original equilibrium value (panels
(d)–(f)).

4 Liquidity trading and noise trading

In this section, we consider the implications of our analysis for the time series properties of

noise trading and returns.

First, note that, based on Proposition 1 and the interpretation of the price impact coefficients

in Corollary 2, we can say that with transparency, at the second round dealers absorb a smaller

portion of the first period endowment shock (compared to the second period one), and the noise

process is stable: β < 1.

Second, the first and second period returns are positively serially correlated. That is, the
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model displays momentum, in the absence of any fundamentals information:

Cov[p2 − p1, p1] = Cov[−(Λ2u2 + (Λ21 − Λ1)u1),−Λ1u1]

= (Λ21 − Λ1)Λ1τ
−1
u > 0, (30)

due to Proposition 1.24 We collect these results in the following

Corollary 9. When the market is transparent: (1) liquidity trading behaves as a stable AR(1)

process; (2) first and second period returns are positively serially correlated.

The following corollary derives the implications for the time series properties of noise trades

and returns autocovariance when the market is fully opaque:

Corollary 10. With multiple equilibria, (1) β < 1 (β > 1) when Λ2 = Λ∗∗∗
2 (Λ2 = Λ∗

2); (2) the

autocovariance of first and second period returns increases in Λ21 and also increases compared

to the case with full transparency at both equilibria.

5 Extensions

In this section, we consider three extensions to the model we developed so far. In the first one,

we allow the market to be “partially” opaque (i.e., τη ∈ (0,∞)). Next, we assume that liquidity

is also supplied by a class of dealers (of mass 1− µ) who can only trade at the first round and

which we term “Restricted Dealers”–we denote them by RD and use D (of mass 0 < µ < 1) to

denote the dealers we introduced in Section 1.1. Finally, we analyze the welfare properties of

our model.25

We start by considering the effect of an informative signal, keeping µ = 1.

5.1 An informative signal

When τη ∈ (0,∞), prices are as in (1a) and (1b), and we have the following result:

Proposition 3. With partial opacity, the equilibrium obtains as a solution to the system of non-

linear, simultaneous equations (A.17a)–(A.51) and (A.28). The expressions for the equilibrium

prices’ coefficients Λ2, Λ1, Λ21 and Λ22 are as in (A.28), and (A.29a)-(A.29c). The coefficients

of traders’ strategies are as in Proposition 2, with Var1[p2] = Λ2
2τ

−1
u + Λ2

22τ
−1
η , Var1[v − p2] =

τ−1
v + Λ2

2τ
−1
u + Λ2

22τ
−1
η and Var2[v − p2] = τ−1

v + (Λ21 − Λ22)
2(τu + τη)

−1, except for b, which is

given by:

b = γH
Λ21τη + Λ22τu

(τη + τu)Var2[v − p2]
. (31)

At equilibrium, Λ2 > 0,Λ21 > Λ1 > 0, and Λ22 < 0.

24See more on the source of positive return autocovariance in Section B of the appendix.
25In a separate section of the appendix (Section B), we also consider the case in which first period traders

receive a perfect signal about u2, while second period traders have no information on u1.
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In this case we are not able to analytically study the equilibrium and we resort to numerical

simulations to investigate the properties of the model.

According to the above result, an informative signal about u1 (τη ∈ (0,∞)) leads second

period traders to speculate against the price pressure created by first period traders’ liquidity

demand, taking a contrarian position (in our simulations, b > 0), thus enhancing the risk-

bearing capacity of the market. This dampens the strategic complementarities responsible for

multiple equilibria (see Figure 8) and for τη large enough, leads to a unique equilibrium (see

Figure 9).26
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Figure 8: Market transparency and multiple equilibria. In the figure, we plot in black the
function Φ(Λ2) when τu = τv = τη = 0.1, γH = 0.1, and γ = 1. The blue curve shows the case
with full opaqueness (τη = 0) shown in Figure 4.

In Figure 9, we plot the price and strategy coefficients for one of our simulations. As

shown in the figure, for τη small, three equilibria arise. We plot them using the color green,

blue and red to indicate the equilibrium that corresponds to the two “extreme,” stable price

impacts (respectively in green and red) and the unstable one (in blue) when µ = 1 and τη =

0. Importantly, when multiple equilibria obtain, order flow partial transparency does not

modify an important conclusion we reached in Section 3.2: liquidity demand and illiquidity are

positively correlated at equilibrium (see panels (c), (d), (e) and (f) in Figure 9). However, at

the unique equilibrium, we have |a2| > |a21| and Λ2 > Λ21: a sufficiently high degree of order

flow transparency leads second period traders’ to demand more liquidity compared to their first

period peers (crowding them out), paying a higher price for immediacy.

26This result is reminiscent of Bernardo and Welch (2004), who argue that a way to stabilize the market in
the face of a run on liquidity, is to increase the risk bearing capacity of the market making sector. This is
precisely what a better signal about u1 achieves in our setup.
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5.2 Restricted dealers

In this section, we assume that at the first round, liquidity is provided by a mass µ ∈ (0, 1]

of dealers D and a complementary mass 1 − µ of RD (Restricted Dealers). A RD has CARA

preferences with the same risk-tolerance γ as a D. However, as he is in the market only in the

first period, he submits a price-contingent order xRD to maximize the expected utility of his

wealth WRD = (v− p1)x
RD which, as we show in the Appendix (see (A.14)), has the following

expression: xRD = −γτvp1. The inability of RD to trade in the second period captures some

liquidity suppliers’ limited market participation. This friction could be due to technological

reasons as in the case of dealers with impaired access to a technology that allows trading at

high frequencies. Alternatively, it could arise from limited access to the trading venue, as in

the case of those liquidity suppliers who in the 80s could not access the NYSE trading floor.

Importantly, due to the heterogeneity of liquidity suppliers’ types, market clearing condi-

tions change compared to (2)-(3):

µxD
1 + (1− µ)xRD + x11 = 0 (32a)

(xD
2 − xD

1 )µ+ (x21 − x11) + x2 = 0 ⇐⇒ µxD
2 + (1− µ)xRD + x21 + x2 = 0, (32b)

where in the latter we make use of the first period market clearing condition to obtain the

expression at the right hand side of (32b). Figure 10 displays the timeline of the model.

1

− Liquidity traders
receive u1 and
submit market
order x11.

− Ds submit limit
order µxD

1 .

− RD submit limit
order (1− µ)xRD

11 .

2

− 1st period liquid-
ity traders submit
market order x21.

− New cohort of
liquidity traders re-
ceives u2, observes
su1 , and submits
market order x2.

− Ds submit limit
order µxD

2 .

3

− Asset liquidates.

Figure 10: The timeline with heterogeneous liquidity supply.

This version of the model is also analytically challenging, and we once again resort to

numerical simulations to investigate its properties.27 We first show that multiple equilibria also

arise when second period traders observe an informative signal about u1 and µ ∈ (0, 1]. In

Figure 12 we partition the space µ ∈ (0, 1], τη > 0 in two regions: points above (below) the

blue curve correspond to values of µ and τη for which our numerical simulations yield a unique

equilibrium (three equilibria). According to the figure, uniqueness obtains when second period

27The analytical characterization of the equilibrium is very similar to the one illustrated in Proposition A.1.
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traders’ signal is of a sufficiently good quality, in line with the results of Section 3. The effect

of an increase in µ is less obvious. As panel (a) illustrates, we find that when τη is low, an

increase in µ leads the market to switch from multiple equilibria to a unique equilibrium, and,

eventually, back to multiple equilibria. The intuition is as follows: an increase in µ increases

the mass of dealers who (1) provide liquidity at the second round and (2) benefit from second

period traders’ risk-sharing enhancing speculation. For small values of µ, the mass of D is small

and the need for additional risk-sharing is reduced, which explains why an increase in µ leads

to uniqueness. However, as µ increases this is no longer the case, and an increase in µ can

heighten strategic complementarities, yielding multiple equilibria. Note that uniqueness does

not necessarily correspond to a high liquidity solution for market participants. In Figure 11,

we show that when the market is at the low illiquidity equilibrium (with Λ∗
2 = 1.47), a small

reduction in the mass of D (from µ = 0.9 to µ = 0.8), plunges the market to the high illiquidity

equilibrium (Λ2 = 9.6, corresponding to a 653% increase in illiquidity).
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Figure 11: The effect of a small reduction in µ when τη is low.

Consistently with what we have found in Corollary 5, an increase in γH or τv tends to reduce

the chances of liquidity fragility (compare the areas below the blue curve in panel (a) and panels

(c) and (d)). The effect of an increase in τu is more complicated. Comparing panels (a) and (b)

in the figure indicates that when τη is low, for extreme values of µ an increase in τu increases

the chances of liquidity fragility, while the opposite occurs for intermediate values of µ. The

intuition is as follows. When τη ∈ (0,∞), second period traders use their signal, su1 , and p2

to learn u1. Other things equal, an increase in τu reduces the effect of first period liquidity

traders demand on p2, reducing second period traders’ reliance on p2 to learn u1, which works

to reduce their speculative activity on the propagated imbalance. For extreme values of µ, the

ensuing reduction in risk-sharing produces a more dramatic effect on fragility as either the risk

bearing capacity of dealers is small (µ close to 0) or D bear most of the risk exposure (µ high).
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In Figure 13, we plot the price and strategy coefficients for one such simulation, using the

same coloring of Figure 9. As in Figure 9, when τη increases, only the equilibrium where Λ1, Λ21

are small and Λ2 is large survive.
28 This confirms the intuition gained via the benchmark (and

Figure 12) that an increase in order flow transparency attenuates the externality responsible

for equilibrium multiplicity.

Next, we explore the impact of order flow transparency on price impact and liquidity con-

sumption, along the stable equilibrium where Λ21 is small. In Figure 14 we plot the price impact

coefficient of u1 on p2 and the strategy coefficient a21 as a function of τη (respectively Panels

(a) and (b)), and then a21 as a function of Λ21. The plots confirm that opacity can be respon-

sible for traders consuming more liquidity as the price impact they produce increases (Panel

(c)). This confirms the finding of Corollary 8: in the general case too, even when the liquidity

externality is not sufficiently strong to generate multiple equilibria, it can nonetheless impede

the rationing function of illiquidity. Additionally, the figure shows that Λ21 declines with τη.

Together with the positive relationship between b and τη shown in Figure 13 (Panel (h)), this

offers an explanation for one of the findings in Anand et al. (2013). These authors study the

trading behavior of equity mutual funds during the crisis, offering evidence that some of them

actively participate in the market by providing liquidity as “contrarian” traders and showing

that resiliency is enhanced by a larger market participation of such funds. Through the lenses

of our model, this is exactly what is shown in the figure: as τη increase, second period traders

speculate more aggressively against the order imbalance due to first period traders’ endowment

shock. This improves risk sharing by lowering the risk exposure of D, which produces a decline

in Λ21.

5.3 Welfare analysis

In this section, we study the welfare implications of the general version of the model we pre-

sented in Section 5.2. Denoting by EUD, EURD, and EUH
t , respectively the unconditional

expected utilities of D, RD and round t ∈ {1, 2} hedgers, we measure traders’ payoffs by

computing their certainty equivalents:

CED = −γ ln(−EUD), CERD = −γ ln(−EURD), CEH
t = −γH ln(−EUH

t ).

The next result provides the expressions for traders’ payoffs.

Proposition 4. Assuming that

γ2
Hτuτv > 1, (33)

28In all our simulations, the switch from multiple equilibria to a unique equilibrium always occurs with the
market reverting to the case with a low Λ21 and high Λ2.
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traders’ payoffs are well defined and their expressions are given in the appendix (see (A.53),

(A.56), (A.59), and (A.62)).

Using (A.53), (A.56), (A.59), and (A.62), we define the total (utilitarian) welfare of market

participants as follows:

TW (µ; τη) = µCED + (1− µ)CERD + CEH
1 + CEH

2 . (34)

We then numerically evaluate (34) to assess:

1. The welfare ranking of the equilibria that arise with multiplicity, taking as a reference

the parameter values of Figure (12), panel (a).

2. The welfare properties of the unique equilibrium as either the market becomes less opaque

(τη increases), or the mass of D increases (µ increases). In this case, we assume γ = 0.5,

γL = 0.25, a 10% annual volatility for the endowment shock, and consider a “high” and a

“low” payoff volatility scenario (respectively, τv = 3, which corresponds to a 60% annual

volatility for the liquidation value, and τv = 25 which corresponds to a 20% annual volatil-

ity). With this set of parameters, we solve for the equilibrium of the market and compute

traders’ payoffs and TW (µ; τη), for µ ∈ {0.1, 0.2, . . . , 1} and τη ∈ {0.1, 25, 50, 75, 100}.

Regarding the welfare ranking with multiplicity, we find that even though (33) is only a

sufficient condition for the payoff functions to be well defined, whenever multiple equilibria ob-

tain, traders’ payoffs (that is (A.59), and (A.62)) are complex valued functions, which prevents

obtaining a general welfare ranking result across equilibria.

Turning now to the welfare properties of the unique equilibrium, our numerical simulations

yield the following result:

Numerical Result 1. When a unique equilibrium obtains, TW (µ; τη) is increasing in µ and

τη.

Therefore, policies aimed at increasing market transparency and/or increase the mass of

dealers who are always in the market to supply liquidity, achieve a higher total welfare.

6 Concluding remarks

We analyse a two-period market in which a risky security is traded by dealers and traders who

hedge an endowment shock. We show that the properties of the market equilibrium crucially

depend on the information environment. With full transparency, second period traders perfectly

observe the first period endowment shock. This allows them to take a contrarian position

against first period liquidity traders’ second period order–in this way de-facto providing liquidity

to them. In this case we show that traders’ demand for liquidity is a decreasing function of the
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price impact it induces–that is, illiquidity works as a rationing device. Additionally, a unique

equilibrium obtains. A deterioration of second period traders’ information impairs these traders’

ability to supply liquidity via contrarian orders. This reduces the risk-bearing capacity of the

market and can increase market fragility. With market opacity, the model displays multiple

equilibria with different levels of market depth. Additionally, a larger price impact leads traders

to demand and consume more liquidity. Thus, our model predicts that market opacity can make

markets fragile and jam the rationing function of illiquidity.29 We also find that an increase in

order flow transparency and/or in the mass of dealers who are in the market at all times has

a positive impact on total welfare. This offers an economic justification to policies aimed at

enhancing access to order flow information such as the ones recently pursued by the SEC for

the US Treasury market.30

Our model provides a plausible explanation for a number of recent events in which market

liquidity “crashes” in the absence of any observable change in fundamentals. In these events,

it looks as if traders chased liquidity while dealers withdrew it from the market. We argue that

opacity of the trading process can be the responsible for this type of effect, as it can severely

impair the market participation of “non-standard” liquidity suppliers.31

The model is also consistent with the narrative of the impact of the COVID pandemic on

the illiquidity of the US Treasury market in March 2020. On March 12, 2020, the World Health

Organization declared COVID-19 to be a global pandemic and liquidity deteriorated in the US

Treasury market, with spreads increasing tenfold compared to their normal level and depth

virtually disappearing at times driven by the constrained balance sheet capacity of dealers

(Duffie (2023)). In our setup, a similar outcome is explained by market opacity impairing the

ability of second period traders to speculate against the first period endowment shock, which

reduces the risk bearing capacity of the market.32

Finally, our model predicts that when the market is fragile, trading costs are heterogeneous

across different cohorts of investors. Specifically, the investors paying most for liquidity are

those that consume more of it.

Our model offers an additional argument in support of the introduction of a “consolidated

tape” in the EU. Indeed, the level of stock market fragmentation in the EU is higher than in the

US. However, differently from their US peers, traders in the EU cannot rely on a common signal

29Interestingly, the importance of equal access to market information for market stability is also underlined
in a recent opinion paper by PIMCO on the ways to improve the resiliency of the US Treasury market. “[I]n our
view, an effective all-to-all platform for Treasuries would function similarly to a utility and would 1) include all
legitimate, professional market participants; 2) require that participants trade under the same rules with the
same access to price, information, etc.. . . ”

30See, e.g. SEC moves to unmask high-speed traders in Treasury bond market, Financial Times, March 2022.
31In a somewhat related manner Menkveld and Yueshen (2019) attribute the flash-crash of May 6, 2010 to the

fleeing of cross-market arbitrageurs from the E-mini market, which considerably curtailed the liquidity supplied
to that market during the event.

32Duffie (2023) argues that on a typical day, the illiquidity of the US Treasury market is well explained
by treasuries’ yield volatility but that dealers’ balance sheet capacity, when constrained, acquires explanatory
power. Indeed, facing a constrained balance sheet, dealers become less willing to trade with investors and among
themselves, which impacts the risk bearing capacity of the market.
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displaying the best quotes available across trading venues. To obtain such a “consolidated”

market view, they need to piece together the more expensive feeds offered by each exchange,

which creates a suboptimal two-tiered market (Cespa and Foucault (2013); Brogaard et al.

(2021)). In an attempt to level the playing field, the European Commission is seeking to

introduce the supply of a consolidated tape, at a reasonable price. However, this effort is facing

a fierce resistance from exchanges.33 Such resistance is likely to lower the transparency of the

trading process which, through the lenses of our model, can have undesirable side effects on

market stability.

33Importantly, we do not see the consolidated tape as a sure remedy against flash events. Indeed, the US
market has had a tape since the introduction of RegNMS (even though, according to the CFTC and SEC
(2010) report on the flash-crash during the crash traders questioned the reliability of market information and
took a pause from trading). We view the availability of reliable and prompt market information as an important
ingredient that can help reducing the likelihood of market disruption.
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A Appendix A

The following is a standard results (see, e.g. Vives (2008), Technical Appendix, pp. 382–383)

that allows us to compute the unconditional expected utility of market participants.

Lemma 1. Let the n-dimensional random vector z ∼ N(0,Σ), and w = c+ b′z + z′Az, where

c ∈ R, b ∈ Rn, and A is a n×n matrix. If the matrix Σ−1+2ρA is positive definite, and ρ > 0,

then

E[− exp{−ρw}] = −|I + 2ρΣA|−1/2 exp{−ρ(c− ρb′(Σ + 2ρA)−1b)}.

We now derive the equilibrium for the general case in which τη ∈ (0,∞) and µ ∈ (0, 1] that

we discuss in Section 5.2. The two benchmarks with full transparency (µ = 1 and τη → ∞)

and full opacity (µ = 1 and τη → 0) obtain as special cases of this result.

Proposition A.1. When µ ∈ (0, 1] and τη ∈ (0,∞), at a linear equilibrium:

p2 = −Λ2u2 − Λ21u1 − Λ22η (A.1a)

p1 = −Λ1u1 (A.1b)

where the coefficients in the above expressions obtain as a solution to the following system of

non-linear, simultaneous equations:

Λ2 = − a2
µγτv

(A.2a)

Λ21 = −b+ a21 + (1− µ)γτvΛ1

µγτv
(A.2b)

Λ22 = − b

µγτv
(A.2c)

Λ1 = −µγ + γH
γγHτv

a1, (A.2d)

and expressions for a2, b, a21, and a1 are respectively given in (A.6), (A.15), and (A.24). At

equilibrium, Λ2 > 0,Λ21 > Λ1 > 0, and Λ22 < 0.

Proof. Based on the market clearing condition (3), to pin down p2 we need the strategies of

first and second period traders, and dealers. We work by backward induction. In the second

period, CARA and normality assumptions imply that the objective function of a liquidity trader

is given by

E2[− exp{−π2/γH}] = − exp

{
− 1

γH

(
E2[π2]−

1

2γH
Var2[π2]

)}
, (A.3)
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where π2 ≡ (v−p2)x2+u2v. Maximizing (A.54) with respect to x2, and solving for the optimal

strategy yields:

x2 = γH
E2[v − p2]

Var2[v − p2]
− Cov2[v − p2, v]

Var2[v − p2]
u2, (A.4)

where,

E2[v − p2] = Λ2u2 +
Λ21τη + Λ22τu

τη + τu
su1 (A.5a)

Var2[v − p2] =
1

τv
+

(Λ21 − Λ22)
2

τη + τu
(A.5b)

Cov2[v − p2, v] =
1

τv
. (A.5c)

Substituting (A.5a) and (A.5c) in (A.4), and rearranging yields:

X2(u2, su1) =
γHτvΛ2 − 1

τvVar2[v − p2]︸ ︷︷ ︸
a2

u2 + γH
Λ21τη + Λ22τu

(τη + τu)Var2[v − p2]︸ ︷︷ ︸
b

su1 . (A.6)

A dealer maximizes the expected utility of his second period wealth:

ED
2

[
− exp

{
− 1

γ

(
(p2 − p1)x

D
1 + (v − p2)x

D
2

)}]
= (A.7)

= exp

{
− 1

γ
(p2 − p1)x

D
1

}(
− exp

{
− 1

γ

(
ED

2 [v − p2]x
D
2 − (xD

2 )
2

2γ
VarD2 [v − p2]

)})
.

For given xD
1 the above is a concave function of the second period strategy xD

2 . Solving the

first order condition, yields that a second period D’s strategy is given by:

XD
2 (p1, p2) = γ

ED
2 [v − p2]

VarD2 [v − p2]
. (A.8)

Computing expectation and variance in the above expression:

ED
2 [v − p2] = −p2 (A.9a)

VarD2 [v − p2] =
1

τv
, (A.9b)

and substituting these in xD
2 yields:

XD
2 (p1, p2) = −γτvp2. (A.10)

38



Similarly, due to CARA and normality, in the first period a RD maximizes

ERD
1

[
− exp

{
− 1

γ
(v − p1)x

RD
11

}]
= (A.11)

− exp

{
− 1

γ

(
ERD

1 [v − p1]x
RD
11 − (xRD

11 )2

2γ
VarRD

1 [v − p1]

)}
.

Maximizing the above and solving for xRD
11 yields:

xRD
11 (p1) = γ

ERD
1 [v − p1]

VarRD
1 [v − p1]

. (A.12)

Computing the conditional expectation and variance:

ERD
1 [v − p1] = −p1 (A.13a)

VarRD
1 [v − p1] =

1

τv
, (A.13b)

so that

XRD
1 (p1) = −γτvp1. (A.14)

At the second round, first and second period traders face the same utility maximization

problem. This is because they both need to hedge the endowment shock, and have only one

round to go. As a consequence, a first period trader’s strategy reads as follows:

X21(u1) = γH
E1[v − p2]

Var1[v − p2]
− Cov1[v, v − p2]

Var1[v − p2]
u1 (A.15)

=
γHΛ21τv − 1

τvVar1[v − p2]︸ ︷︷ ︸
a21

u1,

where

Var1[v − p2] =
1

τv
+

Λ2
2

τu
+

Λ2
22

τη
. (A.16)

Substituting (A.6), (A.10), (A.14), and (A.15) in (3), solving for p2 and identifying the equi-

librium price coefficients yields:

Λ2 = − a2
µγτv

(A.17a)

Λ21 = −b+ a21 + (1− µ)γτvΛ1

µγτv
(A.17b)

Λ22 = − b

µγτv
(A.17c)
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According to (A.17a), at an equilibrium

Λ2 =
1

(γH + µγτvVar2[v − p2])τv
,

so that at equilibrium Λ2 > 0, and γHΛ2τv < 1. Based on the expression for a2 in (A.6), this

implies that

a2 ∈ (−1, 0). (A.18)

To obtain the first period equilibrium price, we need to pin down the expressions for dealers’

and liquidity traders’ first period strategies. Starting from the latter, we obtain the second

period value function of a first period trader substituting (A.15) into the trader’s objective

function:

E1[− exp{−((v − p2)x21+vu1)/γH}] = − exp{−(Var1[v − p2]x
2
21 − Var[v]u2

1)/2γ
2
H}. (A.19)

As a consequence, at the first round, the trader’s objective function reads as follows:

E1[− exp{ − π1/γH}] (A.20)

= E1[− exp{−((p2 − p1)x11 + (Var1[v − p2]a
2
21u

2
1 − Var[v]u2

1)/2γH)/γH}]
= E1[− exp{−((p2 − p1)x11 + ((Var1[v − p2]a

2
21 − Var[v])/2γH)︸ ︷︷ ︸
C

u2
1)/γH}],

where π1 = vu1+(v−p2)x21+(p2−p1)x11. Using the expression for p2 in (A.52), the argument

of the exponential in the latter expression of (A.20) can be written as follows:

(p2 − p1)x11 + Cu2
1 = −(Λ21 − Λ1)u1x11 + Cu2

1 − (Λ2u2 + Λ22η)x11, (A.21)

which is a quadratic form of the normal random variable Z ≡ −(Λ2u2+Λ22η)|u1 ∼ N(0,Var1[p2−
p1]) (the constant multiplying the squared term of Z in the quadratic form is in this case null),

where

Var1[p2 − p1] = Var1[p2] = Λ2
2τ

−1
u + Λ2

22τ
−1
η . (A.22)

We can then write the objective function of a trader at the first round as follows:

E[− exp{−π1/γ1}|u1] = − exp{−(−(Λ21−Λ1)u1x11+Cu2
1−x2

11Var1[p2−p1]/2γH)/γH}. (A.23)

Maximizing the above function with respect to x11 yields

X11(u1) = −γH
Λ21 − Λ1

Var1[p2]︸ ︷︷ ︸
a1

u1. (A.24)

We now obtain the strategy of a liquidity provider. Substituting a D’s second period strat-
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egy (A.55) in (A.7), rearranging and applying Lemma 1 yields the following expression for the

first period objective function of a D:

ED
1 [U((p2 − p1)x

D
1 + (v − p2)x

D
2 )] = −

(
1 +

VarD1 [p2]

Var[v]

)−1/2

× (A.25)

exp

{
−1

γ

(
γτv
2

(ED
1 [p2])

2 + (ED
1 [p2]− p1)x

D
1 − (xD

1 + γτvE
D
1 [p2])

2

2γ

(
1

VarD1 [p2]
+

1

Var[v]

)−1
)}

,

where

ED
1 [p2] = −Λ21u1 (A.26a)

VarD1 [p2] =
Λ2

21

τu
+

Λ2
2

τη
. (A.26b)

Maximizing (A.25) with respect to xD
1 and solving for the first period strategy yields

xD
1 (p1) =

γ

VarD1 [p2]
ED

1 [p2]− γ

(
1

VarD1 [p2]
+

1

Var[v]

)
p1

= −γ
Λ21 − Λ1

VarD1 [p2]
u1 − γτvp1. (A.27)

Comparing (A.27) with (A.24) shows that in this model at the first round D and liquidity

traders submit the same type of market order. That is, we can think of the strategy of a

liquidity trader as being similar to the “directional bet” part of the D strategy (more on this

in section 2).

Substituting (A.14), (A.24) and (A.27) into the first period market clearing condition (2)

and identifying the equilibrium price coefficient yields:

Λ1 = −µγ + γH
γγHτv

a1. (A.28)

We have already signed Λ2. To sign the remaining price coefficients, we substitute the expres-

sions for the strategy coefficients into (A.17b), (A.51), and (A.28), obtaining:

Λ21 (A.29a)

=
(τu + τη)Var2[v − p2]− (γHΛ22τu + (τu + τη)(1− µ)γτvΛ1Var2[v − p2])τvVar1[v − p2]

γHτvτηVar1[v − p2] + (τu + τη)(γH + µγτvVar1[v − p2])τvVar2[v − p2]

Λ22 = − γHΛ21τη
µγτv(τu + τη)Var2[v − p2] + γHτu

(A.29b)

Λ1 =
(µγ + γH)Λ21τuτη

(µγ + γH)τuτη + (Λ2
22τu + Λ2

2τη)γτv
. (A.29c)
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Note that from (A.29c), the sign of Λ21 coincides with that of Λ1. Now, suppose that Λ21 ≤ 0,

then this implies that Λ1 ≤ 0. However, because of (A.29a), we then have that Λ21 > 0, which

is a contradiction. Once we have signed Λ21, because of (A.29b), we know that Λ22 < 0, and

by computing Λ21 − Λ1 with (A.29c), we obtain Λ21 − Λ1 > 0. 2

Proof of Proposition 1

We prove here that that when second period traders observe a perfectly informative signal

of u1 (i.e., τη → ∞), the equilibrium obtained in Proposition A.1, is unique. Note that this

assumption has a direct impact on the second period equilibrium condition, since with a perfect

signal, the information set of second period traders’ is given by Ω2 = {u2, u1}. Therefore, the

second period price only reflects endowment shocks:

p2 = −Λ2u2 − Λ21u1,

and, using (A.4), second period traders’ position reads as follows:

x2 = γH
E2[v − p2]

Var2[v − p2]
− Cov2[v, v − p2]

Var2[v − p2]
u2

= (γHτvΛ2 − 1)︸ ︷︷ ︸
= a2

u2 + γHτvΛ21︸ ︷︷ ︸
= b

u1, (A.30)

where we note that since second period traders perfectly observe u1, Var2[v − p2] = τ−1
v . First

period traders, trading at the second round, can only anticipate the impact of u1 on p2. Thus,

using (A.15), we obtain:

x21 = γH
E1[v − p2]

Var1[v − p2]
− Cov1[v, v − p2]

Var1[v − p2]
u1

=
(γHτvΛ21 − 1)τu

τu + Λ2
2τv︸ ︷︷ ︸

= a21

u1. (A.31)

The strategy for D is as in (A.10), so that plugging it in the second period market clearing

condition yields:

xD
2 + x2 + x21 = 0 ⇐⇒ p2 =

a2
γτv︸︷︷︸

= −Λ2

u2 +
b+ a21
γτv︸ ︷︷ ︸

= −Λ21

u1. (A.32)
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Based on the above, we can immediately identify the second period price impact coefficients:

Λ2 =
1

(γ + γH)τv
(A.33a)

Λ21 =
τu

((γ + γH)(τu + Λ2
2τv) + γHτu)τv

. (A.33b)

Finally, turning to the first period market, we have the following expression for the market

clearing equation:

xD
1 + x11 = 0.

Replacing the expressions for traders and dealers’ strategies (see, respectively (A.24), (A.27),

and (A.14)), taking the limit for τη → ∞ and identifying the endowment shock price coefficient

yields

p1 =
(γ + γH)τuΛ21

(γ + γH)τu + γτvΛ2
2︸ ︷︷ ︸

= −Λ1

u1. (A.34)

The equilibrium is uniquely pinned down by the solution to the linear system given by the

expressions for the price coefficients of u1 at the two trading rounds:

Λ1 =
τ 2uτv(γ + γH)

4

τuτv (2γ2 + 4γγH + γ2
H) (γ + γH) + τ 2uτ

2
v (γ + 2γH)(γ + γH)4 + γ

(A.35a)

Λ21 =
τu(γ + γH) (τuτv(γ + γH)

3 + γ)

τuτv (2γ2 + 4γγH + γ2
H) (γ + γH) + τ 2uτ

2
v (γ + 2γH)(γ + γH)4 + γ

, (A.35b)

which possesses the unique solution illustrated in the text of the proposition. The ranking

across the price impact coefficients follows immediately from their comparison.

2

Proof of Proposition 2

We obtain the equilibrium in the case with full opacity by setting µ = 1 and taking the limit

for τη → 0 of the equilibrium price coefficients obtained in the proof of Proposition A.1.

Starting from Λ22:

Λ22 = lim
τη→0

− γHΛ2Λ21τvτη
τu + (1− γ2τvΛ2)

= 0. (A.36a)

Based on (A.36a) we then have

Λ2 = lim
τη→0

1

(γH + γτvVar2[v − p2])τv
=

τu
((µγ + γH)τu + γτv(Λ21 − Λ22)2)τv

(A.36b)

=
τu

((γ + γH)τu + γτvΛ2
21)τv
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and

Λ21

= lim
τη→0

−(τvVar1[v − p2])
−1(γHτvΛ21 − 1) + γH((τu + τη)Var2[v − p2])

−1(Λ21τη + Λ22τu)

µγτv

= −(γHτvΛ21 − 1)τu
(τu + Λ2

2τv)γτv
. (A.36c)

Also,

lim
τη→0

Λ2
22

τη
= lim

τη→0

(
γHΛ2Λ21τv

(τu/τ
1/2
η ) + (1− γHτvΛ2)τ

1/2
η

)2

= 0,

which implies that

Λ1 = lim
τη→0

(γH + γ)τuΛ21

γHτu + γ(((Λ2
22/τη)τu + Λ2

2)τv + τu)
(A.36d)

=
(γH + γ)τuΛ21

γHτu + γ(Λ2
2τv + τu)

.

Based on the limits (A.36a)-(A.36d), the coefficients of traders’ strategies are given by

a1 = −γHτu
Λ21 − Λ1

Λ2
2

< 0 (A.37a)

a21 = τu
γHτvΛ21 − 1

τu + Λ2
2τv

∈ (−1, 0) (A.37b)

a2 = τu
γHτvΛ2 − 1

τu + Λ2
21τv

∈ (−1, 0) (A.37c)

b = 0. (A.37d)

Additionally, an equilibrium is pinned down by solving the following system of simultaneous

equations:

Λ2 = Φ1(Λ21) ≡
τu

((γ + γH)τu + γτvΛ2
21)τv

(A.38a)

Λ21 = Φ2(Λ2) ≡
τu

((γ + γH)τu + γτvΛ2
2)τv

(A.38b)

Λ1 =
(γ + γH)τuΛ21

(γ + γH)τu + γτvΛ2
2

. (A.38c)

An equilibrium obtains via the solution of the system (A.38a)–(A.38b). Replacing (A.38a)
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into (A.38b) and rearranging yields:

Λ21 = Φ2(Λ21) ≡
(γτu + (γ + γH)B

2τv)B
2

(γ + γH)(γ + γH)B4τ 2v + 2(γ + γH)γB2τuτv + γ2τ 2u
, (A.39)

where B ≡ (γ + γH)τu + γΛ2
21τv. Inspection of (A.39) reveals (i) that Φ2(Λ21) > 0, (ii) that

Φ2(0) > 0, and (iii) that Λ21 − Φ2(Λ21) is proportional to a 9-the degree polynomial in Λ21,

which thus always possesses at least one positive root Λ∗
21. Recursive substitution of such root

first in (A.38a) and then in (A.38c) allows to pin down the set of equilibrium coefficients for p1

and p2.

Comparison of (A.38c) and (A.38b) shows that Λ21,Λ1 > 0 and Λ1 < Λ21. To see this,

suppose Λ21 ≤ 0. Then, because of (A.38c), Λ1 ≤ 0. However, because of (A.38b) this implies

that Λ21 > 0, contradicting the initial assumption. Next, using (A.38c)

Λ21 − Λ1 = Λ21 −
(γ + γH)τuΛ21

(γ + γH)τu + γτvΛ2
2

=
γτvΛ

2
2Λ21

(γ + γH)τu + γτvΛ2
2

,

which is positive. 2

Proof of Corollary 5

Divide (22a) by (22b) to obtain

Λ2

Λ21

=
(γ + γH)τu + γτvΛ

2
2

(γ + γH)τu + γτvΛ2
21

.

Rearranging the above, yields the following equation

(Λ2 − Λ21)((γ + γH)τu − γτvΛ21Λ2) = 0. (A.40)

One solution to the above equation is Λ2 = Λ21 which, substituted into (22a) after rearranging

yields the following cubic in Λ2:

φ(Λ2) ≡ ((γ + γH)τu + γτvΛ
2
2)Λ2τv − τu, (A.41)

which, since φ(0) < 0 and φ′(Λ2) > 0, is easily seen to posses a unique, positive root. Suppose

instead that Λ21 ̸= Λ2. In this case, for (A.40) to be satisfied, we need

Λ21Λ2 =
(γ + γH)τu

γτv
. (A.42)

Solving the above for Λ21 and substituting the result into (22a), yields the following quadratic
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in Λ2:

(γ + γH)γτvΛ
2
2 − γΛ2 + (γ + γH)

2τu = 0. (A.43)

The roots of the equation are given by

Λ∗,∗∗
2 =

γ ±
√

(γ − 4(γ + γH)3τuτv)γ

2(γ + γH)γτv
.

Both roots are positive, which implies that, provided

0 < τuτv <
γ

4(γ + γH)3
,

there are two additional equilibria of the model and the corresponding value of Λ21 obtains by

substituting either root into (A.42). Finally, note that when

γ

4(γ + γH)3
≤ τuτv,

the quadratic (A.43) has either two identical solutions Λ∗
2 = Λ∗∗

2 = Λ2 = 1/(2(γ + γH)τv), or

does not have a real solution, and only the equilibrium with Λ21 = Λ2 obtains. 2

Proof of Corollary 6

To analyze the stability properties of the equilibrium in this case, we use the aggregate best

response function (A.39) which for µ = 1 has the following expression:

Φ2(Λ21) =
((γ + γH)τu + Λ2

21γτv)
2

γτu + ((γ + γH)τu + Λ2
21γτv)

2(γ + γH)τv
. (A.44)

1. First, based on the above expression, Φ2(0) > 0 and differentiating (A.44) with respect

to Λ2 yields:

Φ′
2(Λ21) =

4((γ + γH)τu + Λ2
21γτv)γ

2Λ21τuτv
(γτu + ((γ + γH)τu + Λ2

21γτv)
2(γ + γH)τv)2

> 0, (A.45)

implying that the best response is always upward sloping. Thus, with uniqueness Φ2(Λ21)

cuts the 45-degree line from “above” implying that the equilibrium is stable. When

multiple equilibria arise, it instead crosses the 45-degree line at three points, with a slope

smaller (larger) than one at the two extreme (intermediate) crossings, which correspond

to the three equilibria of the market. Hence, with multiplicity, the two extreme equilibria

are stable, while the intermediate one is unstable.

2. Second, evaluating the cubic (A.41) at the low and high roots of the quadratic (A.43)
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yields

φ

(
γ −

√
(γ − 4(γ + γH)3τuτv)γ

2(γ + γH)γτv

)
=

γ − 4τuτv(γ + γH)
3 −

√
γ (γ − 4τuτv(γ + γH)3)

2τv(γ + γH)3
< 0

(A.46a)

φ

(
γ +

√
(γ − 4(γ + γH)3τuτv)γ

2(γ + γH)γτv

)
=

γ − 4τuτv(γ + γH)
3 +

√
γ (γ − 4τuτv(γ + γH)3)

2τv(γ + γH)3
> 0,

(A.46b)

for 0 < τuτv < γ/(4(γ + γH)
3). Hence, when multiple equilibria arise, the roots of the

quadratic equation (A.43) “straddle” the root of the cubic (A.41).

3. Third, taking the product of the two extreme equilibrium values for Λ2 yields:

γ +
√
(γ − 4(γ + γH)3τuτv)γ

2(γ + γH)γτv
× γ −

√
(γ − 4(γ + γH)3τuτv)γ

2(γ + γH)γτv
=

(γ + γH)τu
γτv

.

Thus, in view of the second expression in (A.9b), at a stable equilibrium we have either

that the price reacts more to u2 than to u1, or the opposite. Additionally, because of (24),

when p2 reacts more to u1 than to u2, the market is also less liquid at the first round.

4. Fourth, evaluating a2 at the two extreme equilibria, we obtain:

a2|Λ2=Λ∗∗∗
2

= −γ +
√

(γ − 4(γ + γH)3τuτv)γ

2(γ + γH)
> a2|Λ2=Λ∗

2
=

−γ +
√
(γ − 4(γ + γH)3τuτv)γ

2(γ + γH)
,

which always holds within the parameter restriction needed for multiple equilibria to

obtain. Given the symmetry of the equilibrium solution, this result also implies that

when second period traders consume more liquidity, first period traders consume less of

it. Finally, replacing (24) and (A.42) in the expression for a1 yields:

a1 = −γH
Λ21 − Λ1

Λ2
2τ

−1
u

= −γH
(1− (γ + γH)τvΛ21)γ

2τ 2vΛ
3
21

(γ + γH)2τu
, (A.47)

implying that also at the first round, liquidity consumption increases in the price impact

it induces.

2
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Proof of Corollary 10

1. We can interpret the model as one that endogenously yields persistence in noise trading

shocks. To see this, note that the equilibrium prices can be written as follows:

p2 = −Λ2θ2, p1 = −Λ1θ1,

where θ1 = u1, and

θ2 = u2 +
Λ21

Λ2︸︷︷︸
β

u1.

The properties of the noise process are related to the equilibrium that obtains. That is,

if

τuτv ∈ (0, γ/(4(γ + γH)
3),

then β ⋚ 1 depending on which equilibrium obtains. If τuτv ≥ γ/(4(γ + γH)
3, β = 1.

2. We now evaluate the expression for returns autocovariance at the equilibrium with full

transparency (and µ = 1):

Cov[p2 − p1, p1] =
γτ 2uτv(γ + γH)

5

(τuτv (2γ2 + 4γγH + γ2
H) (γ + γH) + τ 2uτ

2
v (γ + 2γH)(γ + γH)4 + γ)

2

(A.48)

and at both the equilibria that obtain under the parameter restriction ensuring multiplic-

ity, when the market is fully opaque, when Λ21 = Λ∗
21 we have

Cov[p2 − p1, p1] =

(
γ −

√
γ (γ − 4τuτv(γ + γH)3)

)3 (√
γ (γ − 4τuτv(γ + γH)3) + γ

)
16γ4τuτ 2v (γ + γH)2

,

(A.49)

and when Λ21 = Λ∗∗∗
21 we have instead

Cov[p2 − p1, p1] =

(
γ −

√
γ (γ − 4τuτv(γ + γH)3)

)(√
γ (γ − 4τuτv(γ + γH)3) + γ

)3
16γ4τuτ 2v (γ + γH)2

.

(A.50)

Comparing the two latter expressions shows that return autocovariance is higher when

Λ21 = Λ∗
21. While comparing the latter expression above with (A.48) shows that it

increases with respect to the case with full transparency.

2
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Proof of proposition 4

We start by obtaining an expression for the unconditional expected utility of RD and D.

Because of CARA and normality, an RD conditional expected utility evaluated at the optimal

strategy is given by

E[U((v − p1)x
RD
1 )|p1] = − exp

{
−(E[v|p1]− p1)

2

2Var[v]

}
= − exp

{
−τvΛ

2
1

2
u2
1

}
. (A.51)

Thus, RD derive utility from the expected, long-term capital gain obtained supplying liquidity

to first-period hedgers.

EURD ≡ E
[
U
(
(v − p1)x

RD
1

)]
= −

(
1 +

Var[p1]

Var[v]

)−1/2

= −
(

τu1

τu1 + τvΛ2
1

)1/2

, (A.52)

and

CERD =
γ

2
ln

(
1 +

Var[p1]

Var[v]

)
. (A.53)

Turning to D, replacing the optimal xD
1 in (A.25) and rearranging yields

E[U((p2 − p1)x
D
1 + (v − p2)x

D
2 )|u1] = −

(
1 +

Var[p2|u1]

Var[v]

)−1/2

× exp

{
−g(u1)

γ

}
, (A.54)

where

g(u1) =
γ

2

(
(E[p2|p1]− p1)

2

Var[p2|p1]
+

(E[v|p1]− p1)
2

Var[v]

)
.

The argument of the exponential in (A.54) is a quadratic form of the first-period endowment

shock. We can therefore apply Lemma 1 and obtain

EUD ≡ E[U((p2 − p1)x
D
1 + (v − p2)x

D
2 )] =

= −
(
1 +

Var[p2|p1]
Var[v]

)−1/2(
1 +

Var[p1]

Var[v]
+

Var[E[p2|p1]− p1]

Var[p2|p1]

)−1/2

. (A.55)
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Computing the certainty equivalent yields:

CED =
γ

2

(
ln

(
1 +

Var[E[v − p1|p1]]
Var[v − p1|p1]

+
Var[E[p2 − p1|p1]]
Var[p2 − p1|p1]

)
(A.56)

+ ln

(
1 +

Var[E[v − p2|p1, p2]]
Var[v − p2|p1, p2]

))
.

To obtain the expression for first period hedgers’ payoff we replace the strategy (A.24) into

the objective function (A.23) and rearrange the result, to obtain

E[− exp{−π1/γH}|u1] = −E

[
exp

{
− u2

1

γH

(
γH(Λ1 − Λ21)

2

2Var1[p2]
+

a221τvVar1[v − p2]− 1

2γHτv

)}]
.

(A.57)

The argument in the above expression is a quadratic form of the normal random variable

u1 ∼ N(0, τ−1
u ). Thus, to compute the unconditional expectation of (A.57), we apply Lemma 1

to obtain

E[− exp{−π1/γH}] = −
(

γ2
Hτuτv

γ2
Hτuτv − 1 + (a21Var1[p2] + a221Var1[v − p2])τv

)1/2

. (A.58)

To obtain the certainty equivalent, we compute

CEH
1 = −γH ln (−E[− exp{−π1/γ1}]) (A.59)

=
γH
2

ln

(
1 +

(a21Var1[p2] + a221Var1[v − p2])τv − 1

γ2
Hτuτv

)
.

To obtain the payoff of second period liquidity traders we proceed similarly by replacing their

equilibrium strategy into their objective function:

E2[− exp{−(1/γH)((v−p2)x2+vu2)}] = − exp

{
− 1

γH

(
Var2[v − p2]x

2
2 − Var[v]u2

2

2γH

)}
. (A.60)

The argument of the exponential at the right hand side of the above expression is a quadratic

form of the normally distributed random vector

(
x2

u2

)
∼ N


(

0

0

)
,

(
Var[x2] a2/τu

a2/τu τ−1
u

)
︸ ︷︷ ︸

Σ

 .

Indeed, we have

Var2[v − p2]x
2
2 − Var[v]u2

2

2γH
=

1

2γH

(
x2 u2

)( Var2[v − p2] 0

0 −Var[v]

)
︸ ︷︷ ︸

A

(
x2

u2

)
.
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Applying again Lemma 1, we then have

E

[
− exp

{
− 1

γH

(
Var2[v − p2]x

2
2 − Var[v]u2

2

2γH

)}]
= − |I + (2/γH)ΣA|−1/2 (A.61)

= −
(

γ4
Hτ

2
uτv

a22Var2[v − p2] + (Var2[v − p2]Var[x2] + γ2
H)(γ

2
Hτuτv − 1)τu

)1/2

.

Finally, the certainty equivalent obtains by computing

CEH
2 = −γH ln (−E[− exp{−π2/γH}]) (A.62)

=
γH
2

ln

(
1 +

a22Var2[v − p2]τv − 1

γ2
Hτuτv

+
b2Var[su1 ](γ

2
Hτuτv − 1)

γ4
Hτuτv

)
.

2

B First period traders observing u2

Suppose that at the second round, first period traders perfectly observe u2, while second period

traders do not know u1. From an informational point of view, this case is the polar opposite

of the transparent benchmark we considered in Section 2, and corresponds to a stylized model

of liquidity provision by non-HFT agents, such as the case of a buy-side institution which uses

algorithms to minimize trading costs, thus accessing market data for that purpose (see, e.g. Li

et al. (2021)). Additionally, this case can be understood as an alternative benchmark of the

case with opacity that we consider in Section 3.2.

If first period traders observe u2, then their second period equilibrium strategy will load on

u2 and in a linear equilibrium we will have that

x21 = a21u1 + bu2.

Conversely, given that by assumption second period traders do not know u1, their strategy will

only load on their endowment shock u2:

x2 = a2u2.

We obtain the following result:

Proposition B.1. When first period liquidity traders perfectly observe u2 at the second round,

a unique equilibrium in linear strategies exists, where prices are as in (1a) and (19). In this

equilibrium, the expressions for the equilibrium prices’ coefficients Λ2, Λ21 = Λ1 (with Λ21 > Λ2)

are given in the Appendix (see, respectively (B.14), (B.15), and (B.22)). Traders’ strategies are

as follows: x11 = a1u1, x21 = a21u1 + bu2 and x2 = a2u2, where the expressions for a2 ∈
(−1, 0), b > 0 and a1 = a21 ∈ (−1, 0), are given the Appendix (see, respectively (B.6), (B.11),
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and (B.19)).

Proof of Proposition B.1

Assume that prices are linear in the endowment shocks:

p2 = −Λ2u2 − Λ21u1 (B.1a)

p1 = −Λ1u1. (B.1b)

To characterize the equilibrium, we start from second period traders whose position is given

by:

x2 = γH
E2[v − p2]

Var2[v − p2]
− Cov2[v, v − p2]

Var2[v − p2]
u2, (B.2)

where

E2[v − p2] = Λ2u2 (B.3)

Var2[v − p2] = (τu + Λ2
21τv)τ

−1
u τ−1

v (B.4)

Cov2[v, v − p2] = τ−1
v . (B.5)

Replacing the latter expressions into (B.2) and rearranging yields

x2 =
γHτvΛ2 − 1

τu + Λ2
21τv

τu︸ ︷︷ ︸
a2

u2. (B.6)

First period traders, when they re-trade at the second round have a position given by:

x21 = γH
E21[v − p2]

Var21[v − p2]
− Cov21[v, v − p2]

Var21[v − p2]
u1, (B.7)

where

E21[v − p2] = Λ2u2 + Λ21u1 (B.8)

Var21[v − p2] = τ−1
v (B.9)

Cov21[v, v − p2] = τ−1
v . (B.10)

Replacing the latter expressions into (B.7) and rearranging yields:

x21 = (γHτvΛ21 − 1)︸ ︷︷ ︸
a21

u1 + γHτvΛ2︸ ︷︷ ︸
b

u2 (B.11)

= −γHτvp2 − u1.

Because dealers observe u1 and u2, and submit limit orders, at the second round their position
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is given by

xD
2 = −γτvp2. (B.12)

Replacing (B.2), (B.11) and (B.12) in the second period market clearing condition yields

xD
2 + x21 + x2 = 0 ⇐⇒ −γτvp2 + (γHτuΛ21 − 1)u1 + γHτvΛ2u2 +

γHτvΛ2 − 1

τu + Λ2
21τv

τuu2 = 0. (B.13)

Solving for p2 and identifying the price coefficients we obtain (B.1a) with:

Λ2 =
(γ + γH)τu

1 + (γ + 2γH)(γ + γH)τuτv
(B.14)

Λ21 =
1

(γ + γH)τv
. (B.15)

Based on (B.6), (B.11), and the expressions for the price coefficients above, at the second

round second period traders hedge their endowment shock (selling the risky security if u2 > 0

and buying it otherwise), while first period traders hedge and speculate on the imbalance due

to second period traders’ order. Therefore, the fact that information on order imbalances is

observed by first period traders implies that the additional source of risk sharing dealers rely

upon comes from them.

At the first round, the strategy of a dealer is like in the current benchmark of the paper,

that is:

xD
1 = −γτu

Λ21 − Λ1

Λ2
2

u1 − γτvp1. (B.16)

Denoting by π1 = (p2−p1)x11+(v−p2)x21+u1v, first period traders’ profit, we pin down their

strategy maximizing the following value function, obtained by substituting first period traders’

equilibrium strategy into the second period objective function and rearranging:

− E[exp{−π1/γH}|u1] = −E

[
exp{−((p2 − p1)x11 +

1

2γHτv
(x2

21 − u2
1))/γH}|u1

]
. (B.17)

Applying the usual transformation to the expression at the exponent of dealers’ objective

function yields:

−E

[
exp{−((p2 − p1)x11 +

1

2γHτv
(x2

21 − u2
1))/γH}|u1

]
(B.18)

= − exp

{
−
(
(Λ1 − Λ21)u1x11 +

(a221 − 1)

2γHτv
u2
1 −

1

2

(
a21b

γHτv
u1 − Λ2x11

)2

(τ−1
u + b2/γHτv)

)
/γH

}
.

Differentiating the argument of the objective function and equating the result to zero, we solve
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for first period traders’ optimal strategy at the first round obtaining:

x11 =

(
a21b

γHΛ2τv
+

γH(Λ1 − Λ21)τuτv
(b2τu + γHτv)Λ2

2

)
u1 (B.19)

=

(
γHΛ21τv − 1 +

(Λ1 − Λ21)τu
(1 + γHΛ2

2τuτv)Λ
2
2

)
︸ ︷︷ ︸

a1

u1.

Finally, we replace (B.16) and (B.19) in the first period market clearing condition:

− γτu
Λ21 − Λ1

Λ2
2

u1 − γτvp1 + a1u1 = 0, (B.20)

solve for p1 and identify the first period price coefficient Λ1:

Λ1 =
Λ2

2 (γHΛ21τv (γτ
2
u − 1) + 1) + (1 + γ)Λ21τu + γHΛ

4
2τuτv(1− γHΛ21τv)

γγHΛ4
2τuτ

2
v + γΛ2

2τv (1 + γHτ 2u) + (1 + γ)τu
. (B.21)

Substituting (B.14) and (B.15) in the above expression and simplifying yields:

Λ1 = Λ21 =
1

(γ + γH)τv
. (B.22)

2

Therefore, when first period traders observe u2 a unique equilibrium obtains. However, in

this case it’s the 1st period traders who, at the second round, “speculate” on u2, posting a

contrarian market order (b > 0) which represents the only change in their position. That is,

first period traders’ exposure to their endowment shock does not change across trading rounds

(a1 = a21).

The reason for this effect is that according to (B.19) in the Appendix, first period traders

at the first round hedge the same fraction they will hedge at the second round modified to take

advantage of differences in their price impact across rounds. However, the only reason why Λ21

may differ from Λ1 is a change in dealers’ exposure to u1, which depends on traders’ liquidity

demand at the second round. But liquidity traders’ have no reason to change their position,

since market conditions have not changed compared to the first trading round: they are not

learning anything new about v, they cannot count on an increased liquidity supply from second

period traders (since these do not know u1), and they can fully control the execution risk due

to second period traders’ order. The consequence of this is that Λ21 = Λ1 (dealers’ exposure to

u1 does not change across trading rounds) and a21 = a1.

In turn, this implies that the autocovariance of 1st and 2nd period returns is null:

Cov[p2 − p1, p1] = 0.

This means that in our baseline model, momentum is related to the assumption that 2nd
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period traders are informed about u1. To be sure: owing to this assumption the liquidity

supplied by the market at the second round increases, leading first period traders to scale up

their hedging position across trading rounds, and causing first and second period returns to

positively autocovary.

Finally, we can check that ”noise trading” still displays “persistence” in this case. That is,

we can write: p2 = −Λ2θ2, p1 = −Λ1θ1, with θ1 ≡ u1 and θ2 ≡ u2 + βθ1, and obtain:

β ≡ Λ21

Λ2

> 1.

We summarize these results in the following

Corollary 11. When first period traders observe u2 at the second round (1) liquidity trading

behaves as an unstable AR(1) process; (2) first and second period returns are uncorrelated:

Cov[p2 − p1, p1] = 0.
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Figure 9: Price impact coefficients (panel (a), (c), (e), (g)) and strategy coefficients in the
general case. Parameter values are as in Figure 5 except for τη ∈ {0.01, 0.02, . . . , 1}.
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Figure 12: The region above (below) the curve captures values of (µ, τη) for which a unique
equilibrium (multiple equilibria) obtain.
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Figure 13: Price impact coefficients (panel (a), (c), (e), (g)) and strategy coefficients in the
general case. Parameter values are as in Figure 5 except for µ = 0.1 and τη ∈ {0.01, 0.02, . . . , 1}.
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Figure 14: Price impact coefficient of u1 at the second round and strategy coefficient of first
period traders when trading at the second round (respectively, Panel (a) and (b)). In Panel (c)
we plot a21 against the price impact it generates. Parameter values are as in Figure 13.
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